//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueMap.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/BypassSlowDivision.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SimplifyLibCalls.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "codegenprepare" STATISTIC(NumBlocksElim, "Number of blocks eliminated"); STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps"); STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " "of sunken Casts"); STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " "computations were sunk"); STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); STATISTIC(NumRetsDup, "Number of return instructions duplicated"); STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); static cl::opt DisableBranchOpts( "disable-cgp-branch-opts", cl::Hidden, cl::init(false), cl::desc("Disable branch optimizations in CodeGenPrepare")); static cl::opt DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), cl::desc("Disable GC optimizations in CodeGenPrepare")); static cl::opt DisableSelectToBranch( "disable-cgp-select2branch", cl::Hidden, cl::init(false), cl::desc("Disable select to branch conversion.")); static cl::opt AddrSinkUsingGEPs( "addr-sink-using-gep", cl::Hidden, cl::init(false), cl::desc("Address sinking in CGP using GEPs.")); static cl::opt EnableAndCmpSinking( "enable-andcmp-sinking", cl::Hidden, cl::init(true), cl::desc("Enable sinkinig and/cmp into branches.")); static cl::opt DisableStoreExtract( "disable-cgp-store-extract", cl::Hidden, cl::init(false), cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); static cl::opt StressStoreExtract( "stress-cgp-store-extract", cl::Hidden, cl::init(false), cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); static cl::opt DisableExtLdPromotion( "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " "CodeGenPrepare")); static cl::opt StressExtLdPromotion( "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " "optimization in CodeGenPrepare")); namespace { typedef SmallPtrSet SetOfInstrs; struct TypeIsSExt { Type *Ty; bool IsSExt; TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} }; typedef DenseMap InstrToOrigTy; class TypePromotionTransaction; class CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetMachine *TM; const TargetLowering *TLI; const TargetTransformInfo *TTI; const TargetLibraryInfo *TLInfo; DominatorTree *DT; /// CurInstIterator - As we scan instructions optimizing them, this is the /// next instruction to optimize. Xforms that can invalidate this should /// update it. BasicBlock::iterator CurInstIterator; /// Keeps track of non-local addresses that have been sunk into a block. /// This allows us to avoid inserting duplicate code for blocks with /// multiple load/stores of the same address. ValueMap SunkAddrs; /// Keeps track of all truncates inserted for the current function. SetOfInstrs InsertedTruncsSet; /// Keeps track of the type of the related instruction before their /// promotion for the current function. InstrToOrigTy PromotedInsts; /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to /// be updated. bool ModifiedDT; /// OptSize - True if optimizing for size. bool OptSize; public: static char ID; // Pass identification, replacement for typeid explicit CodeGenPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; const char *getPassName() const override { return "CodeGen Prepare"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addRequired(); AU.addRequired(); } private: bool EliminateFallThrough(Function &F); bool EliminateMostlyEmptyBlocks(Function &F); bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void EliminateMostlyEmptyBlock(BasicBlock *BB); bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); bool OptimizeInst(Instruction *I, bool& ModifiedDT); bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); bool OptimizeInlineAsmInst(CallInst *CS); bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); bool MoveExtToFormExtLoad(Instruction *&I); bool OptimizeExtUses(Instruction *I); bool OptimizeSelectInst(SelectInst *SI); bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); bool OptimizeExtractElementInst(Instruction *Inst); bool DupRetToEnableTailCallOpts(BasicBlock *BB); bool PlaceDbgValues(Function &F); bool sinkAndCmp(Function &F); bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, Instruction *&Inst, const SmallVectorImpl &Exts, unsigned CreatedInst); bool splitBranchCondition(Function &F); bool simplifyOffsetableRelocate(Instruction &I); }; } char CodeGenPrepare::ID = 0; INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", "Optimize for code generation", false, false) FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { return new CodeGenPrepare(TM); } bool CodeGenPrepare::runOnFunction(Function &F) { if (skipOptnoneFunction(F)) return false; bool EverMadeChange = false; // Clear per function information. InsertedTruncsSet.clear(); PromotedInsts.clear(); ModifiedDT = false; if (TM) TLI = TM->getSubtargetImpl(F)->getTargetLowering(); TLInfo = &getAnalysis().getTLI(); TTI = &getAnalysis(); DominatorTreeWrapperPass *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : nullptr; OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); /// This optimization identifies DIV instructions that can be /// profitably bypassed and carried out with a shorter, faster divide. if (!OptSize && TLI && TLI->isSlowDivBypassed()) { const DenseMap &BypassWidths = TLI->getBypassSlowDivWidths(); for (Function::iterator I = F.begin(); I != F.end(); I++) EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); } // Eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= EliminateMostlyEmptyBlocks(F); // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. EverMadeChange |= PlaceDbgValues(F); // If there is a mask, compare against zero, and branch that can be combined // into a single target instruction, push the mask and compare into branch // users. Do this before OptimizeBlock -> OptimizeInst -> // OptimizeCmpExpression, which perturbs the pattern being searched for. if (!DisableBranchOpts) { EverMadeChange |= sinkAndCmp(F); EverMadeChange |= splitBranchCondition(F); } bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator I = F.begin(); I != F.end(); ) { BasicBlock *BB = I++; bool ModifiedDTOnIteration = false; MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); // Restart BB iteration if the dominator tree of the Function was changed ModifiedDT |= ModifiedDTOnIteration; if (ModifiedDTOnIteration) break; } EverMadeChange |= MadeChange; } SunkAddrs.clear(); if (!DisableBranchOpts) { MadeChange = false; SmallPtrSet WorkList; for (BasicBlock &BB : F) { SmallVector Successors(succ_begin(&BB), succ_end(&BB)); MadeChange |= ConstantFoldTerminator(&BB, true); if (!MadeChange) continue; for (SmallVectorImpl::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Delete the dead blocks and any of their dead successors. MadeChange |= !WorkList.empty(); while (!WorkList.empty()) { BasicBlock *BB = *WorkList.begin(); WorkList.erase(BB); SmallVector Successors(succ_begin(BB), succ_end(BB)); DeleteDeadBlock(BB); for (SmallVectorImpl::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Merge pairs of basic blocks with unconditional branches, connected by // a single edge. if (EverMadeChange || MadeChange) MadeChange |= EliminateFallThrough(F); if (MadeChange) ModifiedDT = true; EverMadeChange |= MadeChange; } if (!DisableGCOpts) { SmallVector Statepoints; for (BasicBlock &BB : F) for (Instruction &I : BB) if (isStatepoint(I)) Statepoints.push_back(&I); for (auto &I : Statepoints) EverMadeChange |= simplifyOffsetableRelocate(*I); } if (ModifiedDT && DT) DT->recalculate(F); return EverMadeChange; } /// EliminateFallThrough - Merge basic blocks which are connected /// by a single edge, where one of the basic blocks has a single successor /// pointing to the other basic block, which has a single predecessor. bool CodeGenPrepare::EliminateFallThrough(Function &F) { bool Changed = false; // Scan all of the blocks in the function, except for the entry block. for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { BasicBlock *BB = I++; // If the destination block has a single pred, then this is a trivial // edge, just collapse it. BasicBlock *SinglePred = BB->getSinglePredecessor(); // Don't merge if BB's address is taken. if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; BranchInst *Term = dyn_cast(SinglePred->getTerminator()); if (Term && !Term->isConditional()) { Changed = true; DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); // Remember if SinglePred was the entry block of the function. // If so, we will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(BB, DT); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); // We have erased a block. Update the iterator. I = BB; } } return Changed; } /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, /// debug info directives, and an unconditional branch. Passes before isel /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for /// isel. Start by eliminating these blocks so we can split them the way we /// want them. bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { BasicBlock *BB = I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isUnconditional()) continue; // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. BasicBlock::iterator BBI = BI; if (BBI != BB->begin()) { --BBI; while (isa(BBI)) { if (BBI == BB->begin()) break; --BBI; } if (!isa(BBI) && !isa(BBI)) continue; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) continue; if (!CanMergeBlocks(BB, DestBB)) continue; EliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a /// single uncond branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. BasicBlock::const_iterator BBI = BB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { for (const User *U : PN->users()) { const Instruction *UI = cast(U); if (UI->getParent() != DestBB || !isa(UI)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (UI->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast(UI)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet BBPreds; if (const PHINode *BBPN = dyn_cast(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? BBI = DestBB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { const Value *V1 = PN->getIncomingValueForBlock(Pred); const Value *V2 = PN->getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and /// an unconditional branch in it. void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { if (SinglePred != DestBB) { // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(DestBB, DT); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); return; } } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. PHINode *PN; for (BasicBlock::iterator BBI = DestBB->begin(); (PN = dyn_cast(BBI)); ++BBI) { // Remove the incoming value for BB, and remember it. Value *InVal = PN->removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN->addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); if (DT && !ModifiedDT) { BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); DT->changeImmediateDominator(DestBB, NewIDom); DT->eraseNode(BB); } BB->eraseFromParent(); ++NumBlocksElim; DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); } // Computes a map of base pointer relocation instructions to corresponding // derived pointer relocation instructions given a vector of all relocate calls static void computeBaseDerivedRelocateMap( const SmallVectorImpl &AllRelocateCalls, DenseMap> & RelocateInstMap) { // Collect information in two maps: one primarily for locating the base object // while filling the second map; the second map is the final structure holding // a mapping between Base and corresponding Derived relocate calls DenseMap, IntrinsicInst *> RelocateIdxMap; for (auto &U : AllRelocateCalls) { GCRelocateOperands ThisRelocate(U); IntrinsicInst *I = cast(U); auto K = std::make_pair(ThisRelocate.basePtrIndex(), ThisRelocate.derivedPtrIndex()); RelocateIdxMap.insert(std::make_pair(K, I)); } for (auto &Item : RelocateIdxMap) { std::pair Key = Item.first; if (Key.first == Key.second) // Base relocation: nothing to insert continue; IntrinsicInst *I = Item.second; auto BaseKey = std::make_pair(Key.first, Key.first); IntrinsicInst *Base = RelocateIdxMap[BaseKey]; if (!Base) // TODO: We might want to insert a new base object relocate and gep off // that, if there are enough derived object relocates. continue; RelocateInstMap[Base].push_back(I); } } // Accepts a GEP and extracts the operands into a vector provided they're all // small integer constants static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, SmallVectorImpl &OffsetV) { for (unsigned i = 1; i < GEP->getNumOperands(); i++) { // Only accept small constant integer operands auto Op = dyn_cast(GEP->getOperand(i)); if (!Op || Op->getZExtValue() > 20) return false; } for (unsigned i = 1; i < GEP->getNumOperands(); i++) OffsetV.push_back(GEP->getOperand(i)); return true; } // Takes a RelocatedBase (base pointer relocation instruction) and Targets to // replace, computes a replacement, and affects it. static bool simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, const SmallVectorImpl &Targets) { bool MadeChange = false; for (auto &ToReplace : Targets) { GCRelocateOperands MasterRelocate(RelocatedBase); GCRelocateOperands ThisRelocate(ToReplace); assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() && "Not relocating a derived object of the original base object"); if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) { // A duplicate relocate call. TODO: coalesce duplicates. continue; } Value *Base = ThisRelocate.basePtr(); auto Derived = dyn_cast(ThisRelocate.derivedPtr()); if (!Derived || Derived->getPointerOperand() != Base) continue; SmallVector OffsetV; if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) continue; // Create a Builder and replace the target callsite with a gep IRBuilder<> Builder(ToReplace); Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); Value *Replacement = Builder.CreateGEP(RelocatedBase, makeArrayRef(OffsetV)); Instruction *ReplacementInst = cast(Replacement); ReplacementInst->removeFromParent(); ReplacementInst->insertAfter(RelocatedBase); Replacement->takeName(ToReplace); ToReplace->replaceAllUsesWith(Replacement); ToReplace->eraseFromParent(); MadeChange = true; } return MadeChange; } // Turns this: // // %base = ... // %ptr = gep %base + 15 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) // %base' = relocate(%tok, i32 4, i32 4) // %ptr' = relocate(%tok, i32 4, i32 5) // %val = load %ptr' // // into this: // // %base = ... // %ptr = gep %base + 15 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) // %base' = gc.relocate(%tok, i32 4, i32 4) // %ptr' = gep %base' + 15 // %val = load %ptr' bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { bool MadeChange = false; SmallVector AllRelocateCalls; for (auto *U : I.users()) if (isGCRelocate(dyn_cast(U))) // Collect all the relocate calls associated with a statepoint AllRelocateCalls.push_back(U); // We need atleast one base pointer relocation + one derived pointer // relocation to mangle if (AllRelocateCalls.size() < 2) return false; // RelocateInstMap is a mapping from the base relocate instruction to the // corresponding derived relocate instructions DenseMap> RelocateInstMap; computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); if (RelocateInstMap.empty()) return false; for (auto &Item : RelocateInstMap) // Item.first is the RelocatedBase to offset against // Item.second is the vector of Targets to replace MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); return MadeChange; } /// SinkCast - Sink the specified cast instruction into its user blocks static bool SinkCast(CastInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap InsertedCasts; bool MadeChange = false; for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) { UserBB = PN->getIncomingBlock(TheUse); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; ++NumCastUses; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), /// sink it into user blocks to reduce the number of virtual /// registers that must be created and coalesced. /// /// Return true if any changes are made. /// static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ // If this is a noop copy, EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::TypePromoteInteger) SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::TypePromoteInteger) DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; return SinkCast(CI); } /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce /// the number of virtual registers that must be created and coalesced. This is /// a clear win except on targets with multiple condition code registers /// (PowerPC), where it might lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool OptimizeCmpExpression(CmpInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCmp - Only insert a cmp in each block once. DenseMap InsertedCmps; bool MadeChange = false; for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedCmp = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", InsertPt); MadeChange = true; } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; ++NumCmpUses; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } /// isExtractBitsCandidateUse - Check if the candidates could /// be combined with shift instruction, which includes: /// 1. Truncate instruction /// 2. And instruction and the imm is a mask of the low bits: /// imm & (imm+1) == 0 static bool isExtractBitsCandidateUse(Instruction *User) { if (!isa(User)) { if (User->getOpcode() != Instruction::And || !isa(User->getOperand(1))) return false; const APInt &Cimm = cast(User->getOperand(1))->getValue(); if ((Cimm & (Cimm + 1)).getBoolValue()) return false; } return true; } /// SinkShiftAndTruncate - sink both shift and truncate instruction /// to the use of truncate's BB. static bool SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, DenseMap &InsertedShifts, const TargetLowering &TLI) { BasicBlock *UserBB = User->getParent(); DenseMap InsertedTruncs; TruncInst *TruncI = dyn_cast(User); bool MadeChange = false; for (Value::user_iterator TruncUI = TruncI->user_begin(), TruncE = TruncI->user_end(); TruncUI != TruncE;) { Use &TruncTheUse = TruncUI.getUse(); Instruction *TruncUser = cast(*TruncUI); // Preincrement use iterator so we don't invalidate it. ++TruncUI; int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); if (!ISDOpcode) continue; // If the use is actually a legal node, there will not be an // implicit truncate. // FIXME: always querying the result type is just an // approximation; some nodes' legality is determined by the // operand or other means. There's no good way to find out though. if (TLI.isOperationLegalOrCustom( ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) continue; // Don't bother for PHI nodes. if (isa(TruncUser)) continue; BasicBlock *TruncUserBB = TruncUser->getParent(); if (UserBB == TruncUserBB) continue; BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; if (!InsertedShift && !InsertedTrunc) { BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); // Sink the shift if (ShiftI->getOpcode() == Instruction::AShr) InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); else InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); // Sink the trunc BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); TruncInsertPt++; InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, TruncI->getType(), "", TruncInsertPt); MadeChange = true; TruncTheUse = InsertedTrunc; } } return MadeChange; } /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if /// the uses could potentially be combined with this shift instruction and /// generate BitExtract instruction. It will only be applied if the architecture /// supports BitExtract instruction. Here is an example: /// BB1: /// %x.extract.shift = lshr i64 %arg1, 32 /// BB2: /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 /// ==> /// /// BB2: /// %x.extract.shift.1 = lshr i64 %arg1, 32 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 /// /// CodeGen will recoginze the pattern in BB2 and generate BitExtract /// instruction. /// Return true if any changes are made. static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, const TargetLowering &TLI) { BasicBlock *DefBB = ShiftI->getParent(); /// Only insert instructions in each block once. DenseMap InsertedShifts; bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); bool MadeChange = false; for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); UI != E;) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa(User)) continue; if (!isExtractBitsCandidateUse(User)) continue; BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) { // If the shift and truncate instruction are in the same BB. The use of // the truncate(TruncUse) may still introduce another truncate if not // legal. In this case, we would like to sink both shift and truncate // instruction to the BB of TruncUse. // for example: // BB1: // i64 shift.result = lshr i64 opnd, imm // trunc.result = trunc shift.result to i16 // // BB2: // ----> We will have an implicit truncate here if the architecture does // not have i16 compare. // cmp i16 trunc.result, opnd2 // if (isa(User) && shiftIsLegal // If the type of the truncate is legal, no trucate will be // introduced in other basic blocks. && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) MadeChange = SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); continue; } // If we have already inserted a shift into this block, use it. BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; if (!InsertedShift) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); if (ShiftI->getOpcode() == Instruction::AShr) InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); else InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); MadeChange = true; } // Replace a use of the shift with a use of the new shift. TheUse = InsertedShift; } // If we removed all uses, nuke the shift. if (ShiftI->use_empty()) ShiftI->eraseFromParent(); return MadeChange; } // ScalarizeMaskedLoad() translates masked load intrinsic, like // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, // <16 x i1> %mask, <16 x i32> %passthru) // to a chain of basic blocks, whith loading element one-by-one if // the appropriate mask bit is set // // %1 = bitcast i8* %addr to i32* // %2 = extractelement <16 x i1> %mask, i32 0 // %3 = icmp eq i1 %2, true // br i1 %3, label %cond.load, label %else // //cond.load: ; preds = %0 // %4 = getelementptr i32* %1, i32 0 // %5 = load i32* %4 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 // br label %else // //else: ; preds = %0, %cond.load // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] // %7 = extractelement <16 x i1> %mask, i32 1 // %8 = icmp eq i1 %7, true // br i1 %8, label %cond.load1, label %else2 // //cond.load1: ; preds = %else // %9 = getelementptr i32* %1, i32 1 // %10 = load i32* %9 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 // br label %else2 // //else2: ; preds = %else, %cond.load1 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] // %12 = extractelement <16 x i1> %mask, i32 2 // %13 = icmp eq i1 %12, true // br i1 %13, label %cond.load4, label %else5 // static void ScalarizeMaskedLoad(CallInst *CI) { Value *Ptr = CI->getArgOperand(0); Value *Src0 = CI->getArgOperand(3); Value *Mask = CI->getArgOperand(2); VectorType *VecType = dyn_cast(CI->getType()); Type *EltTy = VecType->getElementType(); assert(VecType && "Unexpected return type of masked load intrinsic"); IRBuilder<> Builder(CI->getContext()); Instruction *InsertPt = CI; BasicBlock *IfBlock = CI->getParent(); BasicBlock *CondBlock = nullptr; BasicBlock *PrevIfBlock = CI->getParent(); Builder.SetInsertPoint(InsertPt); Builder.SetCurrentDebugLocation(CI->getDebugLoc()); // Bitcast %addr fron i8* to EltTy* Type *NewPtrType = EltTy->getPointerTo(cast(Ptr->getType())->getAddressSpace()); Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); Value *UndefVal = UndefValue::get(VecType); // The result vector Value *VResult = UndefVal; PHINode *Phi = nullptr; Value *PrevPhi = UndefVal; unsigned VectorWidth = VecType->getNumElements(); for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { // Fill the "else" block, created in the previous iteration // // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] // %mask_1 = extractelement <16 x i1> %mask, i32 Idx // %to_load = icmp eq i1 %mask_1, true // br i1 %to_load, label %cond.load, label %else // if (Idx > 0) { Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); Phi->addIncoming(VResult, CondBlock); Phi->addIncoming(PrevPhi, PrevIfBlock); PrevPhi = Phi; VResult = Phi; } Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, ConstantInt::get(Predicate->getType(), 1)); // Create "cond" block // // %EltAddr = getelementptr i32* %1, i32 0 // %Elt = load i32* %EltAddr // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx // CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); Builder.SetInsertPoint(InsertPt); Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); LoadInst* Load = Builder.CreateLoad(Gep, false); VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); // Create "else" block, fill it in the next iteration BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); Builder.SetInsertPoint(InsertPt); Instruction *OldBr = IfBlock->getTerminator(); BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); OldBr->eraseFromParent(); PrevIfBlock = IfBlock; IfBlock = NewIfBlock; } Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); Phi->addIncoming(VResult, CondBlock); Phi->addIncoming(PrevPhi, PrevIfBlock); Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); CI->replaceAllUsesWith(NewI); CI->eraseFromParent(); } // ScalarizeMaskedStore() translates masked store intrinsic, like // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, // <16 x i1> %mask) // to a chain of basic blocks, that stores element one-by-one if // the appropriate mask bit is set // // %1 = bitcast i8* %addr to i32* // %2 = extractelement <16 x i1> %mask, i32 0 // %3 = icmp eq i1 %2, true // br i1 %3, label %cond.store, label %else // // cond.store: ; preds = %0 // %4 = extractelement <16 x i32> %val, i32 0 // %5 = getelementptr i32* %1, i32 0 // store i32 %4, i32* %5 // br label %else // // else: ; preds = %0, %cond.store // %6 = extractelement <16 x i1> %mask, i32 1 // %7 = icmp eq i1 %6, true // br i1 %7, label %cond.store1, label %else2 // // cond.store1: ; preds = %else // %8 = extractelement <16 x i32> %val, i32 1 // %9 = getelementptr i32* %1, i32 1 // store i32 %8, i32* %9 // br label %else2 // . . . static void ScalarizeMaskedStore(CallInst *CI) { Value *Ptr = CI->getArgOperand(1); Value *Src = CI->getArgOperand(0); Value *Mask = CI->getArgOperand(3); VectorType *VecType = dyn_cast(Src->getType()); Type *EltTy = VecType->getElementType(); assert(VecType && "Unexpected data type in masked store intrinsic"); IRBuilder<> Builder(CI->getContext()); Instruction *InsertPt = CI; BasicBlock *IfBlock = CI->getParent(); Builder.SetInsertPoint(InsertPt); Builder.SetCurrentDebugLocation(CI->getDebugLoc()); // Bitcast %addr fron i8* to EltTy* Type *NewPtrType = EltTy->getPointerTo(cast(Ptr->getType())->getAddressSpace()); Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); unsigned VectorWidth = VecType->getNumElements(); for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { // Fill the "else" block, created in the previous iteration // // %mask_1 = extractelement <16 x i1> %mask, i32 Idx // %to_store = icmp eq i1 %mask_1, true // br i1 %to_load, label %cond.store, label %else // Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, ConstantInt::get(Predicate->getType(), 1)); // Create "cond" block // // %OneElt = extractelement <16 x i32> %Src, i32 Idx // %EltAddr = getelementptr i32* %1, i32 0 // %store i32 %OneElt, i32* %EltAddr // BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); Builder.SetInsertPoint(InsertPt); Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); Builder.CreateStore(OneElt, Gep); // Create "else" block, fill it in the next iteration BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); Builder.SetInsertPoint(InsertPt); Instruction *OldBr = IfBlock->getTerminator(); BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); OldBr->eraseFromParent(); IfBlock = NewIfBlock; } CI->eraseFromParent(); } bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { BasicBlock *BB = CI->getParent(); // Lower inline assembly if we can. // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa(CI->getCalledValue())) { if (TLI->ExpandInlineAsm(CI)) { // Avoid invalidating the iterator. CurInstIterator = BB->begin(); // Avoid processing instructions out of order, which could cause // reuse before a value is defined. SunkAddrs.clear(); return true; } // Sink address computing for memory operands into the block. if (OptimizeInlineAsmInst(CI)) return true; } IntrinsicInst *II = dyn_cast(CI); if (II) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::objectsize: { // Lower all uses of llvm.objectsize.* bool Min = (cast(II->getArgOperand(1))->getZExtValue() == 1); Type *ReturnTy = CI->getType(); Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); // Substituting this can cause recursive simplifications, which can // invalidate our iterator. Use a WeakVH to hold onto it in case this // happens. WeakVH IterHandle(CurInstIterator); replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : nullptr, TLInfo, ModifiedDT ? nullptr : DT); // If the iterator instruction was recursively deleted, start over at the // start of the block. if (IterHandle != CurInstIterator) { CurInstIterator = BB->begin(); SunkAddrs.clear(); } return true; } case Intrinsic::masked_load: { // Scalarize unsupported vector masked load if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { ScalarizeMaskedLoad(CI); ModifiedDT = true; return true; } return false; } case Intrinsic::masked_store: { if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { ScalarizeMaskedStore(CI); ModifiedDT = true; return true; } return false; } } if (TLI) { SmallVector PtrOps; Type *AccessTy; if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) while (!PtrOps.empty()) if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) return true; } } // From here on out we're working with named functions. if (!CI->getCalledFunction()) return false; // We'll need DataLayout from here on out. const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; if (!TD) return false; // Lower all default uses of _chk calls. This is very similar // to what InstCombineCalls does, but here we are only lowering calls // to fortified library functions (e.g. __memcpy_chk) that have the default // "don't know" as the objectsize. Anything else should be left alone. FortifiedLibCallSimplifier Simplifier(TD, TLInfo, true); if (Value *V = Simplifier.optimizeCall(CI)) { CI->replaceAllUsesWith(V); CI->eraseFromParent(); return true; } return false; } /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return /// instructions to the predecessor to enable tail call optimizations. The /// case it is currently looking for is: /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// br label %return /// bb1: /// %tmp1 = tail call i32 @f1() /// br label %return /// bb2: /// %tmp2 = tail call i32 @f2() /// br label %return /// return: /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] /// ret i32 %retval /// @endcode /// /// => /// /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// ret i32 %tmp0 /// bb1: /// %tmp1 = tail call i32 @f1() /// ret i32 %tmp1 /// bb2: /// %tmp2 = tail call i32 @f2() /// ret i32 %tmp2 /// @endcode bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { if (!TLI) return false; ReturnInst *RI = dyn_cast(BB->getTerminator()); if (!RI) return false; PHINode *PN = nullptr; BitCastInst *BCI = nullptr; Value *V = RI->getReturnValue(); if (V) { BCI = dyn_cast(V); if (BCI) V = BCI->getOperand(0); PN = dyn_cast(V); if (!PN) return false; } if (PN && PN->getParent() != BB) return false; // It's not safe to eliminate the sign / zero extension of the return value. // See llvm::isInTailCallPosition(). const Function *F = BB->getParent(); AttributeSet CallerAttrs = F->getAttributes(); if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) return false; // Make sure there are no instructions between the PHI and return, or that the // return is the first instruction in the block. if (PN) { BasicBlock::iterator BI = BB->begin(); do { ++BI; } while (isa(BI)); if (&*BI == BCI) // Also skip over the bitcast. ++BI; if (&*BI != RI) return false; } else { BasicBlock::iterator BI = BB->begin(); while (isa(BI)) ++BI; if (&*BI != RI) return false; } /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail /// call. SmallVector TailCalls; if (PN) { for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { CallInst *CI = dyn_cast(PN->getIncomingValue(I)); // Make sure the phi value is indeed produced by the tail call. if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } else { SmallPtrSet VisitedBBs; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (!VisitedBBs.insert(*PI).second) continue; BasicBlock::InstListType &InstList = (*PI)->getInstList(); BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); do { ++RI; } while (RI != RE && isa(&*RI)); if (RI == RE) continue; CallInst *CI = dyn_cast(&*RI); if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } bool Changed = false; for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { CallInst *CI = TailCalls[i]; CallSite CS(CI); // Conservatively require the attributes of the call to match those of the // return. Ignore noalias because it doesn't affect the call sequence. AttributeSet CalleeAttrs = CS.getAttributes(); if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias) != AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias)) continue; // Make sure the call instruction is followed by an unconditional branch to // the return block. BasicBlock *CallBB = CI->getParent(); BranchInst *BI = dyn_cast(CallBB->getTerminator()); if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) continue; // Duplicate the return into CallBB. (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); ModifiedDT = Changed = true; ++NumRetsDup; } // If we eliminated all predecessors of the block, delete the block now. if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) BB->eraseFromParent(); return Changed; } //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// namespace { /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode /// which holds actual Value*'s for register values. struct ExtAddrMode : public TargetLowering::AddrMode { Value *BaseReg; Value *ScaledReg; ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} void print(raw_ostream &OS) const; void dump() const; bool operator==(const ExtAddrMode& O) const { return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); } }; #ifndef NDEBUG static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { AM.print(OS); return OS; } #endif void ExtAddrMode::print(raw_ostream &OS) const { bool NeedPlus = false; OS << "["; if (BaseGV) { OS << (NeedPlus ? " + " : "") << "GV:"; BaseGV->printAsOperand(OS, /*PrintType=*/false); NeedPlus = true; } if (BaseOffs) { OS << (NeedPlus ? " + " : "") << BaseOffs; NeedPlus = true; } if (BaseReg) { OS << (NeedPlus ? " + " : "") << "Base:"; BaseReg->printAsOperand(OS, /*PrintType=*/false); NeedPlus = true; } if (Scale) { OS << (NeedPlus ? " + " : "") << Scale << "*"; ScaledReg->printAsOperand(OS, /*PrintType=*/false); } OS << ']'; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ExtAddrMode::dump() const { print(dbgs()); dbgs() << '\n'; } #endif /// \brief This class provides transaction based operation on the IR. /// Every change made through this class is recorded in the internal state and /// can be undone (rollback) until commit is called. class TypePromotionTransaction { /// \brief This represents the common interface of the individual transaction. /// Each class implements the logic for doing one specific modification on /// the IR via the TypePromotionTransaction. class TypePromotionAction { protected: /// The Instruction modified. Instruction *Inst; public: /// \brief Constructor of the action. /// The constructor performs the related action on the IR. TypePromotionAction(Instruction *Inst) : Inst(Inst) {} virtual ~TypePromotionAction() {} /// \brief Undo the modification done by this action. /// When this method is called, the IR must be in the same state as it was /// before this action was applied. /// \pre Undoing the action works if and only if the IR is in the exact same /// state as it was directly after this action was applied. virtual void undo() = 0; /// \brief Advocate every change made by this action. /// When the results on the IR of the action are to be kept, it is important /// to call this function, otherwise hidden information may be kept forever. virtual void commit() { // Nothing to be done, this action is not doing anything. } }; /// \brief Utility to remember the position of an instruction. class InsertionHandler { /// Position of an instruction. /// Either an instruction: /// - Is the first in a basic block: BB is used. /// - Has a previous instructon: PrevInst is used. union { Instruction *PrevInst; BasicBlock *BB; } Point; /// Remember whether or not the instruction had a previous instruction. bool HasPrevInstruction; public: /// \brief Record the position of \p Inst. InsertionHandler(Instruction *Inst) { BasicBlock::iterator It = Inst; HasPrevInstruction = (It != (Inst->getParent()->begin())); if (HasPrevInstruction) Point.PrevInst = --It; else Point.BB = Inst->getParent(); } /// \brief Insert \p Inst at the recorded position. void insert(Instruction *Inst) { if (HasPrevInstruction) { if (Inst->getParent()) Inst->removeFromParent(); Inst->insertAfter(Point.PrevInst); } else { Instruction *Position = Point.BB->getFirstInsertionPt(); if (Inst->getParent()) Inst->moveBefore(Position); else Inst->insertBefore(Position); } } }; /// \brief Move an instruction before another. class InstructionMoveBefore : public TypePromotionAction { /// Original position of the instruction. InsertionHandler Position; public: /// \brief Move \p Inst before \p Before. InstructionMoveBefore(Instruction *Inst, Instruction *Before) : TypePromotionAction(Inst), Position(Inst) { DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); Inst->moveBefore(Before); } /// \brief Move the instruction back to its original position. void undo() override { DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); Position.insert(Inst); } }; /// \brief Set the operand of an instruction with a new value. class OperandSetter : public TypePromotionAction { /// Original operand of the instruction. Value *Origin; /// Index of the modified instruction. unsigned Idx; public: /// \brief Set \p Idx operand of \p Inst with \p NewVal. OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) : TypePromotionAction(Inst), Idx(Idx) { DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"); Origin = Inst->getOperand(Idx); Inst->setOperand(Idx, NewVal); } /// \brief Restore the original value of the instruction. void undo() override { DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"); Inst->setOperand(Idx, Origin); } }; /// \brief Hide the operands of an instruction. /// Do as if this instruction was not using any of its operands. class OperandsHider : public TypePromotionAction { /// The list of original operands. SmallVector OriginalValues; public: /// \brief Remove \p Inst from the uses of the operands of \p Inst. OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); unsigned NumOpnds = Inst->getNumOperands(); OriginalValues.reserve(NumOpnds); for (unsigned It = 0; It < NumOpnds; ++It) { // Save the current operand. Value *Val = Inst->getOperand(It); OriginalValues.push_back(Val); // Set a dummy one. // We could use OperandSetter here, but that would implied an overhead // that we are not willing to pay. Inst->setOperand(It, UndefValue::get(Val->getType())); } } /// \brief Restore the original list of uses. void undo() override { DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) Inst->setOperand(It, OriginalValues[It]); } }; /// \brief Build a truncate instruction. class TruncBuilder : public TypePromotionAction { Value *Val; public: /// \brief Build a truncate instruction of \p Opnd producing a \p Ty /// result. /// trunc Opnd to Ty. TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { IRBuilder<> Builder(Opnd); Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); } /// \brief Get the built value. Value *getBuiltValue() { return Val; } /// \brief Remove the built instruction. void undo() override { DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); if (Instruction *IVal = dyn_cast(Val)) IVal->eraseFromParent(); } }; /// \brief Build a sign extension instruction. class SExtBuilder : public TypePromotionAction { Value *Val; public: /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty /// result. /// sext Opnd to Ty. SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) : TypePromotionAction(InsertPt) { IRBuilder<> Builder(InsertPt); Val = Builder.CreateSExt(Opnd, Ty, "promoted"); DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); } /// \brief Get the built value. Value *getBuiltValue() { return Val; } /// \brief Remove the built instruction. void undo() override { DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); if (Instruction *IVal = dyn_cast(Val)) IVal->eraseFromParent(); } }; /// \brief Build a zero extension instruction. class ZExtBuilder : public TypePromotionAction { Value *Val; public: /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty /// result. /// zext Opnd to Ty. ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) : TypePromotionAction(InsertPt) { IRBuilder<> Builder(InsertPt); Val = Builder.CreateZExt(Opnd, Ty, "promoted"); DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); } /// \brief Get the built value. Value *getBuiltValue() { return Val; } /// \brief Remove the built instruction. void undo() override { DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); if (Instruction *IVal = dyn_cast(Val)) IVal->eraseFromParent(); } }; /// \brief Mutate an instruction to another type. class TypeMutator : public TypePromotionAction { /// Record the original type. Type *OrigTy; public: /// \brief Mutate the type of \p Inst into \p NewTy. TypeMutator(Instruction *Inst, Type *NewTy) : TypePromotionAction(Inst), OrigTy(Inst->getType()) { DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"); Inst->mutateType(NewTy); } /// \brief Mutate the instruction back to its original type. void undo() override { DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"); Inst->mutateType(OrigTy); } }; /// \brief Replace the uses of an instruction by another instruction. class UsesReplacer : public TypePromotionAction { /// Helper structure to keep track of the replaced uses. struct InstructionAndIdx { /// The instruction using the instruction. Instruction *Inst; /// The index where this instruction is used for Inst. unsigned Idx; InstructionAndIdx(Instruction *Inst, unsigned Idx) : Inst(Inst), Idx(Idx) {} }; /// Keep track of the original uses (pair Instruction, Index). SmallVector OriginalUses; typedef SmallVectorImpl::iterator use_iterator; public: /// \brief Replace all the use of \p Inst by \p New. UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"); // Record the original uses. for (Use &U : Inst->uses()) { Instruction *UserI = cast(U.getUser()); OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); } // Now, we can replace the uses. Inst->replaceAllUsesWith(New); } /// \brief Reassign the original uses of Inst to Inst. void undo() override { DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); for (use_iterator UseIt = OriginalUses.begin(), EndIt = OriginalUses.end(); UseIt != EndIt; ++UseIt) { UseIt->Inst->setOperand(UseIt->Idx, Inst); } } }; /// \brief Remove an instruction from the IR. class InstructionRemover : public TypePromotionAction { /// Original position of the instruction. InsertionHandler Inserter; /// Helper structure to hide all the link to the instruction. In other /// words, this helps to do as if the instruction was removed. OperandsHider Hider; /// Keep track of the uses replaced, if any. UsesReplacer *Replacer; public: /// \brief Remove all reference of \p Inst and optinally replace all its /// uses with New. /// \pre If !Inst->use_empty(), then New != nullptr InstructionRemover(Instruction *Inst, Value *New = nullptr) : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), Replacer(nullptr) { if (New) Replacer = new UsesReplacer(Inst, New); DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); Inst->removeFromParent(); } ~InstructionRemover() { delete Replacer; } /// \brief Really remove the instruction. void commit() override { delete Inst; } /// \brief Resurrect the instruction and reassign it to the proper uses if /// new value was provided when build this action. void undo() override { DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); Inserter.insert(Inst); if (Replacer) Replacer->undo(); Hider.undo(); } }; public: /// Restoration point. /// The restoration point is a pointer to an action instead of an iterator /// because the iterator may be invalidated but not the pointer. typedef const TypePromotionAction *ConstRestorationPt; /// Advocate every changes made in that transaction. void commit(); /// Undo all the changes made after the given point. void rollback(ConstRestorationPt Point); /// Get the current restoration point. ConstRestorationPt getRestorationPoint() const; /// \name API for IR modification with state keeping to support rollback. /// @{ /// Same as Instruction::setOperand. void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); /// Same as Instruction::eraseFromParent. void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); /// Same as Value::replaceAllUsesWith. void replaceAllUsesWith(Instruction *Inst, Value *New); /// Same as Value::mutateType. void mutateType(Instruction *Inst, Type *NewTy); /// Same as IRBuilder::createTrunc. Value *createTrunc(Instruction *Opnd, Type *Ty); /// Same as IRBuilder::createSExt. Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); /// Same as IRBuilder::createZExt. Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); /// Same as Instruction::moveBefore. void moveBefore(Instruction *Inst, Instruction *Before); /// @} private: /// The ordered list of actions made so far. SmallVector, 16> Actions; typedef SmallVectorImpl>::iterator CommitPt; }; void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, Value *NewVal) { Actions.push_back( make_unique(Inst, Idx, NewVal)); } void TypePromotionTransaction::eraseInstruction(Instruction *Inst, Value *NewVal) { Actions.push_back( make_unique(Inst, NewVal)); } void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, Value *New) { Actions.push_back(make_unique(Inst, New)); } void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { Actions.push_back(make_unique(Inst, NewTy)); } Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { std::unique_ptr Ptr(new TruncBuilder(Opnd, Ty)); Value *Val = Ptr->getBuiltValue(); Actions.push_back(std::move(Ptr)); return Val; } Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, Type *Ty) { std::unique_ptr Ptr(new SExtBuilder(Inst, Opnd, Ty)); Value *Val = Ptr->getBuiltValue(); Actions.push_back(std::move(Ptr)); return Val; } Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, Type *Ty) { std::unique_ptr Ptr(new ZExtBuilder(Inst, Opnd, Ty)); Value *Val = Ptr->getBuiltValue(); Actions.push_back(std::move(Ptr)); return Val; } void TypePromotionTransaction::moveBefore(Instruction *Inst, Instruction *Before) { Actions.push_back( make_unique(Inst, Before)); } TypePromotionTransaction::ConstRestorationPt TypePromotionTransaction::getRestorationPoint() const { return !Actions.empty() ? Actions.back().get() : nullptr; } void TypePromotionTransaction::commit() { for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It) (*It)->commit(); Actions.clear(); } void TypePromotionTransaction::rollback( TypePromotionTransaction::ConstRestorationPt Point) { while (!Actions.empty() && Point != Actions.back().get()) { std::unique_ptr Curr = Actions.pop_back_val(); Curr->undo(); } } /// \brief A helper class for matching addressing modes. /// /// This encapsulates the logic for matching the target-legal addressing modes. class AddressingModeMatcher { SmallVectorImpl &AddrModeInsts; const TargetLowering &TLI; /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and /// the memory instruction that we're computing this address for. Type *AccessTy; Instruction *MemoryInst; /// AddrMode - This is the addressing mode that we're building up. This is /// part of the return value of this addressing mode matching stuff. ExtAddrMode &AddrMode; /// The truncate instruction inserted by other CodeGenPrepare optimizations. const SetOfInstrs &InsertedTruncs; /// A map from the instructions to their type before promotion. InstrToOrigTy &PromotedInsts; /// The ongoing transaction where every action should be registered. TypePromotionTransaction &TPT; /// IgnoreProfitability - This is set to true when we should not do /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode /// always returns true. bool IgnoreProfitability; AddressingModeMatcher(SmallVectorImpl &AMI, const TargetLowering &T, Type *AT, Instruction *MI, ExtAddrMode &AM, const SetOfInstrs &InsertedTruncs, InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT) : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { IgnoreProfitability = false; } public: /// Match - Find the maximal addressing mode that a load/store of V can fold, /// give an access type of AccessTy. This returns a list of involved /// instructions in AddrModeInsts. /// \p InsertedTruncs The truncate instruction inserted by other /// CodeGenPrepare /// optimizations. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p The ongoing transaction where every action should be registered. static ExtAddrMode Match(Value *V, Type *AccessTy, Instruction *MemoryInst, SmallVectorImpl &AddrModeInsts, const TargetLowering &TLI, const SetOfInstrs &InsertedTruncs, InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT) { ExtAddrMode Result; bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, MemoryInst, Result, InsertedTruncs, PromotedInsts, TPT).MatchAddr(V, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); return Result; } private: bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); bool MatchAddr(Value *V, unsigned Depth); bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, bool *MovedAway = nullptr); bool IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter); bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, Value *PromotedOperand) const; }; /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. /// Return true and update AddrMode if this addr mode is legal for the target, /// false if not. bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth) { // If Scale is 1, then this is the same as adding ScaleReg to the addressing // mode. Just process that directly. if (Scale == 1) return MatchAddr(ScaleReg, Depth); // If the scale is 0, it takes nothing to add this. if (Scale == 0) return true; // If we already have a scale of this value, we can add to it, otherwise, we // need an available scale field. if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) return false; ExtAddrMode TestAddrMode = AddrMode; // Add scale to turn X*4+X*3 -> X*7. This could also do things like // [A+B + A*7] -> [B+A*8]. TestAddrMode.Scale += Scale; TestAddrMode.ScaledReg = ScaleReg; // If the new address isn't legal, bail out. if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) return false; // It was legal, so commit it. AddrMode = TestAddrMode; // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now // to see if ScaleReg is actually X+C. If so, we can turn this into adding // X*Scale + C*Scale to addr mode. ConstantInt *CI = nullptr; Value *AddLHS = nullptr; if (isa(ScaleReg) && // not a constant expr. match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { TestAddrMode.ScaledReg = AddLHS; TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; // If this addressing mode is legal, commit it and remember that we folded // this instruction. if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { AddrModeInsts.push_back(cast(ScaleReg)); AddrMode = TestAddrMode; return true; } } // Otherwise, not (x+c)*scale, just return what we have. return true; } /// MightBeFoldableInst - This is a little filter, which returns true if an /// addressing computation involving I might be folded into a load/store /// accessing it. This doesn't need to be perfect, but needs to accept at least /// the set of instructions that MatchOperationAddr can. static bool MightBeFoldableInst(Instruction *I) { switch (I->getOpcode()) { case Instruction::BitCast: case Instruction::AddrSpaceCast: // Don't touch identity bitcasts. if (I->getType() == I->getOperand(0)->getType()) return false; return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return true; case Instruction::IntToPtr: // We know the input is intptr_t, so this is foldable. return true; case Instruction::Add: return true; case Instruction::Mul: case Instruction::Shl: // Can only handle X*C and X << C. return isa(I->getOperand(1)); case Instruction::GetElementPtr: return true; default: return false; } } /// \brief Check whether or not \p Val is a legal instruction for \p TLI. /// \note \p Val is assumed to be the product of some type promotion. /// Therefore if \p Val has an undefined state in \p TLI, this is assumed /// to be legal, as the non-promoted value would have had the same state. static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { Instruction *PromotedInst = dyn_cast(Val); if (!PromotedInst) return false; int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); // If the ISDOpcode is undefined, it was undefined before the promotion. if (!ISDOpcode) return true; // Otherwise, check if the promoted instruction is legal or not. return TLI.isOperationLegalOrCustom( ISDOpcode, TLI.getValueType(PromotedInst->getType())); } /// \brief Hepler class to perform type promotion. class TypePromotionHelper { /// \brief Utility function to check whether or not a sign or zero extension /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by /// either using the operands of \p Inst or promoting \p Inst. /// The type of the extension is defined by \p IsSExt. /// In other words, check if: /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. /// #1 Promotion applies: /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). /// #2 Operand reuses: /// ext opnd1 to ConsideredExtType. /// \p PromotedInsts maps the instructions to their type before promotion. static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, const InstrToOrigTy &PromotedInsts, bool IsSExt); /// \brief Utility function to determine if \p OpIdx should be promoted when /// promoting \p Inst. static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { if (isa(Inst) && OpIdx == 0) return false; return true; } /// \brief Utility function to promote the operand of \p Ext when this /// operand is a promotable trunc or sext or zext. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p CreatedInsts[out] contains how many non-free instructions have been /// created to promote the operand of Ext. /// Newly added extensions are inserted in \p Exts. /// Newly added truncates are inserted in \p Truncs. /// Should never be called directly. /// \return The promoted value which is used instead of Ext. static Value *promoteOperandForTruncAndAnyExt( Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs); /// \brief Utility function to promote the operand of \p Ext when this /// operand is promotable and is not a supported trunc or sext. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p CreatedInsts[out] contains how many non-free instructions have been /// created to promote the operand of Ext. /// Newly added extensions are inserted in \p Exts. /// Newly added truncates are inserted in \p Truncs. /// Should never be called directly. /// \return The promoted value which is used instead of Ext. static Value * promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs, bool IsSExt); /// \see promoteOperandForOther. static Value * signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs) { return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, Truncs, true); } /// \see promoteOperandForOther. static Value * zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs) { return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, Truncs, false); } public: /// Type for the utility function that promotes the operand of Ext. typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs); /// \brief Given a sign/zero extend instruction \p Ext, return the approriate /// action to promote the operand of \p Ext instead of using Ext. /// \return NULL if no promotable action is possible with the current /// sign extension. /// \p InsertedTruncs keeps track of all the truncate instructions inserted by /// the others CodeGenPrepare optimizations. This information is important /// because we do not want to promote these instructions as CodeGenPrepare /// will reinsert them later. Thus creating an infinite loop: create/remove. /// \p PromotedInsts maps the instructions to their type before promotion. static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts); }; bool TypePromotionHelper::canGetThrough(const Instruction *Inst, Type *ConsideredExtType, const InstrToOrigTy &PromotedInsts, bool IsSExt) { // The promotion helper does not know how to deal with vector types yet. // To be able to fix that, we would need to fix the places where we // statically extend, e.g., constants and such. if (Inst->getType()->isVectorTy()) return false; // We can always get through zext. if (isa(Inst)) return true; // sext(sext) is ok too. if (IsSExt && isa(Inst)) return true; // We can get through binary operator, if it is legal. In other words, the // binary operator must have a nuw or nsw flag. const BinaryOperator *BinOp = dyn_cast(Inst); if (BinOp && isa(BinOp) && ((!IsSExt && BinOp->hasNoUnsignedWrap()) || (IsSExt && BinOp->hasNoSignedWrap()))) return true; // Check if we can do the following simplification. // ext(trunc(opnd)) --> ext(opnd) if (!isa(Inst)) return false; Value *OpndVal = Inst->getOperand(0); // Check if we can use this operand in the extension. // If the type is larger than the result type of the extension, // we cannot. if (!OpndVal->getType()->isIntegerTy() || OpndVal->getType()->getIntegerBitWidth() > ConsideredExtType->getIntegerBitWidth()) return false; // If the operand of the truncate is not an instruction, we will not have // any information on the dropped bits. // (Actually we could for constant but it is not worth the extra logic). Instruction *Opnd = dyn_cast(OpndVal); if (!Opnd) return false; // Check if the source of the type is narrow enough. // I.e., check that trunc just drops extended bits of the same kind of // the extension. // #1 get the type of the operand and check the kind of the extended bits. const Type *OpndType; InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) OpndType = It->second.Ty; else if ((IsSExt && isa(Opnd)) || (!IsSExt && isa(Opnd))) OpndType = Opnd->getOperand(0)->getType(); else return false; // #2 check that the truncate just drop extended bits. if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) return true; return false; } TypePromotionHelper::Action TypePromotionHelper::getAction( Instruction *Ext, const SetOfInstrs &InsertedTruncs, const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { assert((isa(Ext) || isa(Ext)) && "Unexpected instruction type"); Instruction *ExtOpnd = dyn_cast(Ext->getOperand(0)); Type *ExtTy = Ext->getType(); bool IsSExt = isa(Ext); // If the operand of the extension is not an instruction, we cannot // get through. // If it, check we can get through. if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) return nullptr; // Do not promote if the operand has been added by codegenprepare. // Otherwise, it means we are undoing an optimization that is likely to be // redone, thus causing potential infinite loop. if (isa(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) return nullptr; // SExt or Trunc instructions. // Return the related handler. if (isa(ExtOpnd) || isa(ExtOpnd) || isa(ExtOpnd)) return promoteOperandForTruncAndAnyExt; // Regular instruction. // Abort early if we will have to insert non-free instructions. if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) return nullptr; return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; } Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( llvm::Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs) { // By construction, the operand of SExt is an instruction. Otherwise we cannot // get through it and this method should not be called. Instruction *SExtOpnd = cast(SExt->getOperand(0)); Value *ExtVal = SExt; if (isa(SExtOpnd)) { // Replace s|zext(zext(opnd)) // => zext(opnd). Value *ZExt = TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); TPT.replaceAllUsesWith(SExt, ZExt); TPT.eraseInstruction(SExt); ExtVal = ZExt; } else { // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) // => z|sext(opnd). TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); } CreatedInsts = 0; // Remove dead code. if (SExtOpnd->use_empty()) TPT.eraseInstruction(SExtOpnd); // Check if the extension is still needed. Instruction *ExtInst = dyn_cast(ExtVal); if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { if (ExtInst && Exts) Exts->push_back(ExtInst); return ExtVal; } // At this point we have: ext ty opnd to ty. // Reassign the uses of ExtInst to the opnd and remove ExtInst. Value *NextVal = ExtInst->getOperand(0); TPT.eraseInstruction(ExtInst, NextVal); return NextVal; } Value *TypePromotionHelper::promoteOperandForOther( Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, SmallVectorImpl *Exts, SmallVectorImpl *Truncs, bool IsSExt) { // By construction, the operand of Ext is an instruction. Otherwise we cannot // get through it and this method should not be called. Instruction *ExtOpnd = cast(Ext->getOperand(0)); CreatedInsts = 0; if (!ExtOpnd->hasOneUse()) { // ExtOpnd will be promoted. // All its uses, but Ext, will need to use a truncated value of the // promoted version. // Create the truncate now. Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); if (Instruction *ITrunc = dyn_cast(Trunc)) { ITrunc->removeFromParent(); // Insert it just after the definition. ITrunc->insertAfter(ExtOpnd); if (Truncs) Truncs->push_back(ITrunc); } TPT.replaceAllUsesWith(ExtOpnd, Trunc); // Restore the operand of Ext (which has been replace by the previous call // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. TPT.setOperand(Ext, 0, ExtOpnd); } // Get through the Instruction: // 1. Update its type. // 2. Replace the uses of Ext by Inst. // 3. Extend each operand that needs to be extended. // Remember the original type of the instruction before promotion. // This is useful to know that the high bits are sign extended bits. PromotedInsts.insert(std::pair( ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); // Step #1. TPT.mutateType(ExtOpnd, Ext->getType()); // Step #2. TPT.replaceAllUsesWith(Ext, ExtOpnd); // Step #3. Instruction *ExtForOpnd = Ext; DEBUG(dbgs() << "Propagate Ext to operands\n"); for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; ++OpIdx) { DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || !shouldExtOperand(ExtOpnd, OpIdx)) { DEBUG(dbgs() << "No need to propagate\n"); continue; } // Check if we can statically extend the operand. Value *Opnd = ExtOpnd->getOperand(OpIdx); if (const ConstantInt *Cst = dyn_cast(Opnd)) { DEBUG(dbgs() << "Statically extend\n"); unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) : Cst->getValue().zext(BitWidth); TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); continue; } // UndefValue are typed, so we have to statically sign extend them. if (isa(Opnd)) { DEBUG(dbgs() << "Statically extend\n"); TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); continue; } // Otherwise we have to explicity sign extend the operand. // Check if Ext was reused to extend an operand. if (!ExtForOpnd) { // If yes, create a new one. DEBUG(dbgs() << "More operands to ext\n"); Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) : TPT.createZExt(Ext, Opnd, Ext->getType()); if (!isa(ValForExtOpnd)) { TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); continue; } ExtForOpnd = cast(ValForExtOpnd); ++CreatedInsts; } if (Exts) Exts->push_back(ExtForOpnd); TPT.setOperand(ExtForOpnd, 0, Opnd); // Move the sign extension before the insertion point. TPT.moveBefore(ExtForOpnd, ExtOpnd); TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); // If more sext are required, new instructions will have to be created. ExtForOpnd = nullptr; } if (ExtForOpnd == Ext) { DEBUG(dbgs() << "Extension is useless now\n"); TPT.eraseInstruction(Ext); } return ExtOpnd; } /// IsPromotionProfitable - Check whether or not promoting an instruction /// to a wider type was profitable. /// \p MatchedSize gives the number of instructions that have been matched /// in the addressing mode after the promotion was applied. /// \p SizeWithPromotion gives the number of created instructions for /// the promotion plus the number of instructions that have been /// matched in the addressing mode before the promotion. /// \p PromotedOperand is the value that has been promoted. /// \return True if the promotion is profitable, false otherwise. bool AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, Value *PromotedOperand) const { // We folded less instructions than what we created to promote the operand. // This is not profitable. if (MatchedSize < SizeWithPromotion) return false; if (MatchedSize > SizeWithPromotion) return true; // The promotion is neutral but it may help folding the sign extension in // loads for instance. // Check that we did not create an illegal instruction. return isPromotedInstructionLegal(TLI, PromotedOperand); } /// MatchOperationAddr - Given an instruction or constant expr, see if we can /// fold the operation into the addressing mode. If so, update the addressing /// mode and return true, otherwise return false without modifying AddrMode. /// If \p MovedAway is not NULL, it contains the information of whether or /// not AddrInst has to be folded into the addressing mode on success. /// If \p MovedAway == true, \p AddrInst will not be part of the addressing /// because it has been moved away. /// Thus AddrInst must not be added in the matched instructions. /// This state can happen when AddrInst is a sext, since it may be moved away. /// Therefore, AddrInst may not be valid when MovedAway is true and it must /// not be referenced anymore. bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, bool *MovedAway) { // Avoid exponential behavior on extremely deep expression trees. if (Depth >= 5) return false; // By default, all matched instructions stay in place. if (MovedAway) *MovedAway = false; switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return MatchAddr(AddrInst->getOperand(0), Depth); case Instruction::IntToPtr: // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::BitCast: case Instruction::AddrSpaceCast: // BitCast is always a noop, and we can handle it as long as it is // int->int or pointer->pointer (we don't want int<->fp or something). if ((AddrInst->getOperand(0)->getType()->isPointerTy() || AddrInst->getOperand(0)->getType()->isIntegerTy()) && // Don't touch identity bitcasts. These were probably put here by LSR, // and we don't want to mess around with them. Assume it knows what it // is doing. AddrInst->getOperand(0)->getType() != AddrInst->getType()) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::Add: { // Check to see if we can merge in the RHS then the LHS. If so, we win. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Start a transaction at this point. // The LHS may match but not the RHS. // Therefore, we need a higher level restoration point to undo partially // matched operation. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); if (MatchAddr(AddrInst->getOperand(1), Depth+1) && MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; // Restore the old addr mode info. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. if (MatchAddr(AddrInst->getOperand(0), Depth+1) && MatchAddr(AddrInst->getOperand(1), Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); break; } //case Instruction::Or: // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. //break; case Instruction::Mul: case Instruction::Shl: { // Can only handle X*C and X << C. ConstantInt *RHS = dyn_cast(AddrInst->getOperand(1)); if (!RHS) return false; int64_t Scale = RHS->getSExtValue(); if (Opcode == Instruction::Shl) Scale = 1LL << Scale; return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most // one variable offset. int VariableOperand = -1; unsigned VariableScale = 0; int64_t ConstantOffset = 0; const DataLayout *TD = TLI.getDataLayout(); gep_type_iterator GTI = gep_type_begin(AddrInst); for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { if (StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast(AddrInst->getOperand(i))->getZExtValue(); ConstantOffset += SL->getElementOffset(Idx); } else { uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *CI = dyn_cast(AddrInst->getOperand(i))) { ConstantOffset += CI->getSExtValue()*TypeSize; } else if (TypeSize) { // Scales of zero don't do anything. // We only allow one variable index at the moment. if (VariableOperand != -1) return false; // Remember the variable index. VariableOperand = i; VariableScale = TypeSize; } } } // A common case is for the GEP to only do a constant offset. In this case, // just add it to the disp field and check validity. if (VariableOperand == -1) { AddrMode.BaseOffs += ConstantOffset; if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ // Check to see if we can fold the base pointer in too. if (MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; } AddrMode.BaseOffs -= ConstantOffset; return false; } // Save the valid addressing mode in case we can't match. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // See if the scale and offset amount is valid for this target. AddrMode.BaseOffs += ConstantOffset; // Match the base operand of the GEP. if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { // If it couldn't be matched, just stuff the value in a register. if (AddrMode.HasBaseReg) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); } // Match the remaining variable portion of the GEP. if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If it couldn't be matched, try stuffing the base into a register // instead of matching it, and retrying the match of the scale. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); if (AddrMode.HasBaseReg) return false; AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); AddrMode.BaseOffs += ConstantOffset; if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If even that didn't work, bail. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } } return true; } case Instruction::SExt: case Instruction::ZExt: { Instruction *Ext = dyn_cast(AddrInst); if (!Ext) return false; // Try to move this ext out of the way of the addressing mode. // Ask for a method for doing so. TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); if (!TPH) return false; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); unsigned CreatedInsts = 0; Value *PromotedOperand = TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr); // SExt has been moved away. // Thus either it will be rematched later in the recursive calls or it is // gone. Anyway, we must not fold it into the addressing mode at this point. // E.g., // op = add opnd, 1 // idx = ext op // addr = gep base, idx // is now: // promotedOpnd = ext opnd <- no match here // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) // addr = gep base, op <- match if (MovedAway) *MovedAway = true; assert(PromotedOperand && "TypePromotionHelper should have filtered out those cases"); ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); if (!MatchAddr(PromotedOperand, Depth) || !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, PromotedOperand)) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); TPT.rollback(LastKnownGood); return false; } return true; } } return false; } /// MatchAddr - If we can, try to add the value of 'Addr' into the current /// addressing mode. If Addr can't be added to AddrMode this returns false and /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type /// or intptr_t for the target. /// bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { // Start a transaction at this point that we will rollback if the matching // fails. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); if (ConstantInt *CI = dyn_cast(Addr)) { // Fold in immediates if legal for the target. AddrMode.BaseOffs += CI->getSExtValue(); if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseOffs -= CI->getSExtValue(); } else if (GlobalValue *GV = dyn_cast(Addr)) { // If this is a global variable, try to fold it into the addressing mode. if (!AddrMode.BaseGV) { AddrMode.BaseGV = GV; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseGV = nullptr; } } else if (Instruction *I = dyn_cast(Addr)) { ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Check to see if it is possible to fold this operation. bool MovedAway = false; if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { // This instruction may have been move away. If so, there is nothing // to check here. if (MovedAway) return true; // Okay, it's possible to fold this. Check to see if it is actually // *profitable* to do so. We use a simple cost model to avoid increasing // register pressure too much. if (I->hasOneUse() || IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { AddrModeInsts.push_back(I); return true; } // It isn't profitable to do this, roll back. //cerr << "NOT FOLDING: " << *I; AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); } } else if (ConstantExpr *CE = dyn_cast(Addr)) { if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) return true; TPT.rollback(LastKnownGood); } else if (isa(Addr)) { // Null pointer gets folded without affecting the addressing mode. return true; } // Worse case, the target should support [reg] addressing modes. :) if (!AddrMode.HasBaseReg) { AddrMode.HasBaseReg = true; AddrMode.BaseReg = Addr; // Still check for legality in case the target supports [imm] but not [i+r]. if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.HasBaseReg = false; AddrMode.BaseReg = nullptr; } // If the base register is already taken, see if we can do [r+r]. if (AddrMode.Scale == 0) { AddrMode.Scale = 1; AddrMode.ScaledReg = Addr; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.Scale = 0; AddrMode.ScaledReg = nullptr; } // Couldn't match. TPT.rollback(LastKnownGood); return false; } /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified /// inline asm call are due to memory operands. If so, return true, otherwise /// return false. static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetLowering &TLI) { TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(OpInfo, SDValue()); // If this asm operand is our Value*, and if it isn't an indirect memory // operand, we can't fold it! if (OpInfo.CallOperandVal == OpVal && (OpInfo.ConstraintType != TargetLowering::C_Memory || !OpInfo.isIndirect)) return false; } return true; } /// FindAllMemoryUses - Recursively walk all the uses of I until we find a /// memory use. If we find an obviously non-foldable instruction, return true. /// Add the ultimately found memory instructions to MemoryUses. static bool FindAllMemoryUses(Instruction *I, SmallVectorImpl > &MemoryUses, SmallPtrSetImpl &ConsideredInsts, const TargetLowering &TLI) { // If we already considered this instruction, we're done. if (!ConsideredInsts.insert(I).second) return false; // If this is an obviously unfoldable instruction, bail out. if (!MightBeFoldableInst(I)) return true; // Loop over all the uses, recursively processing them. for (Use &U : I->uses()) { Instruction *UserI = cast(U.getUser()); if (LoadInst *LI = dyn_cast(UserI)) { MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); continue; } if (StoreInst *SI = dyn_cast(UserI)) { unsigned opNo = U.getOperandNo(); if (opNo == 0) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(SI, opNo)); continue; } if (CallInst *CI = dyn_cast(UserI)) { InlineAsm *IA = dyn_cast(CI->getCalledValue()); if (!IA) return true; // If this is a memory operand, we're cool, otherwise bail out. if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) return true; continue; } if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) return true; } return false; } /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at /// the use site that we're folding it into. If so, there is no cost to /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values /// that we know are live at the instruction already. bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, Value *KnownLive2) { // If Val is either of the known-live values, we know it is live! if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) return true; // All values other than instructions and arguments (e.g. constants) are live. if (!isa(Val) && !isa(Val)) return true; // If Val is a constant sized alloca in the entry block, it is live, this is // true because it is just a reference to the stack/frame pointer, which is // live for the whole function. if (AllocaInst *AI = dyn_cast(Val)) if (AI->isStaticAlloca()) return true; // Check to see if this value is already used in the memory instruction's // block. If so, it's already live into the block at the very least, so we // can reasonably fold it. return Val->isUsedInBasicBlock(MemoryInst->getParent()); } /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing /// mode of the machine to fold the specified instruction into a load or store /// that ultimately uses it. However, the specified instruction has multiple /// uses. Given this, it may actually increase register pressure to fold it /// into the load. For example, consider this code: /// /// X = ... /// Y = X+1 /// use(Y) -> nonload/store /// Z = Y+1 /// load Z /// /// In this case, Y has multiple uses, and can be folded into the load of Z /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to /// be live at the use(Y) line. If we don't fold Y into load Z, we use one /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the /// number of computations either. /// /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If /// X was live across 'load Z' for other reasons, we actually *would* want to /// fold the addressing mode in the Z case. This would make Y die earlier. bool AddressingModeMatcher:: IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { if (IgnoreProfitability) return true; // AMBefore is the addressing mode before this instruction was folded into it, // and AMAfter is the addressing mode after the instruction was folded. Get // the set of registers referenced by AMAfter and subtract out those // referenced by AMBefore: this is the set of values which folding in this // address extends the lifetime of. // // Note that there are only two potential values being referenced here, // BaseReg and ScaleReg (global addresses are always available, as are any // folded immediates). Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; // If the BaseReg or ScaledReg was referenced by the previous addrmode, their // lifetime wasn't extended by adding this instruction. if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) BaseReg = nullptr; if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) ScaledReg = nullptr; // If folding this instruction (and it's subexprs) didn't extend any live // ranges, we're ok with it. if (!BaseReg && !ScaledReg) return true; // If all uses of this instruction are ultimately load/store/inlineasm's, // check to see if their addressing modes will include this instruction. If // so, we can fold it into all uses, so it doesn't matter if it has multiple // uses. SmallVector, 16> MemoryUses; SmallPtrSet ConsideredInsts; if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) return false; // Has a non-memory, non-foldable use! // Now that we know that all uses of this instruction are part of a chain of // computation involving only operations that could theoretically be folded // into a memory use, loop over each of these uses and see if they could // *actually* fold the instruction. SmallVector MatchedAddrModeInsts; for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { Instruction *User = MemoryUses[i].first; unsigned OpNo = MemoryUses[i].second; // Get the access type of this use. If the use isn't a pointer, we don't // know what it accesses. Value *Address = User->getOperand(OpNo); if (!Address->getType()->isPointerTy()) return false; Type *AddressAccessTy = Address->getType()->getPointerElementType(); // Do a match against the root of this address, ignoring profitability. This // will tell us if the addressing mode for the memory operation will // *actually* cover the shared instruction. ExtAddrMode Result; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, MemoryInst, Result, InsertedTruncs, PromotedInsts, TPT); Matcher.IgnoreProfitability = true; bool Success = Matcher.MatchAddr(Address, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); // The match was to check the profitability, the changes made are not // part of the original matcher. Therefore, they should be dropped // otherwise the original matcher will not present the right state. TPT.rollback(LastKnownGood); // If the match didn't cover I, then it won't be shared by it. if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), I) == MatchedAddrModeInsts.end()) return false; MatchedAddrModeInsts.clear(); } return true; } } // end anonymous namespace /// IsNonLocalValue - Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast(V)) return I->getParent() != BB; return false; } /// OptimizeMemoryInst - Load and Store Instructions often have /// addressing modes that can do significant amounts of computation. As such, /// instruction selection will try to get the load or store to do as much /// computation as possible for the program. The problem is that isel can only /// see within a single block. As such, we sink as much legal addressing mode /// stuff into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy) { Value *Repl = Addr; // Try to collapse single-value PHI nodes. This is necessary to undo // unprofitable PRE transformations. SmallVector worklist; SmallPtrSet Visited; worklist.push_back(Addr); // Use a worklist to iteratively look through PHI nodes, and ensure that // the addressing mode obtained from the non-PHI roots of the graph // are equivalent. Value *Consensus = nullptr; unsigned NumUsesConsensus = 0; bool IsNumUsesConsensusValid = false; SmallVector AddrModeInsts; ExtAddrMode AddrMode; TypePromotionTransaction TPT; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); while (!worklist.empty()) { Value *V = worklist.back(); worklist.pop_back(); // Break use-def graph loops. if (!Visited.insert(V).second) { Consensus = nullptr; break; } // For a PHI node, push all of its incoming values. if (PHINode *P = dyn_cast(V)) { for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) worklist.push_back(P->getIncomingValue(i)); continue; } // For non-PHIs, determine the addressing mode being computed. SmallVector NewAddrModeInsts; ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, PromotedInsts, TPT); // This check is broken into two cases with very similar code to avoid using // getNumUses() as much as possible. Some values have a lot of uses, so // calling getNumUses() unconditionally caused a significant compile-time // regression. if (!Consensus) { Consensus = V; AddrMode = NewAddrMode; AddrModeInsts = NewAddrModeInsts; continue; } else if (NewAddrMode == AddrMode) { if (!IsNumUsesConsensusValid) { NumUsesConsensus = Consensus->getNumUses(); IsNumUsesConsensusValid = true; } // Ensure that the obtained addressing mode is equivalent to that obtained // for all other roots of the PHI traversal. Also, when choosing one // such root as representative, select the one with the most uses in order // to keep the cost modeling heuristics in AddressingModeMatcher // applicable. unsigned NumUses = V->getNumUses(); if (NumUses > NumUsesConsensus) { Consensus = V; NumUsesConsensus = NumUses; AddrModeInsts = NewAddrModeInsts; } continue; } Consensus = nullptr; break; } // If the addressing mode couldn't be determined, or if multiple different // ones were determined, bail out now. if (!Consensus) { TPT.rollback(LastKnownGood); return false; } TPT.commit(); // Check to see if any of the instructions supersumed by this addr mode are // non-local to I's BB. bool AnyNonLocal = false; for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { AnyNonLocal = true; break; } } // If all the instructions matched are already in this BB, don't do anything. if (!AnyNonLocal) { DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. IRBuilder<> Builder(MemoryInst); // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse the // computation. Value *&SunkAddr = SunkAddrs[Addr]; if (SunkAddr) { DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"); if (SunkAddr->getType() != Addr->getType()) SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) ->useAA())) { // By default, we use the GEP-based method when AA is used later. This // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"); Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); Value *ResultPtr = nullptr, *ResultIndex = nullptr; // First, find the pointer. if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { ResultPtr = AddrMode.BaseReg; AddrMode.BaseReg = nullptr; } if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { // We can't add more than one pointer together, nor can we scale a // pointer (both of which seem meaningless). if (ResultPtr || AddrMode.Scale != 1) return false; ResultPtr = AddrMode.ScaledReg; AddrMode.Scale = 0; } if (AddrMode.BaseGV) { if (ResultPtr) return false; ResultPtr = AddrMode.BaseGV; } // If the real base value actually came from an inttoptr, then the matcher // will look through it and provide only the integer value. In that case, // use it here. if (!ResultPtr && AddrMode.BaseReg) { ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); AddrMode.BaseReg = nullptr; } else if (!ResultPtr && AddrMode.Scale == 1) { ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); AddrMode.Scale = 0; } if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { SunkAddr = Constant::getNullValue(Addr->getType()); } else if (!ResultPtr) { return false; } else { Type *I8PtrTy = Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType() != IntPtrTy) V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); ResultIndex = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (cast(IntPtrTy)->getBitWidth() < cast(V->getType())->getBitWidth()) { V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); } else { // It is only safe to sign extend the BaseReg if we know that the math // required to create it did not overflow before we extend it. Since // the original IR value was tossed in favor of a constant back when // the AddrMode was created we need to bail out gracefully if widths // do not match instead of extending it. Instruction *I = dyn_cast_or_null(ResultIndex); if (I && (ResultIndex != AddrMode.BaseReg)) I->eraseFromParent(); return false; } if (AddrMode.Scale != 1) V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr"); if (ResultIndex) ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); else ResultIndex = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (ResultIndex) { // We need to add this separately from the scale above to help with // SDAG consecutive load/store merging. if (ResultPtr->getType() != I8PtrTy) ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); } ResultIndex = V; } if (!ResultIndex) { SunkAddr = ResultPtr; } else { if (ResultPtr->getType() != I8PtrTy) ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); } if (SunkAddr->getType() != Addr->getType()) SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); } } else { DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"); Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); Value *Result = nullptr; // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType()->isPointerTy()) V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); if (V->getType() != IntPtrTy) V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); Result = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (V->getType()->isPointerTy()) { V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); } else if (cast(IntPtrTy)->getBitWidth() < cast(V->getType())->getBitWidth()) { V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); } else { // It is only safe to sign extend the BaseReg if we know that the math // required to create it did not overflow before we extend it. Since // the original IR value was tossed in favor of a constant back when // the AddrMode was created we need to bail out gracefully if widths // do not match instead of extending it. Instruction *I = dyn_cast_or_null(Result); if (I && (Result != AddrMode.BaseReg)) I->eraseFromParent(); return false; } if (AddrMode.Scale != 1) V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } if (!Result) SunkAddr = Constant::getNullValue(Addr->getType()); else SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); } MemoryInst->replaceUsesOfWith(Repl, SunkAddr); // If we have no uses, recursively delete the value and all dead instructions // using it. if (Repl->use_empty()) { // This can cause recursive deletion, which can invalidate our iterator. // Use a WeakVH to hold onto it in case this happens. WeakVH IterHandle(CurInstIterator); BasicBlock *BB = CurInstIterator->getParent(); RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); if (IterHandle != CurInstIterator) { // If the iterator instruction was recursively deleted, start over at the // start of the block. CurInstIterator = BB->begin(); SunkAddrs.clear(); } } ++NumMemoryInsts; return true; } /// OptimizeInlineAsmInst - If there are any memory operands, use /// OptimizeMemoryInst to sink their address computing into the block when /// possible / profitable. bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { bool MadeChange = false; TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS); unsigned ArgNo = 0; for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = CS->getArgOperand(ArgNo++); MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); } else if (OpInfo.Type == InlineAsm::isInput) ArgNo++; } return MadeChange; } /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or /// sign extensions. static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { assert(!Inst->use_empty() && "Input must have at least one use"); const Instruction *FirstUser = cast(*Inst->user_begin()); bool IsSExt = isa(FirstUser); Type *ExtTy = FirstUser->getType(); for (const User *U : Inst->users()) { const Instruction *UI = cast(U); if ((IsSExt && !isa(UI)) || (!IsSExt && !isa(UI))) return false; Type *CurTy = UI->getType(); // Same input and output types: Same instruction after CSE. if (CurTy == ExtTy) continue; // If IsSExt is true, we are in this situation: // a = Inst // b = sext ty1 a to ty2 // c = sext ty1 a to ty3 // Assuming ty2 is shorter than ty3, this could be turned into: // a = Inst // b = sext ty1 a to ty2 // c = sext ty2 b to ty3 // However, the last sext is not free. if (IsSExt) return false; // This is a ZExt, maybe this is free to extend from one type to another. // In that case, we would not account for a different use. Type *NarrowTy; Type *LargeTy; if (ExtTy->getScalarType()->getIntegerBitWidth() > CurTy->getScalarType()->getIntegerBitWidth()) { NarrowTy = CurTy; LargeTy = ExtTy; } else { NarrowTy = ExtTy; LargeTy = CurTy; } if (!TLI.isZExtFree(NarrowTy, LargeTy)) return false; } // All uses are the same or can be derived from one another for free. return true; } /// \brief Try to form ExtLd by promoting \p Exts until they reach a /// load instruction. /// If an ext(load) can be formed, it is returned via \p LI for the load /// and \p Inst for the extension. /// Otherwise LI == nullptr and Inst == nullptr. /// When some promotion happened, \p TPT contains the proper state to /// revert them. /// /// \return true when promoting was necessary to expose the ext(load) /// opportunity, false otherwise. /// /// Example: /// \code /// %ld = load i32* %addr /// %add = add nuw i32 %ld, 4 /// %zext = zext i32 %add to i64 /// \endcode /// => /// \code /// %ld = load i32* %addr /// %zext = zext i32 %ld to i64 /// %add = add nuw i64 %zext, 4 /// \encode /// Thanks to the promotion, we can match zext(load i32*) to i64. bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, Instruction *&Inst, const SmallVectorImpl &Exts, unsigned CreatedInsts = 0) { // Iterate over all the extensions to see if one form an ext(load). for (auto I : Exts) { // Check if we directly have ext(load). if ((LI = dyn_cast(I->getOperand(0)))) { Inst = I; // No promotion happened here. return false; } // Check whether or not we want to do any promotion. if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) continue; // Get the action to perform the promotion. TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( I, InsertedTruncsSet, *TLI, PromotedInsts); // Check if we can promote. if (!TPH) continue; // Save the current state. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); SmallVector NewExts; unsigned NewCreatedInsts = 0; // Promote. Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr); assert(PromotedVal && "TypePromotionHelper should have filtered out those cases"); // We would be able to merge only one extension in a load. // Therefore, if we have more than 1 new extension we heuristically // cut this search path, because it means we degrade the code quality. // With exactly 2, the transformation is neutral, because we will merge // one extension but leave one. However, we optimistically keep going, // because the new extension may be removed too. unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts; if (!StressExtLdPromotion && (TotalCreatedInsts > 1 || !isPromotedInstructionLegal(*TLI, PromotedVal))) { // The promotion is not profitable, rollback to the previous state. TPT.rollback(LastKnownGood); continue; } // The promotion is profitable. // Check if it exposes an ext(load). (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts); if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 || // If we have created a new extension, i.e., now we have two // extensions. We must make sure one of them is merged with // the load, otherwise we may degrade the code quality. (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) // Promotion happened. return true; // If this does not help to expose an ext(load) then, rollback. TPT.rollback(LastKnownGood); } // None of the extension can form an ext(load). LI = nullptr; Inst = nullptr; return false; } /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same /// basic block as the load, unless conditions are unfavorable. This allows /// SelectionDAG to fold the extend into the load. /// \p I[in/out] the extension may be modified during the process if some /// promotions apply. /// bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { // Try to promote a chain of computation if it allows to form // an extended load. TypePromotionTransaction TPT; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); SmallVector Exts; Exts.push_back(I); // Look for a load being extended. LoadInst *LI = nullptr; Instruction *OldExt = I; bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); if (!LI || !I) { assert(!HasPromoted && !LI && "If we did not match any load instruction " "the code must remain the same"); I = OldExt; return false; } // If they're already in the same block, there's nothing to do. // Make the cheap checks first if we did not promote. // If we promoted, we need to check if it is indeed profitable. if (!HasPromoted && LI->getParent() == I->getParent()) return false; EVT VT = TLI->getValueType(I->getType()); EVT LoadVT = TLI->getValueType(LI->getType()); // If the load has other users and the truncate is not free, this probably // isn't worthwhile. if (!LI->hasOneUse() && TLI && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && !TLI->isTruncateFree(I->getType(), LI->getType())) { I = OldExt; TPT.rollback(LastKnownGood); return false; } // Check whether the target supports casts folded into loads. unsigned LType; if (isa(I)) LType = ISD::ZEXTLOAD; else { assert(isa(I) && "Unexpected ext type!"); LType = ISD::SEXTLOAD; } if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { I = OldExt; TPT.rollback(LastKnownGood); return false; } // Move the extend into the same block as the load, so that SelectionDAG // can fold it. TPT.commit(); I->removeFromParent(); I->insertAfter(LI); ++NumExtsMoved; return true; } bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If the result of a {s|z}ext and its source are both live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa(Src) || DefBB != cast(Src)->getParent()) return false; bool DefIsLiveOut = false; for (User *U : I->users()) { Instruction *UI = cast(U); // Figure out which BB this ext is used in. BasicBlock *UserBB = UI->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure none of the uses are PHI nodes. for (User *U : Src->users()) { Instruction *UI = cast(U); BasicBlock *UserBB = UI->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa(UI) || isa(UI) || isa(UI)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap InsertedTruncs; bool MadeChange = false; for (Use &U : Src->uses()) { Instruction *User = cast(U.getUser()); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); InsertedTruncsSet.insert(InsertedTrunc); } // Replace a use of the {s|z}ext source with a use of the result. U = InsertedTrunc; ++NumExtUses; MadeChange = true; } return MadeChange; } /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be /// turned into an explicit branch. static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { // FIXME: This should use the same heuristics as IfConversion to determine // whether a select is better represented as a branch. This requires that // branch probability metadata is preserved for the select, which is not the // case currently. CmpInst *Cmp = dyn_cast(SI->getCondition()); // If the branch is predicted right, an out of order CPU can avoid blocking on // the compare. Emit cmovs on compares with a memory operand as branches to // avoid stalls on the load from memory. If the compare has more than one use // there's probably another cmov or setcc around so it's not worth emitting a // branch. if (!Cmp) return false; Value *CmpOp0 = Cmp->getOperand(0); Value *CmpOp1 = Cmp->getOperand(1); // We check that the memory operand has one use to avoid uses of the loaded // value directly after the compare, making branches unprofitable. return Cmp->hasOneUse() && ((isa(CmpOp0) && CmpOp0->hasOneUse()) || (isa(CmpOp1) && CmpOp1->hasOneUse())); } /// If we have a SelectInst that will likely profit from branch prediction, /// turn it into a branch. bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); // Can we convert the 'select' to CF ? if (DisableSelectToBranch || OptSize || !TLI || VectorCond) return false; TargetLowering::SelectSupportKind SelectKind; if (VectorCond) SelectKind = TargetLowering::VectorMaskSelect; else if (SI->getType()->isVectorTy()) SelectKind = TargetLowering::ScalarCondVectorVal; else SelectKind = TargetLowering::ScalarValSelect; // Do we have efficient codegen support for this kind of 'selects' ? if (TLI->isSelectSupported(SelectKind)) { // We have efficient codegen support for the select instruction. // Check if it is profitable to keep this 'select'. if (!TLI->isPredictableSelectExpensive() || !isFormingBranchFromSelectProfitable(SI)) return false; } ModifiedDT = true; // First, we split the block containing the select into 2 blocks. BasicBlock *StartBlock = SI->getParent(); BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); // Create a new block serving as the landing pad for the branch. BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", NextBlock->getParent(), NextBlock); // Move the unconditional branch from the block with the select in it into our // landing pad block. StartBlock->getTerminator()->eraseFromParent(); BranchInst::Create(NextBlock, SmallBlock); // Insert the real conditional branch based on the original condition. BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); // The select itself is replaced with a PHI Node. PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); PN->takeName(SI); PN->addIncoming(SI->getTrueValue(), StartBlock); PN->addIncoming(SI->getFalseValue(), SmallBlock); SI->replaceAllUsesWith(PN); SI->eraseFromParent(); // Instruct OptimizeBlock to skip to the next block. CurInstIterator = StartBlock->end(); ++NumSelectsExpanded; return true; } static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { SmallVector Mask(SVI->getShuffleMask()); int SplatElem = -1; for (unsigned i = 0; i < Mask.size(); ++i) { if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) return false; SplatElem = Mask[i]; } return true; } /// Some targets have expensive vector shifts if the lanes aren't all the same /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases /// it's often worth sinking a shufflevector splat down to its use so that /// codegen can spot all lanes are identical. bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { BasicBlock *DefBB = SVI->getParent(); // Only do this xform if variable vector shifts are particularly expensive. if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) return false; // We only expect better codegen by sinking a shuffle if we can recognise a // constant splat. if (!isBroadcastShuffle(SVI)) return false; // InsertedShuffles - Only insert a shuffle in each block once. DenseMap InsertedShuffles; bool MadeChange = false; for (User *U : SVI->users()) { Instruction *UI = cast(U); // Figure out which BB this ext is used in. BasicBlock *UserBB = UI->getParent(); if (UserBB == DefBB) continue; // For now only apply this when the splat is used by a shift instruction. if (!UI->isShift()) continue; // Everything checks out, sink the shuffle if the user's block doesn't // already have a copy. Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; if (!InsertedShuffle) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), SVI->getOperand(2), "", InsertPt); } UI->replaceUsesOfWith(SVI, InsertedShuffle); MadeChange = true; } // If we removed all uses, nuke the shuffle. if (SVI->use_empty()) { SVI->eraseFromParent(); MadeChange = true; } return MadeChange; } namespace { /// \brief Helper class to promote a scalar operation to a vector one. /// This class is used to move downward extractelement transition. /// E.g., /// a = vector_op <2 x i32> /// b = extractelement <2 x i32> a, i32 0 /// c = scalar_op b /// store c /// /// => /// a = vector_op <2 x i32> /// c = vector_op a (equivalent to scalar_op on the related lane) /// * d = extractelement <2 x i32> c, i32 0 /// * store d /// Assuming both extractelement and store can be combine, we get rid of the /// transition. class VectorPromoteHelper { /// Used to perform some checks on the legality of vector operations. const TargetLowering &TLI; /// Used to estimated the cost of the promoted chain. const TargetTransformInfo &TTI; /// The transition being moved downwards. Instruction *Transition; /// The sequence of instructions to be promoted. SmallVector InstsToBePromoted; /// Cost of combining a store and an extract. unsigned StoreExtractCombineCost; /// Instruction that will be combined with the transition. Instruction *CombineInst; /// \brief The instruction that represents the current end of the transition. /// Since we are faking the promotion until we reach the end of the chain /// of computation, we need a way to get the current end of the transition. Instruction *getEndOfTransition() const { if (InstsToBePromoted.empty()) return Transition; return InstsToBePromoted.back(); } /// \brief Return the index of the original value in the transition. /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, /// c, is at index 0. unsigned getTransitionOriginalValueIdx() const { assert(isa(Transition) && "Other kind of transitions are not supported yet"); return 0; } /// \brief Return the index of the index in the transition. /// E.g., for "extractelement <2 x i32> c, i32 0" the index /// is at index 1. unsigned getTransitionIdx() const { assert(isa(Transition) && "Other kind of transitions are not supported yet"); return 1; } /// \brief Get the type of the transition. /// This is the type of the original value. /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the /// transition is <2 x i32>. Type *getTransitionType() const { return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); } /// \brief Promote \p ToBePromoted by moving \p Def downward through. /// I.e., we have the following sequence: /// Def = Transition a to /// b = ToBePromoted Def, ... /// => /// b = ToBePromoted a, ... /// Def = Transition ToBePromoted to void promoteImpl(Instruction *ToBePromoted); /// \brief Check whether or not it is profitable to promote all the /// instructions enqueued to be promoted. bool isProfitableToPromote() { Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); unsigned Index = isa(ValIdx) ? cast(ValIdx)->getZExtValue() : -1; Type *PromotedType = getTransitionType(); StoreInst *ST = cast(CombineInst); unsigned AS = ST->getPointerAddressSpace(); unsigned Align = ST->getAlignment(); // Check if this store is supported. if (!TLI.allowsMisalignedMemoryAccesses( TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { // If this is not supported, there is no way we can combine // the extract with the store. return false; } // The scalar chain of computation has to pay for the transition // scalar to vector. // The vector chain has to account for the combining cost. uint64_t ScalarCost = TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); uint64_t VectorCost = StoreExtractCombineCost; for (const auto &Inst : InstsToBePromoted) { // Compute the cost. // By construction, all instructions being promoted are arithmetic ones. // Moreover, one argument is a constant that can be viewed as a splat // constant. Value *Arg0 = Inst->getOperand(0); bool IsArg0Constant = isa(Arg0) || isa(Arg0) || isa(Arg0); TargetTransformInfo::OperandValueKind Arg0OVK = IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue : TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Arg1OVK = !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue : TargetTransformInfo::OK_AnyValue; ScalarCost += TTI.getArithmeticInstrCost( Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, Arg0OVK, Arg1OVK); } DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " << ScalarCost << "\nVector: " << VectorCost << '\n'); return ScalarCost > VectorCost; } /// \brief Generate a constant vector with \p Val with the same /// number of elements as the transition. /// \p UseSplat defines whether or not \p Val should be replicated /// accross the whole vector. /// In other words, if UseSplat == true, we generate , /// otherwise we generate a vector with as many undef as possible: /// where \p Val is only /// used at the index of the extract. Value *getConstantVector(Constant *Val, bool UseSplat) const { unsigned ExtractIdx = UINT_MAX; if (!UseSplat) { // If we cannot determine where the constant must be, we have to // use a splat constant. Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); if (ConstantInt *CstVal = dyn_cast(ValExtractIdx)) ExtractIdx = CstVal->getSExtValue(); else UseSplat = true; } unsigned End = getTransitionType()->getVectorNumElements(); if (UseSplat) return ConstantVector::getSplat(End, Val); SmallVector ConstVec; UndefValue *UndefVal = UndefValue::get(Val->getType()); for (unsigned Idx = 0; Idx != End; ++Idx) { if (Idx == ExtractIdx) ConstVec.push_back(Val); else ConstVec.push_back(UndefVal); } return ConstantVector::get(ConstVec); } /// \brief Check if promoting to a vector type an operand at \p OperandIdx /// in \p Use can trigger undefined behavior. static bool canCauseUndefinedBehavior(const Instruction *Use, unsigned OperandIdx) { // This is not safe to introduce undef when the operand is on // the right hand side of a division-like instruction. if (OperandIdx != 1) return false; switch (Use->getOpcode()) { default: return false; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: return true; case Instruction::FDiv: case Instruction::FRem: return !Use->hasNoNaNs(); } llvm_unreachable(nullptr); } public: VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, Instruction *Transition, unsigned CombineCost) : TLI(TLI), TTI(TTI), Transition(Transition), StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { assert(Transition && "Do not know how to promote null"); } /// \brief Check if we can promote \p ToBePromoted to \p Type. bool canPromote(const Instruction *ToBePromoted) const { // We could support CastInst too. return isa(ToBePromoted); } /// \brief Check if it is profitable to promote \p ToBePromoted /// by moving downward the transition through. bool shouldPromote(const Instruction *ToBePromoted) const { // Promote only if all the operands can be statically expanded. // Indeed, we do not want to introduce any new kind of transitions. for (const Use &U : ToBePromoted->operands()) { const Value *Val = U.get(); if (Val == getEndOfTransition()) { // If the use is a division and the transition is on the rhs, // we cannot promote the operation, otherwise we may create a // division by zero. if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) return false; continue; } if (!isa(Val) && !isa(Val) && !isa(Val)) return false; } // Check that the resulting operation is legal. int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); if (!ISDOpcode) return false; return StressStoreExtract || TLI.isOperationLegalOrCustom( ISDOpcode, TLI.getValueType(getTransitionType(), true)); } /// \brief Check whether or not \p Use can be combined /// with the transition. /// I.e., is it possible to do Use(Transition) => AnotherUse? bool canCombine(const Instruction *Use) { return isa(Use); } /// \brief Record \p ToBePromoted as part of the chain to be promoted. void enqueueForPromotion(Instruction *ToBePromoted) { InstsToBePromoted.push_back(ToBePromoted); } /// \brief Set the instruction that will be combined with the transition. void recordCombineInstruction(Instruction *ToBeCombined) { assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); CombineInst = ToBeCombined; } /// \brief Promote all the instructions enqueued for promotion if it is /// is profitable. /// \return True if the promotion happened, false otherwise. bool promote() { // Check if there is something to promote. // Right now, if we do not have anything to combine with, // we assume the promotion is not profitable. if (InstsToBePromoted.empty() || !CombineInst) return false; // Check cost. if (!StressStoreExtract && !isProfitableToPromote()) return false; // Promote. for (auto &ToBePromoted : InstsToBePromoted) promoteImpl(ToBePromoted); InstsToBePromoted.clear(); return true; } }; } // End of anonymous namespace. void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { // At this point, we know that all the operands of ToBePromoted but Def // can be statically promoted. // For Def, we need to use its parameter in ToBePromoted: // b = ToBePromoted ty1 a // Def = Transition ty1 b to ty2 // Move the transition down. // 1. Replace all uses of the promoted operation by the transition. // = ... b => = ... Def. assert(ToBePromoted->getType() == Transition->getType() && "The type of the result of the transition does not match " "the final type"); ToBePromoted->replaceAllUsesWith(Transition); // 2. Update the type of the uses. // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. Type *TransitionTy = getTransitionType(); ToBePromoted->mutateType(TransitionTy); // 3. Update all the operands of the promoted operation with promoted // operands. // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. for (Use &U : ToBePromoted->operands()) { Value *Val = U.get(); Value *NewVal = nullptr; if (Val == Transition) NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); else if (isa(Val) || isa(Val) || isa(Val)) { // Use a splat constant if it is not safe to use undef. NewVal = getConstantVector( cast(Val), isa(Val) || canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); } else llvm_unreachable("Did you modified shouldPromote and forgot to update " "this?"); ToBePromoted->setOperand(U.getOperandNo(), NewVal); } Transition->removeFromParent(); Transition->insertAfter(ToBePromoted); Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); } // See if we can speculate calls to intrinsic cttz/ctlz. // // Example: // entry: // ... // %cmp = icmp eq i64 %val, 0 // br i1 %cmp, label %end.bb, label %then.bb // // then.bb: // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true) // br label %EndBB // // end.bb: // %cond = phi i64 [ %c, %then.bb ], [ 64, %entry ] // // ==> // // entry: // ... // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 false) // static bool OptimizeBranchInst(BranchInst *BrInst, const TargetLowering &TLI) { assert(BrInst->isConditional() && "Expected a conditional branch!"); BasicBlock *ThenBB = BrInst->getSuccessor(1); BasicBlock *EndBB = BrInst->getSuccessor(0); // See if ThenBB contains only one instruction (excluding the // terminator and DbgInfoIntrinsic calls). IntrinsicInst *II = nullptr; CastInst *CI = nullptr; for (BasicBlock::iterator I = ThenBB->begin(), E = std::prev(ThenBB->end()); I != E; ++I) { // Skip debug info. if (isa(I)) continue; // Check if this is a zero extension or a truncate of a previously // matched call to intrinsic cttz/ctlz. if (II) { // Early exit if we already found a "free" zero extend/truncate. if (CI) return false; Type *SrcTy = II->getType(); Type *DestTy = I->getType(); Value *V; if (match(cast(I), m_ZExt(m_Value(V))) && V == II) { // Speculate this zero extend only if it is "free" for the target. if (TLI.isZExtFree(SrcTy, DestTy)) { CI = cast(I); continue; } } else if (match(cast(I), m_Trunc(m_Value(V))) && V == II) { // Speculate this truncate only if it is "free" for the target. if (TLI.isTruncateFree(SrcTy, DestTy)) { CI = cast(I); continue; } } else { // Avoid speculating more than one instruction. return false; } } // See if this is a call to intrinsic cttz/ctlz. if (match(cast(I), m_Intrinsic())) { // Avoid speculating expensive intrinsic calls. if (!TLI.isCheapToSpeculateCttz()) return false; } else if (match(cast(I), m_Intrinsic())) { // Avoid speculating expensive intrinsic calls. if (!TLI.isCheapToSpeculateCtlz()) return false; } else return false; II = cast(I); } // Look for PHI nodes with 'II' as the incoming value from 'ThenBB'. BasicBlock *EntryBB = BrInst->getParent(); for (BasicBlock::iterator I = EndBB->begin(); PHINode *PN = dyn_cast(I); ++I) { Value *ThenV = PN->getIncomingValueForBlock(ThenBB); Value *OrigV = PN->getIncomingValueForBlock(EntryBB); if (!OrigV) return false; if (ThenV != II && (!CI || ThenV != CI)) return false; if (ConstantInt *CInt = dyn_cast(OrigV)) { unsigned BitWidth = II->getType()->getIntegerBitWidth(); // Don't try to simplify this phi node if 'ThenV' is a cttz/ctlz // intrinsic call, but 'OrigV' is not equal to the 'size-of' in bits // of the value in input to the cttz/ctlz. if (CInt->getValue() != BitWidth) return false; // Hoist the call to cttz/ctlz from ThenBB into EntryBB. EntryBB->getInstList().splice(BrInst, ThenBB->getInstList(), ThenBB->begin(), std::prev(ThenBB->end())); // Update PN setting ThenV as the incoming value from both 'EntryBB' // and 'ThenBB'. Eventually, method 'OptimizeInst' will fold this // phi node if all the incoming values are the same. PN->setIncomingValue(PN->getBasicBlockIndex(EntryBB), ThenV); PN->setIncomingValue(PN->getBasicBlockIndex(ThenBB), ThenV); // Clear the 'undef on zero' flag of the cttz/ctlz intrinsic call. if (cast(II->getArgOperand(1))->isOne()) { Type *Ty = II->getArgOperand(0)->getType(); Value *Args[] = { II->getArgOperand(0), ConstantInt::getFalse(II->getContext()) }; Module *M = EntryBB->getParent()->getParent(); Value *IF = Intrinsic::getDeclaration(M, II->getIntrinsicID(), Ty); IRBuilder<> Builder(II); Instruction *NewI = Builder.CreateCall(IF, Args); // Replace the old call to cttz/ctlz. II->replaceAllUsesWith(NewI); II->eraseFromParent(); } // Update BrInst condition so that the branch to EndBB is always taken. // Later on, method 'ConstantFoldTerminator' will simplify this branch // replacing it with a direct branch to 'EndBB'. // As a side effect, CodeGenPrepare will attempt to simplify the control // flow graph by deleting basic block 'ThenBB' and merging 'EntryBB' into // 'EndBB' (calling method 'EliminateFallThrough'). BrInst->setCondition(ConstantInt::getTrue(BrInst->getContext())); return true; } } return false; } /// Some targets can do store(extractelement) with one instruction. /// Try to push the extractelement towards the stores when the target /// has this feature and this is profitable. bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { unsigned CombineCost = UINT_MAX; if (DisableStoreExtract || !TLI || (!StressStoreExtract && !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), Inst->getOperand(1), CombineCost))) return false; // At this point we know that Inst is a vector to scalar transition. // Try to move it down the def-use chain, until: // - We can combine the transition with its single use // => we got rid of the transition. // - We escape the current basic block // => we would need to check that we are moving it at a cheaper place and // we do not do that for now. BasicBlock *Parent = Inst->getParent(); DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); // If the transition has more than one use, assume this is not going to be // beneficial. while (Inst->hasOneUse()) { Instruction *ToBePromoted = cast(*Inst->user_begin()); DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); if (ToBePromoted->getParent() != Parent) { DEBUG(dbgs() << "Instruction to promote is in a different block (" << ToBePromoted->getParent()->getName() << ") than the transition (" << Parent->getName() << ").\n"); return false; } if (VPH.canCombine(ToBePromoted)) { DEBUG(dbgs() << "Assume " << *Inst << '\n' << "will be combined with: " << *ToBePromoted << '\n'); VPH.recordCombineInstruction(ToBePromoted); bool Changed = VPH.promote(); NumStoreExtractExposed += Changed; return Changed; } DEBUG(dbgs() << "Try promoting.\n"); if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) return false; DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); VPH.enqueueForPromotion(ToBePromoted); Inst = ToBePromoted; } return false; } bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { if (PHINode *P = dyn_cast(I)) { // It is possible for very late stage optimizations (such as SimplifyCFG) // to introduce PHI nodes too late to be cleaned up. If we detect such a // trivial PHI, go ahead and zap it here. if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, TLInfo, DT)) { P->replaceAllUsesWith(V); P->eraseFromParent(); ++NumPHIsElim; return true; } return false; } if (CastInst *CI = dyn_cast(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa(CI->getOperand(0))) return false; if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) return true; if (isa(I) || isa(I)) { /// Sink a zext or sext into its user blocks if the target type doesn't /// fit in one register if (TLI && TLI->getTypeAction(CI->getContext(), TLI->getValueType(CI->getType())) == TargetLowering::TypeExpandInteger) { return SinkCast(CI); } else { bool MadeChange = MoveExtToFormExtLoad(I); return MadeChange | OptimizeExtUses(I); } } return false; } if (CmpInst *CI = dyn_cast(I)) if (!TLI || !TLI->hasMultipleConditionRegisters()) return OptimizeCmpExpression(CI); if (LoadInst *LI = dyn_cast(I)) { if (TLI) return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); return false; } if (StoreInst *SI = dyn_cast(I)) { if (TLI) return OptimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType()); return false; } BinaryOperator *BinOp = dyn_cast(I); if (BinOp && (BinOp->getOpcode() == Instruction::AShr || BinOp->getOpcode() == Instruction::LShr)) { ConstantInt *CI = dyn_cast(BinOp->getOperand(1)); if (TLI && CI && TLI->hasExtractBitsInsn()) return OptimizeExtractBits(BinOp, CI, *TLI); return false; } if (GetElementPtrInst *GEPI = dyn_cast(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); ++NumGEPsElim; OptimizeInst(NC, ModifiedDT); return true; } return false; } if (CallInst *CI = dyn_cast(I)) return OptimizeCallInst(CI, ModifiedDT); if (SelectInst *SI = dyn_cast(I)) return OptimizeSelectInst(SI); if (ShuffleVectorInst *SVI = dyn_cast(I)) return OptimizeShuffleVectorInst(SVI); if (isa(I)) return OptimizeExtractElementInst(I); if (BranchInst *BI = dyn_cast(I)) { if (TLI && BI->isConditional() && BI->getCondition()->hasOneUse()) { // Check if the branch condition compares a value agaist zero. if (ICmpInst *ICI = dyn_cast(BI->getCondition())) { if (ICI->getPredicate() == ICmpInst::ICMP_EQ && match(ICI->getOperand(1), m_Zero())) { BasicBlock *ThenBB = BI->getSuccessor(1); BasicBlock *EndBB = BI->getSuccessor(0); // Check if ThenBB is only reachable from this basic block; also, // check if EndBB has more than one predecessor. if (ThenBB->getSinglePredecessor() && !EndBB->getSinglePredecessor()) { TerminatorInst *TI = ThenBB->getTerminator(); if (TI->getNumSuccessors() == 1 && TI->getSuccessor(0) == EndBB && // Try to speculate calls to intrinsic cttz/ctlz from 'ThenBB'. OptimizeBranchInst(BI, *TLI)) { ModifiedDT = true; return true; } } } } } return false; } return false; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { SunkAddrs.clear(); bool MadeChange = false; CurInstIterator = BB.begin(); while (CurInstIterator != BB.end()) { MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); if (ModifiedDT) return true; } MadeChange |= DupRetToEnableTailCallOpts(&BB); return MadeChange; } // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. bool CodeGenPrepare::PlaceDbgValues(Function &F) { bool MadeChange = false; for (BasicBlock &BB : F) { Instruction *PrevNonDbgInst = nullptr; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { Instruction *Insn = BI++; DbgValueInst *DVI = dyn_cast(Insn); // Leave dbg.values that refer to an alloca alone. These // instrinsics describe the address of a variable (= the alloca) // being taken. They should not be moved next to the alloca // (and to the beginning of the scope), but rather stay close to // where said address is used. if (!DVI || (DVI->getValue() && isa(DVI->getValue()))) { PrevNonDbgInst = Insn; continue; } Instruction *VI = dyn_cast_or_null(DVI->getValue()); if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); DVI->removeFromParent(); if (isa(VI)) DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); else DVI->insertAfter(VI); MadeChange = true; ++NumDbgValueMoved; } } } return MadeChange; } // If there is a sequence that branches based on comparing a single bit // against zero that can be combined into a single instruction, and the // target supports folding these into a single instruction, sink the // mask and compare into the branch uses. Do this before OptimizeBlock -> // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being // searched for. bool CodeGenPrepare::sinkAndCmp(Function &F) { if (!EnableAndCmpSinking) return false; if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) return false; bool MadeChange = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; // Does this BB end with the following? // %andVal = and %val, #single-bit-set // %icmpVal = icmp %andResult, 0 // br i1 %cmpVal label %dest1, label %dest2" BranchInst *Brcc = dyn_cast(BB->getTerminator()); if (!Brcc || !Brcc->isConditional()) continue; ICmpInst *Cmp = dyn_cast(Brcc->getOperand(0)); if (!Cmp || Cmp->getParent() != BB) continue; ConstantInt *Zero = dyn_cast(Cmp->getOperand(1)); if (!Zero || !Zero->isZero()) continue; Instruction *And = dyn_cast(Cmp->getOperand(0)); if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) continue; ConstantInt* Mask = dyn_cast(And->getOperand(1)); if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) continue; DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); // Push the "and; icmp" for any users that are conditional branches. // Since there can only be one branch use per BB, we don't need to keep // track of which BBs we insert into. for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); UI != E; ) { Use &TheUse = *UI; // Find brcc use. BranchInst *BrccUser = dyn_cast(*UI); ++UI; if (!BrccUser || !BrccUser->isConditional()) continue; BasicBlock *UserBB = BrccUser->getParent(); if (UserBB == BB) continue; DEBUG(dbgs() << "found Brcc use\n"); // Sink the "and; icmp" to use. MadeChange = true; BinaryOperator *NewAnd = BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", BrccUser); CmpInst *NewCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, "", BrccUser); TheUse = NewCmp; ++NumAndCmpsMoved; DEBUG(BrccUser->getParent()->dump()); } } return MadeChange; } /// \brief Retrieve the probabilities of a conditional branch. Returns true on /// success, or returns false if no or invalid metadata was found. static bool extractBranchMetadata(BranchInst *BI, uint64_t &ProbTrue, uint64_t &ProbFalse) { assert(BI->isConditional() && "Looking for probabilities on unconditional branch?"); auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); if (!ProfileData || ProfileData->getNumOperands() != 3) return false; const auto *CITrue = mdconst::dyn_extract(ProfileData->getOperand(1)); const auto *CIFalse = mdconst::dyn_extract(ProfileData->getOperand(2)); if (!CITrue || !CIFalse) return false; ProbTrue = CITrue->getValue().getZExtValue(); ProbFalse = CIFalse->getValue().getZExtValue(); return true; } /// \brief Scale down both weights to fit into uint32_t. static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; uint32_t Scale = (NewMax / UINT32_MAX) + 1; NewTrue = NewTrue / Scale; NewFalse = NewFalse / Scale; } /// \brief Some targets prefer to split a conditional branch like: /// \code /// %0 = icmp ne i32 %a, 0 /// %1 = icmp ne i32 %b, 0 /// %or.cond = or i1 %0, %1 /// br i1 %or.cond, label %TrueBB, label %FalseBB /// \endcode /// into multiple branch instructions like: /// \code /// bb1: /// %0 = icmp ne i32 %a, 0 /// br i1 %0, label %TrueBB, label %bb2 /// bb2: /// %1 = icmp ne i32 %b, 0 /// br i1 %1, label %TrueBB, label %FalseBB /// \endcode /// This usually allows instruction selection to do even further optimizations /// and combine the compare with the branch instruction. Currently this is /// applied for targets which have "cheap" jump instructions. /// /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. /// bool CodeGenPrepare::splitBranchCondition(Function &F) { if (!TM || TM->Options.EnableFastISel != true || !TLI || TLI->isJumpExpensive()) return false; bool MadeChange = false; for (auto &BB : F) { // Does this BB end with the following? // %cond1 = icmp|fcmp|binary instruction ... // %cond2 = icmp|fcmp|binary instruction ... // %cond.or = or|and i1 %cond1, cond2 // br i1 %cond.or label %dest1, label %dest2" BinaryOperator *LogicOp; BasicBlock *TBB, *FBB; if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) continue; unsigned Opc; Value *Cond1, *Cond2; if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) Opc = Instruction::And; else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) Opc = Instruction::Or; else continue; if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) continue; DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); // Create a new BB. auto *InsertBefore = std::next(Function::iterator(BB)) .getNodePtrUnchecked(); auto TmpBB = BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", BB.getParent(), InsertBefore); // Update original basic block by using the first condition directly by the // branch instruction and removing the no longer needed and/or instruction. auto *Br1 = cast(BB.getTerminator()); Br1->setCondition(Cond1); LogicOp->eraseFromParent(); // Depending on the conditon we have to either replace the true or the false // successor of the original branch instruction. if (Opc == Instruction::And) Br1->setSuccessor(0, TmpBB); else Br1->setSuccessor(1, TmpBB); // Fill in the new basic block. auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); if (auto *I = dyn_cast(Cond2)) { I->removeFromParent(); I->insertBefore(Br2); } // Update PHI nodes in both successors. The original BB needs to be // replaced in one succesor's PHI nodes, because the branch comes now from // the newly generated BB (NewBB). In the other successor we need to add one // incoming edge to the PHI nodes, because both branch instructions target // now the same successor. Depending on the original branch condition // (and/or) we have to swap the successors (TrueDest, FalseDest), so that // we perfrom the correct update for the PHI nodes. // This doesn't change the successor order of the just created branch // instruction (or any other instruction). if (Opc == Instruction::Or) std::swap(TBB, FBB); // Replace the old BB with the new BB. for (auto &I : *TBB) { PHINode *PN = dyn_cast(&I); if (!PN) break; int i; while ((i = PN->getBasicBlockIndex(&BB)) >= 0) PN->setIncomingBlock(i, TmpBB); } // Add another incoming edge form the new BB. for (auto &I : *FBB) { PHINode *PN = dyn_cast(&I); if (!PN) break; auto *Val = PN->getIncomingValueForBlock(&BB); PN->addIncoming(Val, TmpBB); } // Update the branch weights (from SelectionDAGBuilder:: // FindMergedConditions). if (Opc == Instruction::Or) { // Codegen X | Y as: // BB1: // jmp_if_X TBB // jmp TmpBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // We have flexibility in setting Prob for BB1 and Prob for NewBB. // The requirement is that // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) // = TrueProb for orignal BB. // Assuming the orignal weights are A and B, one choice is to set BB1's // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice // assumes that // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. // Another choice is to assume TrueProb for BB1 equals to TrueProb for // TmpBB, but the math is more complicated. uint64_t TrueWeight, FalseWeight; if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { uint64_t NewTrueWeight = TrueWeight; uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); NewTrueWeight = TrueWeight; NewFalseWeight = 2 * FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); } } else { // Codegen X & Y as: // BB1: // jmp_if_X TmpBB // jmp FBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // This requires creation of TmpBB after CurBB. // We have flexibility in setting Prob for BB1 and Prob for TmpBB. // The requirement is that // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) // = FalseProb for orignal BB. // Assuming the orignal weights are A and B, one choice is to set BB1's // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice // assumes that // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. uint64_t TrueWeight, FalseWeight; if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; uint64_t NewFalseWeight = FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); NewTrueWeight = 2 * TrueWeight; NewFalseWeight = FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); } } // Request DOM Tree update. // Note: No point in getting fancy here, since the DT info is never // available to CodeGenPrepare and the existing update code is broken // anyways. ModifiedDT = true; MadeChange = true; DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); TmpBB->dump()); } return MadeChange; }