//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// // // This file defines the very important Value class. This is subclassed by a // bunch of other important classes, like Instruction, Function, Type, etc... // // This file also defines the Use<> template for users of value. // //===----------------------------------------------------------------------===// #ifndef LLVM_VALUE_H #define LLVM_VALUE_H #include "llvm/AbstractTypeUser.h" #include "Support/Annotation.h" #include "Support/Casting.h" #include #include class User; class Type; class Constant; class Argument; class Instruction; class BasicBlock; class GlobalValue; class Function; class GlobalVariable; class SymbolTable; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// /// Value - The base class of all values computed by a program that may be used /// as operands to other values. /// class Value : public Annotable, // Values are annotable public AbstractTypeUser { // Values use potentially abstract types public: enum ValueTy { TypeVal, // This is an instance of Type ConstantVal, // This is an instance of Constant ArgumentVal, // This is an instance of Argument InstructionVal, // This is an instance of Instruction BasicBlockVal, // This is an instance of BasicBlock FunctionVal, // This is an instance of Function GlobalVariableVal, // This is an instance of GlobalVariable }; private: std::vector Uses; std::string Name; PATypeHandle Ty; ValueTy VTy; void operator=(const Value &); // Do not implement Value(const Value &); // Do not implement public: Value(const Type *Ty, ValueTy vty, const std::string &name = ""); virtual ~Value(); /// dump - Support for debugging, callable in GDB: V->dump() // void dump() const; /// print - Implement operator<< on Value... /// virtual void print(std::ostream &O) const = 0; /// All values are typed, get the type of this value. /// inline const Type *getType() const { return Ty; } // All values can potentially be named... inline bool hasName() const { return Name != ""; } inline const std::string &getName() const { return Name; } virtual void setName(const std::string &name, SymbolTable * = 0) { Name = name; } /// getValueType - Return the immediate subclass of this Value. /// inline ValueTy getValueType() const { return VTy; } /// replaceAllUsesWith - Go through the uses list for this definition and make /// each use point to "V" instead of "this". After this completes, 'this's /// use list is guaranteed to be empty. /// void replaceAllUsesWith(Value *V); // uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous. // Only use when in type resolution situations! void uncheckedReplaceAllUsesWith(Value *V); /// refineAbstractType - This function is implemented because we use /// potentially abstract types, and these types may be resolved to more /// concrete types after we are constructed. /// virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); //---------------------------------------------------------------------- // Methods for handling the vector of uses of this Value. // typedef std::vector::iterator use_iterator; typedef std::vector::const_iterator use_const_iterator; inline unsigned use_size() const { return Uses.size(); } inline bool use_empty() const { return Uses.empty(); } inline use_iterator use_begin() { return Uses.begin(); } inline use_const_iterator use_begin() const { return Uses.begin(); } inline use_iterator use_end() { return Uses.end(); } inline use_const_iterator use_end() const { return Uses.end(); } inline User *use_back() { return Uses.back(); } inline const User *use_back() const { return Uses.back(); } /// addUse/killUse - These two methods should only be used by the Use class /// below. inline void addUse(User *I) { Uses.push_back(I); } void killUse(User *I); }; inline std::ostream &operator<<(std::ostream &OS, const Value *V) { if (V == 0) OS << " value!\n"; else V->print(OS); return OS; } inline std::ostream &operator<<(std::ostream &OS, const Value &V) { V.print(OS); return OS; } //===----------------------------------------------------------------------===// // Use Class //===----------------------------------------------------------------------===// // Use is here to make keeping the "use" list of a Value up-to-date really easy. // class Use { Value *Val; User *U; public: inline Use(Value *v, User *user) { Val = v; U = user; if (Val) Val->addUse(U); } inline Use(const Use &user) { Val = 0; U = user.U; operator=(user.Val); } inline ~Use() { if (Val) Val->killUse(U); } inline operator Value*() const { return Val; } inline Value *operator=(Value *V) { if (Val) Val->killUse(U); Val = V; if (V) V->addUse(U); return V; } inline Value *operator->() { return Val; } inline const Value *operator->() const { return Val; } inline Value *get() { return Val; } inline const Value *get() const { return Val; } inline const Use &operator=(const Use &user) { if (Val) Val->killUse(U); Val = user.Val; Val->addUse(U); return *this; } }; template<> struct simplify_type { typedef Value* SimpleType; static SimpleType getSimplifiedValue(const Use &Val) { return (SimpleType)Val.get(); } }; template<> struct simplify_type { typedef Value* SimpleType; static SimpleType getSimplifiedValue(const Use &Val) { return (SimpleType)Val.get(); } }; // isa - Provide some specializations of isa so that we don't have to include // the subtype header files to test to see if the value is a subclass... // template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::TypeVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::ConstantVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::ArgumentVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::InstructionVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::BasicBlockVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::FunctionVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::GlobalVariableVal; } template <> inline bool isa_impl(const Value &Val) { return isa(Val) || isa(Val); } #endif