//===-- llvm-bcanalyzer.cpp - Bitcode Analyzer --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tool may be invoked in the following manner: // llvm-bcanalyzer [options] - Read LLVM bitcode from stdin // llvm-bcanalyzer [options] x.bc - Read LLVM bitcode from the x.bc file // // Options: // --help - Output information about command line switches // --dump - Dump low-level bitcode structure in readable format // // This tool provides analytical information about a bitcode file. It is // intended as an aid to developers of bitcode reading and writing software. It // produces on std::out a summary of the bitcode file that shows various // statistics about the contents of the file. By default this information is // detailed and contains information about individual bitcode blocks and the // functions in the module. // The tool is also able to print a bitcode file in a straight forward text // format that shows the containment and relationships of the information in // the bitcode file (-dump option). // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Verifier.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/System/Signals.h" #include #include #include #include using namespace llvm; static cl::opt InputFilename(cl::Positional, cl::desc(""), cl::init("-")); static cl::opt OutputFilename("-o", cl::init("-"), cl::desc("")); static cl::opt Dump("dump", cl::desc("Dump low level bitcode trace")); //===----------------------------------------------------------------------===// // Bitcode specific analysis. //===----------------------------------------------------------------------===// static cl::opt NoHistogram("disable-histogram", cl::desc("Do not print per-code histogram")); static cl::opt NonSymbolic("non-symbolic", cl::desc("Emit numberic info in dump even if" " symbolic info is available")); /// CurStreamType - If we can sniff the flavor of this stream, we can produce /// better dump info. static enum { UnknownBitstream, LLVMIRBitstream } CurStreamType; /// GetBlockName - Return a symbolic block name if known, otherwise return /// null. static const char *GetBlockName(unsigned BlockID) { // Standard blocks for all bitcode files. if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) { if (BlockID == bitc::BLOCKINFO_BLOCK_ID) return "BLOCKINFO_BLOCK"; return 0; } if (CurStreamType != LLVMIRBitstream) return 0; switch (BlockID) { default: return 0; case bitc::MODULE_BLOCK_ID: return "MODULE_BLOCK"; case bitc::PARAMATTR_BLOCK_ID: return "PARAMATTR_BLOCK"; case bitc::TYPE_BLOCK_ID: return "TYPE_BLOCK"; case bitc::CONSTANTS_BLOCK_ID: return "CONSTANTS_BLOCK"; case bitc::FUNCTION_BLOCK_ID: return "FUNCTION_BLOCK"; case bitc::TYPE_SYMTAB_BLOCK_ID: return "TYPE_SYMTAB"; case bitc::VALUE_SYMTAB_BLOCK_ID: return "VALUE_SYMTAB"; } } /// GetCodeName - Return a symbolic code name if known, otherwise return /// null. static const char *GetCodeName(unsigned CodeID, unsigned BlockID) { // Standard blocks for all bitcode files. if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) { if (BlockID == bitc::BLOCKINFO_BLOCK_ID) { switch (CodeID) { default: return 0; case bitc::MODULE_CODE_VERSION: return "VERSION"; } } return 0; } if (CurStreamType != LLVMIRBitstream) return 0; switch (BlockID) { default: return 0; case bitc::MODULE_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::MODULE_CODE_VERSION: return "VERSION"; case bitc::MODULE_CODE_TRIPLE: return "TRIPLE"; case bitc::MODULE_CODE_DATALAYOUT: return "DATALAYOUT"; case bitc::MODULE_CODE_ASM: return "ASM"; case bitc::MODULE_CODE_SECTIONNAME: return "SECTIONNAME"; case bitc::MODULE_CODE_DEPLIB: return "DEPLIB"; case bitc::MODULE_CODE_GLOBALVAR: return "GLOBALVAR"; case bitc::MODULE_CODE_FUNCTION: return "FUNCTION"; case bitc::MODULE_CODE_ALIAS: return "ALIAS"; case bitc::MODULE_CODE_PURGEVALS: return "PURGEVALS"; case bitc::MODULE_CODE_GCNAME: return "GCNAME"; } case bitc::PARAMATTR_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::PARAMATTR_CODE_ENTRY: return "ENTRY"; } case bitc::TYPE_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::TYPE_CODE_NUMENTRY: return "NUMENTRY"; case bitc::TYPE_CODE_VOID: return "VOID"; case bitc::TYPE_CODE_FLOAT: return "FLOAT"; case bitc::TYPE_CODE_DOUBLE: return "DOUBLE"; case bitc::TYPE_CODE_LABEL: return "LABEL"; case bitc::TYPE_CODE_OPAQUE: return "OPAQUE"; case bitc::TYPE_CODE_INTEGER: return "INTEGER"; case bitc::TYPE_CODE_POINTER: return "POINTER"; case bitc::TYPE_CODE_FUNCTION: return "FUNCTION"; case bitc::TYPE_CODE_STRUCT: return "STRUCT"; case bitc::TYPE_CODE_ARRAY: return "ARRAY"; case bitc::TYPE_CODE_VECTOR: return "VECTOR"; case bitc::TYPE_CODE_X86_FP80: return "X86_FP80"; case bitc::TYPE_CODE_FP128: return "FP128"; case bitc::TYPE_CODE_PPC_FP128: return "PPC_FP128"; } case bitc::CONSTANTS_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::CST_CODE_SETTYPE: return "SETTYPE"; case bitc::CST_CODE_NULL: return "NULL"; case bitc::CST_CODE_UNDEF: return "UNDEF"; case bitc::CST_CODE_INTEGER: return "INTEGER"; case bitc::CST_CODE_WIDE_INTEGER: return "WIDE_INTEGER"; case bitc::CST_CODE_FLOAT: return "FLOAT"; case bitc::CST_CODE_AGGREGATE: return "AGGREGATE"; case bitc::CST_CODE_STRING: return "STRING"; case bitc::CST_CODE_CSTRING: return "CSTRING"; case bitc::CST_CODE_CE_BINOP: return "CE_BINOP"; case bitc::CST_CODE_CE_CAST: return "CE_CAST"; case bitc::CST_CODE_CE_GEP: return "CE_GEP"; case bitc::CST_CODE_CE_SELECT: return "CE_SELECT"; case bitc::CST_CODE_CE_EXTRACTELT: return "CE_EXTRACTELT"; case bitc::CST_CODE_CE_INSERTELT: return "CE_INSERTELT"; case bitc::CST_CODE_CE_SHUFFLEVEC: return "CE_SHUFFLEVEC"; case bitc::CST_CODE_CE_CMP: return "CE_CMP"; case bitc::CST_CODE_INLINEASM: return "INLINEASM"; } case bitc::FUNCTION_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::FUNC_CODE_DECLAREBLOCKS: return "DECLAREBLOCKS"; case bitc::FUNC_CODE_INST_BINOP: return "INST_BINOP"; case bitc::FUNC_CODE_INST_CAST: return "INST_CAST"; case bitc::FUNC_CODE_INST_GEP: return "INST_GEP"; case bitc::FUNC_CODE_INST_SELECT: return "INST_SELECT"; case bitc::FUNC_CODE_INST_EXTRACTELT: return "INST_EXTRACTELT"; case bitc::FUNC_CODE_INST_INSERTELT: return "INST_INSERTELT"; case bitc::FUNC_CODE_INST_SHUFFLEVEC: return "INST_SHUFFLEVEC"; case bitc::FUNC_CODE_INST_CMP: return "INST_CMP"; case bitc::FUNC_CODE_INST_RET: return "INST_RET"; case bitc::FUNC_CODE_INST_BR: return "INST_BR"; case bitc::FUNC_CODE_INST_SWITCH: return "INST_SWITCH"; case bitc::FUNC_CODE_INST_INVOKE: return "INST_INVOKE"; case bitc::FUNC_CODE_INST_UNWIND: return "INST_UNWIND"; case bitc::FUNC_CODE_INST_UNREACHABLE: return "INST_UNREACHABLE"; case bitc::FUNC_CODE_INST_PHI: return "INST_PHI"; case bitc::FUNC_CODE_INST_MALLOC: return "INST_MALLOC"; case bitc::FUNC_CODE_INST_FREE: return "INST_FREE"; case bitc::FUNC_CODE_INST_ALLOCA: return "INST_ALLOCA"; case bitc::FUNC_CODE_INST_LOAD: return "INST_LOAD"; case bitc::FUNC_CODE_INST_STORE: return "INST_STORE"; case bitc::FUNC_CODE_INST_CALL: return "INST_CALL"; case bitc::FUNC_CODE_INST_VAARG: return "INST_VAARG"; case bitc::FUNC_CODE_INST_STORE2: return "INST_STORE2"; case bitc::FUNC_CODE_INST_GETRESULT: return "INST_GETRESULT"; case bitc::FUNC_CODE_INST_EXTRACTVAL: return "INST_EXTRACTVAL"; case bitc::FUNC_CODE_INST_INSERTVAL: return "INST_INSERTVAL"; case bitc::FUNC_CODE_INST_CMP2: return "INST_CMP2"; case bitc::FUNC_CODE_INST_VSELECT: return "INST_VSELECT"; } case bitc::TYPE_SYMTAB_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::TST_CODE_ENTRY: return "ENTRY"; } case bitc::VALUE_SYMTAB_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::VST_CODE_ENTRY: return "ENTRY"; case bitc::VST_CODE_BBENTRY: return "BBENTRY"; } } } struct PerBlockIDStats { /// NumInstances - This the number of times this block ID has been seen. unsigned NumInstances; /// NumBits - The total size in bits of all of these blocks. uint64_t NumBits; /// NumSubBlocks - The total number of blocks these blocks contain. unsigned NumSubBlocks; /// NumAbbrevs - The total number of abbreviations. unsigned NumAbbrevs; /// NumRecords - The total number of records these blocks contain, and the /// number that are abbreviated. unsigned NumRecords, NumAbbreviatedRecords; /// CodeFreq - Keep track of the number of times we see each code. std::vector CodeFreq; PerBlockIDStats() : NumInstances(0), NumBits(0), NumSubBlocks(0), NumAbbrevs(0), NumRecords(0), NumAbbreviatedRecords(0) {} }; static std::map BlockIDStats; /// Error - All bitcode analysis errors go through this function, making this a /// good place to breakpoint if debugging. static bool Error(const std::string &Err) { std::cerr << Err << "\n"; return true; } /// ParseBlock - Read a block, updating statistics, etc. static bool ParseBlock(BitstreamReader &Stream, unsigned IndentLevel) { std::string Indent(IndentLevel*2, ' '); uint64_t BlockBitStart = Stream.GetCurrentBitNo(); unsigned BlockID = Stream.ReadSubBlockID(); // Get the statistics for this BlockID. PerBlockIDStats &BlockStats = BlockIDStats[BlockID]; BlockStats.NumInstances++; // BLOCKINFO is a special part of the stream. if (BlockID == bitc::BLOCKINFO_BLOCK_ID) { if (Dump) std::cerr << Indent << "\n"; if (Stream.ReadBlockInfoBlock()) return Error("Malformed BlockInfoBlock"); uint64_t BlockBitEnd = Stream.GetCurrentBitNo(); BlockStats.NumBits += BlockBitEnd-BlockBitStart; return false; } unsigned NumWords = 0; if (Stream.EnterSubBlock(BlockID, &NumWords)) return Error("Malformed block record"); const char *BlockName = 0; if (Dump) { std::cerr << Indent << "<"; if ((BlockName = GetBlockName(BlockID))) std::cerr << BlockName; else std::cerr << "UnknownBlock" << BlockID; if (NonSymbolic && BlockName) std::cerr << " BlockID=" << BlockID; std::cerr << " NumWords=" << NumWords << " BlockCodeSize=" << Stream.GetAbbrevIDWidth() << ">\n"; } SmallVector Record; // Read all the records for this block. while (1) { if (Stream.AtEndOfStream()) return Error("Premature end of bitstream"); // Read the code for this record. unsigned AbbrevID = Stream.ReadCode(); switch (AbbrevID) { case bitc::END_BLOCK: { if (Stream.ReadBlockEnd()) return Error("Error at end of block"); uint64_t BlockBitEnd = Stream.GetCurrentBitNo(); BlockStats.NumBits += BlockBitEnd-BlockBitStart; if (Dump) { std::cerr << Indent << "\n"; else std::cerr << "UnknownBlock" << BlockID << ">\n"; } return false; } case bitc::ENTER_SUBBLOCK: { uint64_t SubBlockBitStart = Stream.GetCurrentBitNo(); if (ParseBlock(Stream, IndentLevel+1)) return true; ++BlockStats.NumSubBlocks; uint64_t SubBlockBitEnd = Stream.GetCurrentBitNo(); // Don't include subblock sizes in the size of this block. BlockBitStart += SubBlockBitEnd-SubBlockBitStart; break; } case bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); ++BlockStats.NumAbbrevs; break; default: ++BlockStats.NumRecords; if (AbbrevID != bitc::UNABBREV_RECORD) ++BlockStats.NumAbbreviatedRecords; Record.clear(); unsigned Code = Stream.ReadRecord(AbbrevID, Record); // Increment the # occurrences of this code. if (BlockStats.CodeFreq.size() <= Code) BlockStats.CodeFreq.resize(Code+1); BlockStats.CodeFreq[Code]++; if (Dump) { std::cerr << Indent << " <"; if (const char *CodeName = GetCodeName(Code, BlockID)) std::cerr << CodeName; else std::cerr << "UnknownCode" << Code; if (NonSymbolic && GetCodeName(Code, BlockID)) std::cerr << " codeid=" << Code; if (AbbrevID != bitc::UNABBREV_RECORD) std::cerr << " abbrevid=" << AbbrevID; for (unsigned i = 0, e = Record.size(); i != e; ++i) std::cerr << " op" << i << "=" << (int64_t)Record[i]; std::cerr << "/>\n"; } break; } } } static void PrintSize(double Bits) { std::cerr << Bits << "b/" << Bits/8 << "B/" << Bits/32 << "W"; } /// AnalyzeBitcode - Analyze the bitcode file specified by InputFilename. static int AnalyzeBitcode() { // Read the input file. MemoryBuffer *Buffer = MemoryBuffer::getFileOrSTDIN(InputFilename.c_str()); if (Buffer == 0) return Error("Error reading '" + InputFilename + "'."); if (Buffer->getBufferSize() & 3) return Error("Bitcode stream should be a multiple of 4 bytes in length"); unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); BitstreamReader Stream(BufPtr, BufPtr+Buffer->getBufferSize()); // Read the stream signature. char Signature[6]; Signature[0] = Stream.Read(8); Signature[1] = Stream.Read(8); Signature[2] = Stream.Read(4); Signature[3] = Stream.Read(4); Signature[4] = Stream.Read(4); Signature[5] = Stream.Read(4); // Autodetect the file contents, if it is one we know. CurStreamType = UnknownBitstream; if (Signature[0] == 'B' && Signature[1] == 'C' && Signature[2] == 0x0 && Signature[3] == 0xC && Signature[4] == 0xE && Signature[5] == 0xD) CurStreamType = LLVMIRBitstream; unsigned NumTopBlocks = 0; // Parse the top-level structure. We only allow blocks at the top-level. while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != bitc::ENTER_SUBBLOCK) return Error("Invalid record at top-level"); if (ParseBlock(Stream, 0)) return true; ++NumTopBlocks; } if (Dump) std::cerr << "\n\n"; uint64_t BufferSizeBits = Buffer->getBufferSize()*8; // Print a summary of the read file. std::cerr << "Summary of " << InputFilename << ":\n"; std::cerr << " Total size: "; PrintSize(BufferSizeBits); std::cerr << "\n"; std::cerr << " Stream type: "; switch (CurStreamType) { default: assert(0 && "Unknown bitstream type"); case UnknownBitstream: std::cerr << "unknown\n"; break; case LLVMIRBitstream: std::cerr << "LLVM IR\n"; break; } std::cerr << " # Toplevel Blocks: " << NumTopBlocks << "\n"; std::cerr << "\n"; // Emit per-block stats. std::cerr << "Per-block Summary:\n"; for (std::map::iterator I = BlockIDStats.begin(), E = BlockIDStats.end(); I != E; ++I) { std::cerr << " Block ID #" << I->first; if (const char *BlockName = GetBlockName(I->first)) std::cerr << " (" << BlockName << ")"; std::cerr << ":\n"; const PerBlockIDStats &Stats = I->second; std::cerr << " Num Instances: " << Stats.NumInstances << "\n"; std::cerr << " Total Size: "; PrintSize(Stats.NumBits); std::cerr << "\n"; std::cerr << " % of file: " << Stats.NumBits/(double)BufferSizeBits*100 << "\n"; if (Stats.NumInstances > 1) { std::cerr << " Average Size: "; PrintSize(Stats.NumBits/(double)Stats.NumInstances); std::cerr << "\n"; std::cerr << " Tot/Avg SubBlocks: " << Stats.NumSubBlocks << "/" << Stats.NumSubBlocks/(double)Stats.NumInstances << "\n"; std::cerr << " Tot/Avg Abbrevs: " << Stats.NumAbbrevs << "/" << Stats.NumAbbrevs/(double)Stats.NumInstances << "\n"; std::cerr << " Tot/Avg Records: " << Stats.NumRecords << "/" << Stats.NumRecords/(double)Stats.NumInstances << "\n"; } else { std::cerr << " Num SubBlocks: " << Stats.NumSubBlocks << "\n"; std::cerr << " Num Abbrevs: " << Stats.NumAbbrevs << "\n"; std::cerr << " Num Records: " << Stats.NumRecords << "\n"; } if (Stats.NumRecords) std::cerr << " % Abbrev Recs: " << (Stats.NumAbbreviatedRecords/ (double)Stats.NumRecords)*100 << "\n"; std::cerr << "\n"; // Print a histogram of the codes we see. if (!NoHistogram && !Stats.CodeFreq.empty()) { std::vector > FreqPairs; // for (unsigned i = 0, e = Stats.CodeFreq.size(); i != e; ++i) if (unsigned Freq = Stats.CodeFreq[i]) FreqPairs.push_back(std::make_pair(Freq, i)); std::stable_sort(FreqPairs.begin(), FreqPairs.end()); std::reverse(FreqPairs.begin(), FreqPairs.end()); std::cerr << "\tCode Histogram:\n"; for (unsigned i = 0, e = FreqPairs.size(); i != e; ++i) { std::cerr << "\t\t" << FreqPairs[i].first << "\t"; if (const char *CodeName = GetCodeName(FreqPairs[i].second, I->first)) std::cerr << CodeName << "\n"; else std::cerr << "UnknownCode" << FreqPairs[i].second << "\n"; } std::cerr << "\n"; } } return 0; } int main(int argc, char **argv) { // Print a stack trace if we signal out. sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. cl::ParseCommandLineOptions(argc, argv, "llvm-bcanalyzer file analyzer\n"); return AnalyzeBitcode(); }