//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { struct X86Operand; class X86AsmParser : public MCTargetAsmParser { MCSubtargetInfo &STI; MCAsmParser &Parser; private: MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } bool Error(SMLoc L, const Twine &Msg, ArrayRef Ranges = ArrayRef()) { return Parser.Error(L, Msg, Ranges); } X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) { Error(Loc, Msg); return 0; } X86Operand *ParseOperand(); X86Operand *ParseATTOperand(); X86Operand *ParseIntelOperand(); X86Operand *ParseIntelMemOperand(); X86Operand *ParseIntelBracExpression(unsigned SegReg, unsigned Size); X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); bool ParseDirectiveWord(unsigned Size, SMLoc L); bool ParseDirectiveCode(StringRef IDVal, SMLoc L); bool processInstruction(MCInst &Inst, const SmallVectorImpl &Ops); bool MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out); bool MatchInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, SmallVectorImpl &MCInsts); /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi) /// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode. bool isSrcOp(X86Operand &Op); /// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi) /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode. bool isDstOp(X86Operand &Op); bool is64BitMode() const { // FIXME: Can tablegen auto-generate this? return (STI.getFeatureBits() & X86::Mode64Bit) != 0; } void SwitchMode() { unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit)); setAvailableFeatures(FB); } /// @name Auto-generated Matcher Functions /// { #define GET_ASSEMBLER_HEADER #include "X86GenAsmMatcher.inc" /// } public: X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser) : MCTargetAsmParser(), STI(sti), Parser(parser) { // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); virtual bool ParseDirective(AsmToken DirectiveID); bool isParsingIntelSyntax() { return getParser().getAssemblerDialect(); } }; } // end anonymous namespace /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } static bool isImmSExti16i8Value(uint64_t Value) { return (( Value <= 0x000000000000007FULL)|| (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } static bool isImmSExti32i8Value(uint64_t Value) { return (( Value <= 0x000000000000007FULL)|| (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } static bool isImmZExtu32u8Value(uint64_t Value) { return (Value <= 0x00000000000000FFULL); } static bool isImmSExti64i8Value(uint64_t Value) { return (( Value <= 0x000000000000007FULL)|| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } static bool isImmSExti64i32Value(uint64_t Value) { return (( Value <= 0x000000007FFFFFFFULL)|| (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } namespace { /// X86Operand - Instances of this class represent a parsed X86 machine /// instruction. struct X86Operand : public MCParsedAsmOperand { enum KindTy { Token, Register, Immediate, Memory } Kind; SMLoc StartLoc, EndLoc; union { struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNo; } Reg; struct { const MCExpr *Val; } Imm; struct { unsigned SegReg; const MCExpr *Disp; unsigned BaseReg; unsigned IndexReg; unsigned Scale; unsigned Size; } Mem; }; X86Operand(KindTy K, SMLoc Start, SMLoc End) : Kind(K), StartLoc(Start), EndLoc(End) {} /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } virtual void print(raw_ostream &OS) const {} StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } void setTokenValue(StringRef Value) { assert(Kind == Token && "Invalid access!"); Tok.Data = Value.data(); Tok.Length = Value.size(); } unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNo; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } const MCExpr *getMemDisp() const { assert(Kind == Memory && "Invalid access!"); return Mem.Disp; } unsigned getMemSegReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.SegReg; } unsigned getMemBaseReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.BaseReg; } unsigned getMemIndexReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.IndexReg; } unsigned getMemScale() const { assert(Kind == Memory && "Invalid access!"); return Mem.Scale; } bool isToken() const {return Kind == Token; } bool isImm() const { return Kind == Immediate; } bool isImmSExti16i8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. return isImmSExti16i8Value(CE->getValue()); } bool isImmSExti32i8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. return isImmSExti32i8Value(CE->getValue()); } bool isImmZExtu32u8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. return isImmZExtu32u8Value(CE->getValue()); } bool isImmSExti64i8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. return isImmSExti64i8Value(CE->getValue()); } bool isImmSExti64i32() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. return isImmSExti64i32Value(CE->getValue()); } bool isMem() const { return Kind == Memory; } bool isMem8() const { return Kind == Memory && (!Mem.Size || Mem.Size == 8); } bool isMem16() const { return Kind == Memory && (!Mem.Size || Mem.Size == 16); } bool isMem32() const { return Kind == Memory && (!Mem.Size || Mem.Size == 32); } bool isMem64() const { return Kind == Memory && (!Mem.Size || Mem.Size == 64); } bool isMem80() const { return Kind == Memory && (!Mem.Size || Mem.Size == 80); } bool isMem128() const { return Kind == Memory && (!Mem.Size || Mem.Size == 128); } bool isMem256() const { return Kind == Memory && (!Mem.Size || Mem.Size == 256); } bool isMemVX32() const { return Kind == Memory && (!Mem.Size || Mem.Size == 32) && getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15; } bool isMemVY32() const { return Kind == Memory && (!Mem.Size || Mem.Size == 32) && getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15; } bool isMemVX64() const { return Kind == Memory && (!Mem.Size || Mem.Size == 64) && getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15; } bool isMemVY64() const { return Kind == Memory && (!Mem.Size || Mem.Size == 64) && getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15; } bool isAbsMem() const { return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && !getMemIndexReg() && getMemScale() == 1; } bool isReg() const { return Kind == Register; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addMem8Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMem16Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMem32Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMem64Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMem80Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMem128Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMem256Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMemVX32Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMemVY32Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMemVX64Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMemVY64Operands(MCInst &Inst, unsigned N) const { addMemOperands(Inst, N); } void addMemOperands(MCInst &Inst, unsigned N) const { assert((N == 5) && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); Inst.addOperand(MCOperand::CreateImm(getMemScale())); Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); addExpr(Inst, getMemDisp()); Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); } void addAbsMemOperands(MCInst &Inst, unsigned N) const { assert((N == 1) && "Invalid number of operands!"); // Add as immediates when possible. if (const MCConstantExpr *CE = dyn_cast(getMemDisp())) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); } static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size() - 1); X86Operand *Res = new X86Operand(Token, Loc, EndLoc); Res->Tok.Data = Str.data(); Res->Tok.Length = Str.size(); return Res; } static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) { X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); Res->Reg.RegNo = RegNo; return Res; } static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); Res->Imm.Val = Val; return Res; } /// Create an absolute memory operand. static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, unsigned Size = 0) { X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); Res->Mem.SegReg = 0; Res->Mem.Disp = Disp; Res->Mem.BaseReg = 0; Res->Mem.IndexReg = 0; Res->Mem.Scale = 1; Res->Mem.Size = Size; return Res; } /// Create a generalized memory operand. static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc, SMLoc EndLoc, unsigned Size = 0) { // We should never just have a displacement, that should be parsed as an // absolute memory operand. assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); // The scale should always be one of {1,2,4,8}. assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && "Invalid scale!"); X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); Res->Mem.SegReg = SegReg; Res->Mem.Disp = Disp; Res->Mem.BaseReg = BaseReg; Res->Mem.IndexReg = IndexReg; Res->Mem.Scale = Scale; Res->Mem.Size = Size; return Res; } }; } // end anonymous namespace. bool X86AsmParser::isSrcOp(X86Operand &Op) { unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI; return (Op.isMem() && (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) && isa(Op.Mem.Disp) && cast(Op.Mem.Disp)->getValue() == 0 && Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0); } bool X86AsmParser::isDstOp(X86Operand &Op) { unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI; return Op.isMem() && (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) && isa(Op.Mem.Disp) && cast(Op.Mem.Disp)->getValue() == 0 && Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0; } bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { RegNo = 0; if (!isParsingIntelSyntax()) { const AsmToken &TokPercent = Parser.getTok(); assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); StartLoc = TokPercent.getLoc(); Parser.Lex(); // Eat percent token. } const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) { if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", SMRange(StartLoc, Tok.getEndLoc())); } RegNo = MatchRegisterName(Tok.getString()); // If the match failed, try the register name as lowercase. if (RegNo == 0) RegNo = MatchRegisterName(Tok.getString().lower()); if (!is64BitMode()) { // FIXME: This should be done using Requires and // Requires so "eiz" usage in 64-bit instructions can be also // checked. // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a // REX prefix. if (RegNo == X86::RIZ || X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) || X86II::isX86_64NonExtLowByteReg(RegNo) || X86II::isX86_64ExtendedReg(RegNo)) return Error(StartLoc, "register %" + Tok.getString() + " is only available in 64-bit mode", SMRange(StartLoc, Tok.getEndLoc())); } // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { RegNo = X86::ST0; EndLoc = Tok.getLoc(); Parser.Lex(); // Eat 'st' // Check to see if we have '(4)' after %st. if (getLexer().isNot(AsmToken::LParen)) return false; // Lex the paren. getParser().Lex(); const AsmToken &IntTok = Parser.getTok(); if (IntTok.isNot(AsmToken::Integer)) return Error(IntTok.getLoc(), "expected stack index"); switch (IntTok.getIntVal()) { case 0: RegNo = X86::ST0; break; case 1: RegNo = X86::ST1; break; case 2: RegNo = X86::ST2; break; case 3: RegNo = X86::ST3; break; case 4: RegNo = X86::ST4; break; case 5: RegNo = X86::ST5; break; case 6: RegNo = X86::ST6; break; case 7: RegNo = X86::ST7; break; default: return Error(IntTok.getLoc(), "invalid stack index"); } if (getParser().Lex().isNot(AsmToken::RParen)) return Error(Parser.getTok().getLoc(), "expected ')'"); EndLoc = Tok.getLoc(); Parser.Lex(); // Eat ')' return false; } // If this is "db[0-7]", match it as an alias // for dr[0-7]. if (RegNo == 0 && Tok.getString().size() == 3 && Tok.getString().startswith("db")) { switch (Tok.getString()[2]) { case '0': RegNo = X86::DR0; break; case '1': RegNo = X86::DR1; break; case '2': RegNo = X86::DR2; break; case '3': RegNo = X86::DR3; break; case '4': RegNo = X86::DR4; break; case '5': RegNo = X86::DR5; break; case '6': RegNo = X86::DR6; break; case '7': RegNo = X86::DR7; break; } if (RegNo != 0) { EndLoc = Tok.getLoc(); Parser.Lex(); // Eat it. return false; } } if (RegNo == 0) { if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", SMRange(StartLoc, Tok.getEndLoc())); } EndLoc = Tok.getEndLoc(); Parser.Lex(); // Eat identifier token. return false; } X86Operand *X86AsmParser::ParseOperand() { if (isParsingIntelSyntax()) return ParseIntelOperand(); return ParseATTOperand(); } /// getIntelMemOperandSize - Return intel memory operand size. static unsigned getIntelMemOperandSize(StringRef OpStr) { unsigned Size = 0; if (OpStr == "BYTE") Size = 8; if (OpStr == "WORD") Size = 16; if (OpStr == "DWORD") Size = 32; if (OpStr == "QWORD") Size = 64; if (OpStr == "XWORD") Size = 80; if (OpStr == "XMMWORD") Size = 128; if (OpStr == "YMMWORD") Size = 256; return Size; } X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, unsigned Size) { unsigned BaseReg = 0, IndexReg = 0, Scale = 1; SMLoc Start = Parser.getTok().getLoc(), End; const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); // Parse [ BaseReg + Scale*IndexReg + Disp ] or [ symbol ] // Eat '[' if (getLexer().isNot(AsmToken::LBrac)) return ErrorOperand(Start, "Expected '[' token!"); Parser.Lex(); if (getLexer().is(AsmToken::Identifier)) { // Parse BaseReg if (ParseRegister(BaseReg, Start, End)) { // Handle '[' 'symbol' ']' if (getParser().ParseExpression(Disp, End)) return 0; if (getLexer().isNot(AsmToken::RBrac)) return ErrorOperand(Start, "Expected ']' token!"); Parser.Lex(); return X86Operand::CreateMem(Disp, Start, End, Size); } } else if (getLexer().is(AsmToken::Integer)) { int64_t Val = Parser.getTok().getIntVal(); Parser.Lex(); SMLoc Loc = Parser.getTok().getLoc(); if (getLexer().is(AsmToken::RBrac)) { // Handle '[' number ']' Parser.Lex(); const MCExpr *Disp = MCConstantExpr::Create(Val, getContext()); if (SegReg) return X86Operand::CreateMem(SegReg, Disp, 0, 0, Scale, Start, End, Size); return X86Operand::CreateMem(Disp, Start, End, Size); } else if (getLexer().is(AsmToken::Star)) { // Handle '[' Scale*IndexReg ']' Parser.Lex(); SMLoc IdxRegLoc = Parser.getTok().getLoc(); if (ParseRegister(IndexReg, IdxRegLoc, End)) return ErrorOperand(IdxRegLoc, "Expected register"); Scale = Val; } else return ErrorOperand(Loc, "Unexpected token"); } if (getLexer().is(AsmToken::Plus) || getLexer().is(AsmToken::Minus)) { bool isPlus = getLexer().is(AsmToken::Plus); Parser.Lex(); SMLoc PlusLoc = Parser.getTok().getLoc(); if (getLexer().is(AsmToken::Integer)) { int64_t Val = Parser.getTok().getIntVal(); Parser.Lex(); if (getLexer().is(AsmToken::Star)) { Parser.Lex(); SMLoc IdxRegLoc = Parser.getTok().getLoc(); if (ParseRegister(IndexReg, IdxRegLoc, End)) return ErrorOperand(IdxRegLoc, "Expected register"); Scale = Val; } else if (getLexer().is(AsmToken::RBrac)) { const MCExpr *ValExpr = MCConstantExpr::Create(Val, getContext()); Disp = isPlus ? ValExpr : MCConstantExpr::Create(0-Val, getContext()); } else return ErrorOperand(PlusLoc, "unexpected token after +"); } else if (getLexer().is(AsmToken::Identifier)) { // This could be an index register or a displacement expression. End = Parser.getTok().getLoc(); if (!IndexReg) ParseRegister(IndexReg, Start, End); else if (getParser().ParseExpression(Disp, End)) return 0; } } if (getLexer().isNot(AsmToken::RBrac)) if (getParser().ParseExpression(Disp, End)) return 0; End = Parser.getTok().getLoc(); if (getLexer().isNot(AsmToken::RBrac)) return ErrorOperand(End, "expected ']' token!"); Parser.Lex(); End = Parser.getTok().getLoc(); // handle [-42] if (!BaseReg && !IndexReg) return X86Operand::CreateMem(Disp, Start, End, Size); return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start, End, Size); } /// ParseIntelMemOperand - Parse intel style memory operand. X86Operand *X86AsmParser::ParseIntelMemOperand() { const AsmToken &Tok = Parser.getTok(); SMLoc Start = Parser.getTok().getLoc(), End; unsigned SegReg = 0; unsigned Size = getIntelMemOperandSize(Tok.getString()); if (Size) { Parser.Lex(); assert (Tok.getString() == "PTR" && "Unexpected token!"); Parser.Lex(); } if (getLexer().is(AsmToken::LBrac)) return ParseIntelBracExpression(SegReg, Size); if (!ParseRegister(SegReg, Start, End)) { // Handel SegReg : [ ... ] if (getLexer().isNot(AsmToken::Colon)) return ErrorOperand(Start, "Expected ':' token!"); Parser.Lex(); // Eat : if (getLexer().isNot(AsmToken::LBrac)) return ErrorOperand(Start, "Expected '[' token!"); return ParseIntelBracExpression(SegReg, Size); } const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); if (getParser().ParseExpression(Disp, End)) return 0; return X86Operand::CreateMem(Disp, Start, End, Size); } X86Operand *X86AsmParser::ParseIntelOperand() { SMLoc Start = Parser.getTok().getLoc(), End; // immediate. if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Real) || getLexer().is(AsmToken::Minus)) { const MCExpr *Val; if (!getParser().ParseExpression(Val, End)) { End = Parser.getTok().getLoc(); return X86Operand::CreateImm(Val, Start, End); } } // register unsigned RegNo = 0; if (!ParseRegister(RegNo, Start, End)) { End = Parser.getTok().getLoc(); return X86Operand::CreateReg(RegNo, Start, End); } // mem operand return ParseIntelMemOperand(); } X86Operand *X86AsmParser::ParseATTOperand() { switch (getLexer().getKind()) { default: // Parse a memory operand with no segment register. return ParseMemOperand(0, Parser.getTok().getLoc()); case AsmToken::Percent: { // Read the register. unsigned RegNo; SMLoc Start, End; if (ParseRegister(RegNo, Start, End)) return 0; if (RegNo == X86::EIZ || RegNo == X86::RIZ) { Error(Start, "%eiz and %riz can only be used as index registers", SMRange(Start, End)); return 0; } // If this is a segment register followed by a ':', then this is the start // of a memory reference, otherwise this is a normal register reference. if (getLexer().isNot(AsmToken::Colon)) return X86Operand::CreateReg(RegNo, Start, End); getParser().Lex(); // Eat the colon. return ParseMemOperand(RegNo, Start); } case AsmToken::Dollar: { // $42 -> immediate. SMLoc Start = Parser.getTok().getLoc(), End; Parser.Lex(); const MCExpr *Val; if (getParser().ParseExpression(Val, End)) return 0; return X86Operand::CreateImm(Val, Start, End); } } } /// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix /// has already been parsed if present. X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { // We have to disambiguate a parenthesized expression "(4+5)" from the start // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The // only way to do this without lookahead is to eat the '(' and see what is // after it. const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); if (getLexer().isNot(AsmToken::LParen)) { SMLoc ExprEnd; if (getParser().ParseExpression(Disp, ExprEnd)) return 0; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (getLexer().isNot(AsmToken::LParen)) { // Unless we have a segment register, treat this as an immediate. if (SegReg == 0) return X86Operand::CreateMem(Disp, MemStart, ExprEnd); return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); } // Eat the '('. Parser.Lex(); } else { // Okay, we have a '('. We don't know if this is an expression or not, but // so we have to eat the ( to see beyond it. SMLoc LParenLoc = Parser.getTok().getLoc(); Parser.Lex(); // Eat the '('. if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { // Nothing to do here, fall into the code below with the '(' part of the // memory operand consumed. } else { SMLoc ExprEnd; // It must be an parenthesized expression, parse it now. if (getParser().ParseParenExpression(Disp, ExprEnd)) return 0; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (getLexer().isNot(AsmToken::LParen)) { // Unless we have a segment register, treat this as an immediate. if (SegReg == 0) return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); } // Eat the '('. Parser.Lex(); } } // If we reached here, then we just ate the ( of the memory operand. Process // the rest of the memory operand. unsigned BaseReg = 0, IndexReg = 0, Scale = 1; SMLoc IndexLoc; if (getLexer().is(AsmToken::Percent)) { SMLoc StartLoc, EndLoc; if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0; if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { Error(StartLoc, "eiz and riz can only be used as index registers", SMRange(StartLoc, EndLoc)); return 0; } } if (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. IndexLoc = Parser.getTok().getLoc(); // Following the comma we should have either an index register, or a scale // value. We don't support the later form, but we want to parse it // correctly. // // Not that even though it would be completely consistent to support syntax // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. if (getLexer().is(AsmToken::Percent)) { SMLoc L; if (ParseRegister(IndexReg, L, L)) return 0; if (getLexer().isNot(AsmToken::RParen)) { // Parse the scale amount: // ::= ',' [scale-expression] if (getLexer().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "expected comma in scale expression"); return 0; } Parser.Lex(); // Eat the comma. if (getLexer().isNot(AsmToken::RParen)) { SMLoc Loc = Parser.getTok().getLoc(); int64_t ScaleVal; if (getParser().ParseAbsoluteExpression(ScaleVal)){ Error(Loc, "expected scale expression"); return 0; } // Validate the scale amount. if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); return 0; } Scale = (unsigned)ScaleVal; } } } else if (getLexer().isNot(AsmToken::RParen)) { // A scale amount without an index is ignored. // index. SMLoc Loc = Parser.getTok().getLoc(); int64_t Value; if (getParser().ParseAbsoluteExpression(Value)) return 0; if (Value != 1) Warning(Loc, "scale factor without index register is ignored"); Scale = 1; } } // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. if (getLexer().isNot(AsmToken::RParen)) { Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); return 0; } SMLoc MemEnd = Parser.getTok().getLoc(); Parser.Lex(); // Eat the ')'. // If we have both a base register and an index register make sure they are // both 64-bit or 32-bit registers. // To support VSIB, IndexReg can be 128-bit or 256-bit registers. if (BaseReg != 0 && IndexReg != 0) { if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) && (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) && IndexReg != X86::RIZ) { Error(IndexLoc, "index register is 32-bit, but base register is 64-bit"); return 0; } if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) && (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) && IndexReg != X86::EIZ){ Error(IndexLoc, "index register is 64-bit, but base register is 32-bit"); return 0; } } return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, MemStart, MemEnd); } bool X86AsmParser:: ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands) { StringRef PatchedName = Name; // FIXME: Hack to recognize setneb as setne. if (PatchedName.startswith("set") && PatchedName.endswith("b") && PatchedName != "setb" && PatchedName != "setnb") PatchedName = PatchedName.substr(0, Name.size()-1); // FIXME: Hack to recognize cmp{ss,sd,ps,pd}. const MCExpr *ExtraImmOp = 0; if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && (PatchedName.endswith("ss") || PatchedName.endswith("sd") || PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { bool IsVCMP = PatchedName[0] == 'v'; unsigned SSECCIdx = IsVCMP ? 4 : 3; unsigned SSEComparisonCode = StringSwitch( PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) .Case("eq", 0x00) .Case("lt", 0x01) .Case("le", 0x02) .Case("unord", 0x03) .Case("neq", 0x04) .Case("nlt", 0x05) .Case("nle", 0x06) .Case("ord", 0x07) /* AVX only from here */ .Case("eq_uq", 0x08) .Case("nge", 0x09) .Case("ngt", 0x0A) .Case("false", 0x0B) .Case("neq_oq", 0x0C) .Case("ge", 0x0D) .Case("gt", 0x0E) .Case("true", 0x0F) .Case("eq_os", 0x10) .Case("lt_oq", 0x11) .Case("le_oq", 0x12) .Case("unord_s", 0x13) .Case("neq_us", 0x14) .Case("nlt_uq", 0x15) .Case("nle_uq", 0x16) .Case("ord_s", 0x17) .Case("eq_us", 0x18) .Case("nge_uq", 0x19) .Case("ngt_uq", 0x1A) .Case("false_os", 0x1B) .Case("neq_os", 0x1C) .Case("ge_oq", 0x1D) .Case("gt_oq", 0x1E) .Case("true_us", 0x1F) .Default(~0U); if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) { ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, getParser().getContext()); if (PatchedName.endswith("ss")) { PatchedName = IsVCMP ? "vcmpss" : "cmpss"; } else if (PatchedName.endswith("sd")) { PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; } else if (PatchedName.endswith("ps")) { PatchedName = IsVCMP ? "vcmpps" : "cmpps"; } else { assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); PatchedName = IsVCMP ? "vcmppd" : "cmppd"; } } } Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); if (ExtraImmOp && !isParsingIntelSyntax()) Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); // Determine whether this is an instruction prefix. bool isPrefix = Name == "lock" || Name == "rep" || Name == "repe" || Name == "repz" || Name == "repne" || Name == "repnz" || Name == "rex64" || Name == "data16"; // This does the actual operand parsing. Don't parse any more if we have a // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we // just want to parse the "lock" as the first instruction and the "incl" as // the next one. if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { // Parse '*' modifier. if (getLexer().is(AsmToken::Star)) { SMLoc Loc = Parser.getTok().getLoc(); Operands.push_back(X86Operand::CreateToken("*", Loc)); Parser.Lex(); // Eat the star. } // Read the first operand. if (X86Operand *Op = ParseOperand()) Operands.push_back(Op); else { Parser.EatToEndOfStatement(); return true; } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (X86Operand *Op = ParseOperand()) Operands.push_back(Op); else { Parser.EatToEndOfStatement(); return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); Parser.EatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } } if (getLexer().is(AsmToken::EndOfStatement)) Parser.Lex(); // Consume the EndOfStatement else if (isPrefix && getLexer().is(AsmToken::Slash)) Parser.Lex(); // Consume the prefix separator Slash if (ExtraImmOp && isParsingIntelSyntax()) Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); // This is a terrible hack to handle "out[bwl]? %al, (%dx)" -> // "outb %al, %dx". Out doesn't take a memory form, but this is a widely // documented form in various unofficial manuals, so a lot of code uses it. if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && Operands.size() == 3) { X86Operand &Op = *(X86Operand*)Operands.back(); if (Op.isMem() && Op.Mem.SegReg == 0 && isa(Op.Mem.Disp) && cast(Op.Mem.Disp)->getValue() == 0 && Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { SMLoc Loc = Op.getEndLoc(); Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); delete &Op; } } // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al". if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") && Operands.size() == 3) { X86Operand &Op = *(X86Operand*)Operands.begin()[1]; if (Op.isMem() && Op.Mem.SegReg == 0 && isa(Op.Mem.Disp) && cast(Op.Mem.Disp)->getValue() == 0 && Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { SMLoc Loc = Op.getEndLoc(); Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); delete &Op; } } // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]" if (Name.startswith("ins") && Operands.size() == 3 && (Name == "insb" || Name == "insw" || Name == "insl")) { X86Operand &Op = *(X86Operand*)Operands.begin()[1]; X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) { Operands.pop_back(); Operands.pop_back(); delete &Op; delete &Op2; } } // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]" if (Name.startswith("outs") && Operands.size() == 3 && (Name == "outsb" || Name == "outsw" || Name == "outsl")) { X86Operand &Op = *(X86Operand*)Operands.begin()[1]; X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) { Operands.pop_back(); Operands.pop_back(); delete &Op; delete &Op2; } } // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]" if (Name.startswith("movs") && Operands.size() == 3 && (Name == "movsb" || Name == "movsw" || Name == "movsl" || (is64BitMode() && Name == "movsq"))) { X86Operand &Op = *(X86Operand*)Operands.begin()[1]; X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; if (isSrcOp(Op) && isDstOp(Op2)) { Operands.pop_back(); Operands.pop_back(); delete &Op; delete &Op2; } } // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]" if (Name.startswith("lods") && Operands.size() == 3 && (Name == "lods" || Name == "lodsb" || Name == "lodsw" || Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) { X86Operand *Op1 = static_cast(Operands[1]); X86Operand *Op2 = static_cast(Operands[2]); if (isSrcOp(*Op1) && Op2->isReg()) { const char *ins; unsigned reg = Op2->getReg(); bool isLods = Name == "lods"; if (reg == X86::AL && (isLods || Name == "lodsb")) ins = "lodsb"; else if (reg == X86::AX && (isLods || Name == "lodsw")) ins = "lodsw"; else if (reg == X86::EAX && (isLods || Name == "lodsl")) ins = "lodsl"; else if (reg == X86::RAX && (isLods || Name == "lodsq")) ins = "lodsq"; else ins = NULL; if (ins != NULL) { Operands.pop_back(); Operands.pop_back(); delete Op1; delete Op2; if (Name != ins) static_cast(Operands[0])->setTokenValue(ins); } } } // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]" if (Name.startswith("stos") && Operands.size() == 3 && (Name == "stos" || Name == "stosb" || Name == "stosw" || Name == "stosl" || (is64BitMode() && Name == "stosq"))) { X86Operand *Op1 = static_cast(Operands[1]); X86Operand *Op2 = static_cast(Operands[2]); if (isDstOp(*Op2) && Op1->isReg()) { const char *ins; unsigned reg = Op1->getReg(); bool isStos = Name == "stos"; if (reg == X86::AL && (isStos || Name == "stosb")) ins = "stosb"; else if (reg == X86::AX && (isStos || Name == "stosw")) ins = "stosw"; else if (reg == X86::EAX && (isStos || Name == "stosl")) ins = "stosl"; else if (reg == X86::RAX && (isStos || Name == "stosq")) ins = "stosq"; else ins = NULL; if (ins != NULL) { Operands.pop_back(); Operands.pop_back(); delete Op1; delete Op2; if (Name != ins) static_cast(Operands[0])->setTokenValue(ins); } } } // FIXME: Hack to handle recognize s{hr,ar,hl} $1, . Canonicalize to // "shift ". if ((Name.startswith("shr") || Name.startswith("sar") || Name.startswith("shl") || Name.startswith("sal") || Name.startswith("rcl") || Name.startswith("rcr") || Name.startswith("rol") || Name.startswith("ror")) && Operands.size() == 3) { if (isParsingIntelSyntax()) { // Intel syntax X86Operand *Op1 = static_cast(Operands[2]); if (Op1->isImm() && isa(Op1->getImm()) && cast(Op1->getImm())->getValue() == 1) { delete Operands[2]; Operands.pop_back(); } } else { X86Operand *Op1 = static_cast(Operands[1]); if (Op1->isImm() && isa(Op1->getImm()) && cast(Op1->getImm())->getValue() == 1) { delete Operands[1]; Operands.erase(Operands.begin() + 1); } } } // Transforms "int $3" into "int3" as a size optimization. We can't write an // instalias with an immediate operand yet. if (Name == "int" && Operands.size() == 2) { X86Operand *Op1 = static_cast(Operands[1]); if (Op1->isImm() && isa(Op1->getImm()) && cast(Op1->getImm())->getValue() == 3) { delete Operands[1]; Operands.erase(Operands.begin() + 1); static_cast(Operands[0])->setTokenValue("int3"); } } return false; } bool X86AsmParser:: processInstruction(MCInst &Inst, const SmallVectorImpl &Ops) { switch (Inst.getOpcode()) { default: return false; case X86::AND16i16: { if (!Inst.getOperand(0).isImm() || !isImmSExti16i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::AND16ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::AND32i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti32i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::AND32ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::AND64i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti64i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::AND64ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::XOR16i16: { if (!Inst.getOperand(0).isImm() || !isImmSExti16i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::XOR16ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::XOR32i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti32i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::XOR32ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::XOR64i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti64i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::XOR64ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::OR16i16: { if (!Inst.getOperand(0).isImm() || !isImmSExti16i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::OR16ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::OR32i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti32i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::OR32ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::OR64i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti64i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::OR64ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::CMP16i16: { if (!Inst.getOperand(0).isImm() || !isImmSExti16i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::CMP16ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::CMP32i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti32i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::CMP32ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::CMP64i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti64i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::CMP64ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::ADD16i16: { if (!Inst.getOperand(0).isImm() || !isImmSExti16i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::ADD16ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::ADD32i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti32i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::ADD32ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::ADD64i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti64i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::ADD64ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::SUB16i16: { if (!Inst.getOperand(0).isImm() || !isImmSExti16i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::SUB16ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::SUB32i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti32i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::SUB32ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } case X86::SUB64i32: { if (!Inst.getOperand(0).isImm() || !isImmSExti64i8Value(Inst.getOperand(0).getImm())) return false; MCInst TmpInst; TmpInst.setOpcode(X86::SUB64ri8); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); TmpInst.addOperand(Inst.getOperand(0)); Inst = TmpInst; return true; } } } bool X86AsmParser:: MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out) { SmallVector Insts; bool Error = MatchInstruction(IDLoc, Operands, Insts); if (!Error) for (unsigned i = 0, e = Insts.size(); i != e; ++i) Out.EmitInstruction(Insts[i]); return Error; } bool X86AsmParser:: MatchInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, SmallVectorImpl &MCInsts) { assert(!Operands.empty() && "Unexpect empty operand list!"); X86Operand *Op = static_cast(Operands[0]); assert(Op->isToken() && "Leading operand should always be a mnemonic!"); // First, handle aliases that expand to multiple instructions. // FIXME: This should be replaced with a real .td file alias mechanism. // Also, MatchInstructionImpl should do actually *do* the EmitInstruction // call. if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || Op->getToken() == "fstsww" || Op->getToken() == "fstcww" || Op->getToken() == "finit" || Op->getToken() == "fsave" || Op->getToken() == "fstenv" || Op->getToken() == "fclex") { MCInst Inst; Inst.setOpcode(X86::WAIT); Inst.setLoc(IDLoc); MCInsts.push_back(Inst); const char *Repl = StringSwitch(Op->getToken()) .Case("finit", "fninit") .Case("fsave", "fnsave") .Case("fstcw", "fnstcw") .Case("fstcww", "fnstcw") .Case("fstenv", "fnstenv") .Case("fstsw", "fnstsw") .Case("fstsww", "fnstsw") .Case("fclex", "fnclex") .Default(0); assert(Repl && "Unknown wait-prefixed instruction"); delete Operands[0]; Operands[0] = X86Operand::CreateToken(Repl, IDLoc); } bool WasOriginallyInvalidOperand = false; unsigned OrigErrorInfo; MCInst Inst; // First, try a direct match. switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo, isParsingIntelSyntax())) { default: break; case Match_Success: // Some instructions need post-processing to, for example, tweak which // encoding is selected. Loop on it while changes happen so the // individual transformations can chain off each other. while (processInstruction(Inst, Operands)) ; Inst.setLoc(IDLoc); MCInsts.push_back(Inst); return false; case Match_MissingFeature: Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; case Match_ConversionFail: return Error(IDLoc, "unable to convert operands to instruction"); case Match_InvalidOperand: WasOriginallyInvalidOperand = true; break; case Match_MnemonicFail: break; } // FIXME: Ideally, we would only attempt suffix matches for things which are // valid prefixes, and we could just infer the right unambiguous // type. However, that requires substantially more matcher support than the // following hack. // Change the operand to point to a temporary token. StringRef Base = Op->getToken(); SmallString<16> Tmp; Tmp += Base; Tmp += ' '; Op->setTokenValue(Tmp.str()); // If this instruction starts with an 'f', then it is a floating point stack // instruction. These come in up to three forms for 32-bit, 64-bit, and // 80-bit floating point, which use the suffixes s,l,t respectively. // // Otherwise, we assume that this may be an integer instruction, which comes // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; // Check for the various suffix matches. Tmp[Base.size()] = Suffixes[0]; unsigned ErrorInfoIgnore; unsigned Match1, Match2, Match3, Match4; Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); Tmp[Base.size()] = Suffixes[1]; Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); Tmp[Base.size()] = Suffixes[2]; Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); Tmp[Base.size()] = Suffixes[3]; Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); // Restore the old token. Op->setTokenValue(Base); // If exactly one matched, then we treat that as a successful match (and the // instruction will already have been filled in correctly, since the failing // matches won't have modified it). unsigned NumSuccessfulMatches = (Match1 == Match_Success) + (Match2 == Match_Success) + (Match3 == Match_Success) + (Match4 == Match_Success); if (NumSuccessfulMatches == 1) { Inst.setLoc(IDLoc); MCInsts.push_back(Inst); return false; } // Otherwise, the match failed, try to produce a decent error message. // If we had multiple suffix matches, then identify this as an ambiguous // match. if (NumSuccessfulMatches > 1) { char MatchChars[4]; unsigned NumMatches = 0; if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0]; if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1]; if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2]; if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3]; SmallString<126> Msg; raw_svector_ostream OS(Msg); OS << "ambiguous instructions require an explicit suffix (could be "; for (unsigned i = 0; i != NumMatches; ++i) { if (i != 0) OS << ", "; if (i + 1 == NumMatches) OS << "or "; OS << "'" << Base << MatchChars[i] << "'"; } OS << ")"; Error(IDLoc, OS.str()); return true; } // Okay, we know that none of the variants matched successfully. // If all of the instructions reported an invalid mnemonic, then the original // mnemonic was invalid. if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) && (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) { if (!WasOriginallyInvalidOperand) { return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'", Op->getLocRange()); } // Recover location info for the operand if we know which was the problem. if (OrigErrorInfo != ~0U) { if (OrigErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); X86Operand *Operand = (X86Operand*)Operands[OrigErrorInfo]; if (Operand->getStartLoc().isValid()) { SMRange OperandRange = Operand->getLocRange(); return Error(Operand->getStartLoc(), "invalid operand for instruction", OperandRange); } } return Error(IDLoc, "invalid operand for instruction"); } // If one instruction matched with a missing feature, report this as a // missing feature. if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) + (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){ Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; } // If one instruction matched with an invalid operand, report this as an // operand failure. if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) + (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){ Error(IDLoc, "invalid operand for instruction"); return true; } // If all of these were an outright failure, report it in a useless way. Error(IDLoc, "unknown use of instruction mnemonic without a size suffix"); return true; } bool X86AsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(2, DirectiveID.getLoc()); else if (IDVal.startswith(".code")) return ParseDirectiveCode(IDVal, DirectiveID.getLoc()); else if (IDVal.startswith(".intel_syntax")) { getParser().setAssemblerDialect(1); if (getLexer().isNot(AsmToken::EndOfStatement)) { if(Parser.getTok().getString() == "noprefix") { // FIXME : Handle noprefix Parser.Lex(); } else return true; } return false; } return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } /// ParseDirectiveCode /// ::= .code32 | .code64 bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { if (IDVal == ".code32") { Parser.Lex(); if (is64BitMode()) { SwitchMode(); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); } } else if (IDVal == ".code64") { Parser.Lex(); if (!is64BitMode()) { SwitchMode(); getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64); } } else { return Error(L, "unexpected directive " + IDVal); } return false; } extern "C" void LLVMInitializeX86AsmLexer(); // Force static initialization. extern "C" void LLVMInitializeX86AsmParser() { RegisterMCAsmParser X(TheX86_32Target); RegisterMCAsmParser Y(TheX86_64Target); LLVMInitializeX86AsmLexer(); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "X86GenAsmMatcher.inc"