//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This family of functions perform manipulations on basic blocks, and // instructions contained within basic blocks. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Constant.h" #include "llvm/Type.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Dominators.h" #include using namespace llvm; /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, /// if possible. The return value indicates success or failure. bool llvm::MergeBlockIntoPredecessor(BasicBlock* BB, Pass* P) { pred_iterator PI(pred_begin(BB)), PE(pred_end(BB)); // Can't merge the entry block. if (pred_begin(BB) == pred_end(BB)) return false; BasicBlock *PredBB = *PI++; for (; PI != PE; ++PI) // Search all predecessors, see if they are all same if (*PI != PredBB) { PredBB = 0; // There are multiple different predecessors... break; } // Can't merge if there are multiple predecessors. if (!PredBB) return false; // Don't break self-loops. if (PredBB == BB) return false; // Don't break invokes. if (isa(PredBB->getTerminator())) return false; succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); BasicBlock* OnlySucc = BB; for (; SI != SE; ++SI) if (*SI != OnlySucc) { OnlySucc = 0; // There are multiple distinct successors! break; } // Can't merge if there are multiple successors. if (!OnlySucc) return false; // Begin by getting rid of unneeded PHIs. while (PHINode *PN = dyn_cast(&BB->front())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); BB->getInstList().pop_front(); // Delete the phi node... } // Delete the unconditional branch from the predecessor... PredBB->getInstList().pop_back(); // Move all definitions in the successor to the predecessor... PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(PredBB); // Inherit predecessors name if it exists. if (!PredBB->hasName()) PredBB->takeName(BB); // Finally, erase the old block and update dominator info. if (P) { if (DominatorTree* DT = P->getAnalysisToUpdate()) { DomTreeNode* DTN = DT->getNode(BB); DomTreeNode* PredDTN = DT->getNode(PredBB); if (DTN) { SmallPtrSet Children(DTN->begin(), DTN->end()); for (SmallPtrSet::iterator DI = Children.begin(), DE = Children.end(); DI != DE; ++DI) DT->changeImmediateDominator(*DI, PredDTN); DT->eraseNode(BB); } } } BB->eraseFromParent(); return true; } /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) /// with a value, then remove and delete the original instruction. /// void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Value *V) { Instruction &I = *BI; // Replaces all of the uses of the instruction with uses of the value I.replaceAllUsesWith(V); // Make sure to propagate a name if there is one already. if (I.hasName() && !V->hasName()) V->takeName(&I); // Delete the unnecessary instruction now... BI = BIL.erase(BI); } /// ReplaceInstWithInst - Replace the instruction specified by BI with the /// instruction specified by I. The original instruction is deleted and BI is /// updated to point to the new instruction. /// void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I) { assert(I->getParent() == 0 && "ReplaceInstWithInst: Instruction already inserted into basic block!"); // Insert the new instruction into the basic block... BasicBlock::iterator New = BIL.insert(BI, I); // Replace all uses of the old instruction, and delete it. ReplaceInstWithValue(BIL, BI, I); // Move BI back to point to the newly inserted instruction BI = New; } /// ReplaceInstWithInst - Replace the instruction specified by From with the /// instruction specified by To. /// void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { BasicBlock::iterator BI(From); ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); } /// RemoveSuccessor - Change the specified terminator instruction such that its /// successor SuccNum no longer exists. Because this reduces the outgoing /// degree of the current basic block, the actual terminator instruction itself /// may have to be changed. In the case where the last successor of the block /// is deleted, a return instruction is inserted in its place which can cause a /// surprising change in program behavior if it is not expected. /// void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) { assert(SuccNum < TI->getNumSuccessors() && "Trying to remove a nonexistant successor!"); // If our old successor block contains any PHI nodes, remove the entry in the // PHI nodes that comes from this branch... // BasicBlock *BB = TI->getParent(); TI->getSuccessor(SuccNum)->removePredecessor(BB); TerminatorInst *NewTI = 0; switch (TI->getOpcode()) { case Instruction::Br: // If this is a conditional branch... convert to unconditional branch. if (TI->getNumSuccessors() == 2) { cast(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum)); } else { // Otherwise convert to a return instruction... Value *RetVal = 0; // Create a value to return... if the function doesn't return null... if (BB->getParent()->getReturnType() != Type::VoidTy) RetVal = Constant::getNullValue(BB->getParent()->getReturnType()); // Create the return... NewTI = ReturnInst::Create(RetVal); } break; case Instruction::Invoke: // Should convert to call case Instruction::Switch: // Should remove entry default: case Instruction::Ret: // Cannot happen, has no successors! assert(0 && "Unhandled terminator instruction type in RemoveSuccessor!"); abort(); } if (NewTI) // If it's a different instruction, replace. ReplaceInstWithInst(TI, NewTI); } /// SplitEdge - Split the edge connecting specified block. Pass P must /// not be NULL. BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { TerminatorInst *LatchTerm = BB->getTerminator(); unsigned SuccNum = 0; for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) { assert(i != e && "Didn't find edge?"); if (LatchTerm->getSuccessor(i) == Succ) { SuccNum = i; break; } } // If this is a critical edge, let SplitCriticalEdge do it. if (SplitCriticalEdge(BB->getTerminator(), SuccNum, P)) return LatchTerm->getSuccessor(SuccNum); // If the edge isn't critical, then BB has a single successor or Succ has a // single pred. Split the block. BasicBlock::iterator SplitPoint; if (BasicBlock *SP = Succ->getSinglePredecessor()) { // If the successor only has a single pred, split the top of the successor // block. assert(SP == BB && "CFG broken"); return SplitBlock(Succ, Succ->begin(), P); } else { // Otherwise, if BB has a single successor, split it at the bottom of the // block. assert(BB->getTerminator()->getNumSuccessors() == 1 && "Should have a single succ!"); return SplitBlock(BB, BB->getTerminator(), P); } } /// SplitBlock - Split the specified block at the specified instruction - every /// thing before SplitPt stays in Old and everything starting with SplitPt moves /// to a new block. The two blocks are joined by an unconditional branch and /// the loop info is updated. /// BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { LoopInfo &LI = P->getAnalysis(); BasicBlock::iterator SplitIt = SplitPt; while (isa(SplitIt)) ++SplitIt; BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); // The new block lives in whichever loop the old one did. if (Loop *L = LI.getLoopFor(Old)) L->addBasicBlockToLoop(New, LI.getBase()); if (DominatorTree *DT = P->getAnalysisToUpdate()) { // Old dominates New. New node domiantes all other nodes dominated by Old. DomTreeNode *OldNode = DT->getNode(Old); std::vector Children; for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); I != E; ++I) Children.push_back(*I); DomTreeNode *NewNode = DT->addNewBlock(New,Old); for (std::vector::iterator I = Children.begin(), E = Children.end(); I != E; ++I) DT->changeImmediateDominator(*I, NewNode); } if (DominanceFrontier *DF = P->getAnalysisToUpdate()) DF->splitBlock(Old); return New; } /// SplitBlockPredecessors - This method transforms BB by introducing a new /// basic block into the function, and moving some of the predecessors of BB to /// be predecessors of the new block. The new predecessors are indicated by the /// Preds array, which has NumPreds elements in it. The new block is given a /// suffix of 'Suffix'. /// /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and /// DominanceFrontier, but no other analyses. BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, BasicBlock *const *Preds, unsigned NumPreds, const char *Suffix, Pass *P) { // Create new basic block, insert right before the original block. BasicBlock *NewBB = BasicBlock::Create(BB->getName()+Suffix, BB->getParent(), BB); // The new block unconditionally branches to the old block. BranchInst *BI = BranchInst::Create(BB, NewBB); // Move the edges from Preds to point to NewBB instead of BB. for (unsigned i = 0; i != NumPreds; ++i) Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); // Update dominator tree and dominator frontier if available. DominatorTree *DT = P ? P->getAnalysisToUpdate() : 0; if (DT) DT->splitBlock(NewBB); if (DominanceFrontier *DF = P ? P->getAnalysisToUpdate():0) DF->splitBlock(NewBB); AliasAnalysis *AA = P ? P->getAnalysisToUpdate() : 0; // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI // node becomes an incoming value for BB's phi node. However, if the Preds // list is empty, we need to insert dummy entries into the PHI nodes in BB to // account for the newly created predecessor. if (NumPreds == 0) { // Insert dummy values as the incoming value. for (BasicBlock::iterator I = BB->begin(); isa(I); ++I) cast(I)->addIncoming(UndefValue::get(I->getType()), NewBB); return NewBB; } // Otherwise, create a new PHI node in NewBB for each PHI node in BB. for (BasicBlock::iterator I = BB->begin(); isa(I); ) { PHINode *PN = cast(I++); // Check to see if all of the values coming in are the same. If so, we // don't need to create a new PHI node. Value *InVal = PN->getIncomingValueForBlock(Preds[0]); for (unsigned i = 1; i != NumPreds; ++i) if (InVal != PN->getIncomingValueForBlock(Preds[i])) { InVal = 0; break; } if (InVal) { // If all incoming values for the new PHI would be the same, just don't // make a new PHI. Instead, just remove the incoming values from the old // PHI. for (unsigned i = 0; i != NumPreds; ++i) PN->removeIncomingValue(Preds[i], false); } else { // If the values coming into the block are not the same, we need a PHI. // Create the new PHI node, insert it into NewBB at the end of the block PHINode *NewPHI = PHINode::Create(PN->getType(), PN->getName()+".ph", BI); if (AA) AA->copyValue(PN, NewPHI); // Move all of the PHI values for 'Preds' to the new PHI. for (unsigned i = 0; i != NumPreds; ++i) { Value *V = PN->removeIncomingValue(Preds[i], false); NewPHI->addIncoming(V, Preds[i]); } InVal = NewPHI; } // Add an incoming value to the PHI node in the loop for the preheader // edge. PN->addIncoming(InVal, NewBB); // Check to see if we can eliminate this phi node. if (Value *V = PN->hasConstantValue(DT != 0)) { Instruction *I = dyn_cast(V); if (!I || DT == 0 || DT->dominates(I, PN)) { PN->replaceAllUsesWith(V); if (AA) AA->deleteValue(PN); PN->eraseFromParent(); } } } return NewBB; }