//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an implementation of Andersen's interprocedural alias // analysis // // In pointer analysis terms, this is a subset-based, flow-insensitive, // field-sensitive, and context-insensitive algorithm pointer algorithm. // // This algorithm is implemented as three stages: // 1. Object identification. // 2. Inclusion constraint identification. // 3. Offline constraint graph optimization // 4. Inclusion constraint solving. // // The object identification stage identifies all of the memory objects in the // program, which includes globals, heap allocated objects, and stack allocated // objects. // // The inclusion constraint identification stage finds all inclusion constraints // in the program by scanning the program, looking for pointer assignments and // other statements that effect the points-to graph. For a statement like "A = // B", this statement is processed to indicate that A can point to anything that // B can point to. Constraints can handle copies, loads, and stores, and // address taking. // // The offline constraint graph optimization portion includes offline variable // substitution algorithms intended to compute pointer and location // equivalences. Pointer equivalences are those pointers that will have the // same points-to sets, and location equivalences are those variables that // always appear together in points-to sets. It also includes an offline // cycle detection algorithm that allows cycles to be collapsed sooner // during solving. // // The inclusion constraint solving phase iteratively propagates the inclusion // constraints until a fixed point is reached. This is an O(N^3) algorithm. // // Function constraints are handled as if they were structs with X fields. // Thus, an access to argument X of function Y is an access to node index // getNode(Y) + X. This representation allows handling of indirect calls // without any issues. To wit, an indirect call Y(a,b) is equivalent to // *(Y + 1) = a, *(Y + 2) = b. // The return node for a function is always located at getNode(F) + // CallReturnPos. The arguments start at getNode(F) + CallArgPos. // // Future Improvements: // Use of BDD's. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "anders-aa" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/DenseSet.h" #include #include #include #include #include #include #include // Determining the actual set of nodes the universal set can consist of is very // expensive because it means propagating around very large sets. We rely on // other analysis being able to determine which nodes can never be pointed to in // order to disambiguate further than "points-to anything". #define FULL_UNIVERSAL 0 using namespace llvm; STATISTIC(NumIters , "Number of iterations to reach convergence"); STATISTIC(NumConstraints, "Number of constraints"); STATISTIC(NumNodes , "Number of nodes"); STATISTIC(NumUnified , "Number of variables unified"); STATISTIC(NumErased , "Number of redundant constraints erased"); static const unsigned SelfRep = (unsigned)-1; static const unsigned Unvisited = (unsigned)-1; // Position of the function return node relative to the function node. static const unsigned CallReturnPos = 1; // Position of the function call node relative to the function node. static const unsigned CallFirstArgPos = 2; namespace { struct BitmapKeyInfo { static inline SparseBitVector<> *getEmptyKey() { return reinterpret_cast *>(-1); } static inline SparseBitVector<> *getTombstoneKey() { return reinterpret_cast *>(-2); } static unsigned getHashValue(const SparseBitVector<> *bitmap) { return bitmap->getHashValue(); } static bool isEqual(const SparseBitVector<> *LHS, const SparseBitVector<> *RHS) { if (LHS == RHS) return true; else if (LHS == getEmptyKey() || RHS == getEmptyKey() || LHS == getTombstoneKey() || RHS == getTombstoneKey()) return false; return *LHS == *RHS; } static bool isPod() { return true; } }; class VISIBILITY_HIDDEN Andersens : public ModulePass, public AliasAnalysis, private InstVisitor { struct Node; /// Constraint - Objects of this structure are used to represent the various /// constraints identified by the algorithm. The constraints are 'copy', /// for statements like "A = B", 'load' for statements like "A = *B", /// 'store' for statements like "*A = B", and AddressOf for statements like /// A = alloca; The Offset is applied as *(A + K) = B for stores, /// A = *(B + K) for loads, and A = B + K for copies. It is /// illegal on addressof constraints (because it is statically /// resolvable to A = &C where C = B + K) struct Constraint { enum ConstraintType { Copy, Load, Store, AddressOf } Type; unsigned Dest; unsigned Src; unsigned Offset; Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0) : Type(Ty), Dest(D), Src(S), Offset(O) { assert((Offset == 0 || Ty != AddressOf) && "Offset is illegal on addressof constraints"); } bool operator==(const Constraint &RHS) const { return RHS.Type == Type && RHS.Dest == Dest && RHS.Src == Src && RHS.Offset == Offset; } bool operator!=(const Constraint &RHS) const { return !(*this == RHS); } bool operator<(const Constraint &RHS) const { if (RHS.Type != Type) return RHS.Type < Type; else if (RHS.Dest != Dest) return RHS.Dest < Dest; else if (RHS.Src != Src) return RHS.Src < Src; return RHS.Offset < Offset; } }; // Information DenseSet requires implemented in order to be able to do // it's thing struct PairKeyInfo { static inline std::pair getEmptyKey() { return std::make_pair(~0U, ~0U); } static inline std::pair getTombstoneKey() { return std::make_pair(~0U - 1, ~0U - 1); } static unsigned getHashValue(const std::pair &P) { return P.first ^ P.second; } static unsigned isEqual(const std::pair &LHS, const std::pair &RHS) { return LHS == RHS; } }; struct ConstraintKeyInfo { static inline Constraint getEmptyKey() { return Constraint(Constraint::Copy, ~0U, ~0U, ~0U); } static inline Constraint getTombstoneKey() { return Constraint(Constraint::Copy, ~0U - 1, ~0U - 1, ~0U - 1); } static unsigned getHashValue(const Constraint &C) { return C.Src ^ C.Dest ^ C.Type ^ C.Offset; } static bool isEqual(const Constraint &LHS, const Constraint &RHS) { return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset; } }; // Node class - This class is used to represent a node in the constraint // graph. Due to various optimizations, it is not always the case that // there is a mapping from a Node to a Value. In particular, we add // artificial Node's that represent the set of pointed-to variables shared // for each location equivalent Node. struct Node { private: static unsigned Counter; public: Value *Val; SparseBitVector<> *Edges; SparseBitVector<> *PointsTo; SparseBitVector<> *OldPointsTo; std::list Constraints; // Pointer and location equivalence labels unsigned PointerEquivLabel; unsigned LocationEquivLabel; // Predecessor edges, both real and implicit SparseBitVector<> *PredEdges; SparseBitVector<> *ImplicitPredEdges; // Set of nodes that point to us, only use for location equivalence. SparseBitVector<> *PointedToBy; // Number of incoming edges, used during variable substitution to early // free the points-to sets unsigned NumInEdges; // True if our points-to set is in the Set2PEClass map bool StoredInHash; // True if our node has no indirect constraints (complex or otherwise) bool Direct; // True if the node is address taken, *or* it is part of a group of nodes // that must be kept together. This is set to true for functions and // their arg nodes, which must be kept at the same position relative to // their base function node. bool AddressTaken; // Nodes in cycles (or in equivalence classes) are united together using a // standard union-find representation with path compression. NodeRep // gives the index into GraphNodes for the representative Node. unsigned NodeRep; // Modification timestamp. Assigned from Counter. // Used for work list prioritization. unsigned Timestamp; explicit Node(bool direct = true) : Val(0), Edges(0), PointsTo(0), OldPointsTo(0), PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0), ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0), StoredInHash(false), Direct(direct), AddressTaken(false), NodeRep(SelfRep), Timestamp(0) { } Node *setValue(Value *V) { assert(Val == 0 && "Value already set for this node!"); Val = V; return this; } /// getValue - Return the LLVM value corresponding to this node. /// Value *getValue() const { return Val; } /// addPointerTo - Add a pointer to the list of pointees of this node, /// returning true if this caused a new pointer to be added, or false if /// we already knew about the points-to relation. bool addPointerTo(unsigned Node) { return PointsTo->test_and_set(Node); } /// intersects - Return true if the points-to set of this node intersects /// with the points-to set of the specified node. bool intersects(Node *N) const; /// intersectsIgnoring - Return true if the points-to set of this node /// intersects with the points-to set of the specified node on any nodes /// except for the specified node to ignore. bool intersectsIgnoring(Node *N, unsigned) const; // Timestamp a node (used for work list prioritization) void Stamp() { Timestamp = Counter++; } bool isRep() const { return( (int) NodeRep < 0 ); } }; struct WorkListElement { Node* node; unsigned Timestamp; WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {} // Note that we reverse the sense of the comparison because we // actually want to give low timestamps the priority over high, // whereas priority is typically interpreted as a greater value is // given high priority. bool operator<(const WorkListElement& that) const { return( this->Timestamp > that.Timestamp ); } }; // Priority-queue based work list specialized for Nodes. class WorkList { std::priority_queue Q; public: void insert(Node* n) { Q.push( WorkListElement(n, n->Timestamp) ); } // We automatically discard non-representative nodes and nodes // that were in the work list twice (we keep a copy of the // timestamp in the work list so we can detect this situation by // comparing against the node's current timestamp). Node* pop() { while( !Q.empty() ) { WorkListElement x = Q.top(); Q.pop(); Node* INode = x.node; if( INode->isRep() && INode->Timestamp == x.Timestamp ) { return(x.node); } } return(0); } bool empty() { return Q.empty(); } }; /// GraphNodes - This vector is populated as part of the object /// identification stage of the analysis, which populates this vector with a /// node for each memory object and fills in the ValueNodes map. std::vector GraphNodes; /// ValueNodes - This map indicates the Node that a particular Value* is /// represented by. This contains entries for all pointers. DenseMap ValueNodes; /// ObjectNodes - This map contains entries for each memory object in the /// program: globals, alloca's and mallocs. DenseMap ObjectNodes; /// ReturnNodes - This map contains an entry for each function in the /// program that returns a value. DenseMap ReturnNodes; /// VarargNodes - This map contains the entry used to represent all pointers /// passed through the varargs portion of a function call for a particular /// function. An entry is not present in this map for functions that do not /// take variable arguments. DenseMap VarargNodes; /// Constraints - This vector contains a list of all of the constraints /// identified by the program. std::vector Constraints; // Map from graph node to maximum K value that is allowed (for functions, // this is equivalent to the number of arguments + CallFirstArgPos) std::map MaxK; /// This enum defines the GraphNodes indices that correspond to important /// fixed sets. enum { UniversalSet = 0, NullPtr = 1, NullObject = 2, NumberSpecialNodes }; // Stack for Tarjan's std::stack SCCStack; // Map from Graph Node to DFS number std::vector Node2DFS; // Map from Graph Node to Deleted from graph. std::vector Node2Deleted; // Same as Node Maps, but implemented as std::map because it is faster to // clear std::map Tarjan2DFS; std::map Tarjan2Deleted; // Current DFS number unsigned DFSNumber; // Work lists. WorkList w1, w2; WorkList *CurrWL, *NextWL; // "current" and "next" work lists // Offline variable substitution related things // Temporary rep storage, used because we can't collapse SCC's in the // predecessor graph by uniting the variables permanently, we can only do so // for the successor graph. std::vector VSSCCRep; // Mapping from node to whether we have visited it during SCC finding yet. std::vector Node2Visited; // During variable substitution, we create unknowns to represent the unknown // value that is a dereference of a variable. These nodes are known as // "ref" nodes (since they represent the value of dereferences). unsigned FirstRefNode; // During HVN, we create represent address taken nodes as if they were // unknown (since HVN, unlike HU, does not evaluate unions). unsigned FirstAdrNode; // Current pointer equivalence class number unsigned PEClass; // Mapping from points-to sets to equivalence classes typedef DenseMap *, unsigned, BitmapKeyInfo> BitVectorMap; BitVectorMap Set2PEClass; // Mapping from pointer equivalences to the representative node. -1 if we // have no representative node for this pointer equivalence class yet. std::vector PEClass2Node; // Mapping from pointer equivalences to representative node. This includes // pointer equivalent but not location equivalent variables. -1 if we have // no representative node for this pointer equivalence class yet. std::vector PENLEClass2Node; // Union/Find for HCD std::vector HCDSCCRep; // HCD's offline-detected cycles; "Statically DeTected" // -1 if not part of such a cycle, otherwise a representative node. std::vector SDT; // Whether to use SDT (UniteNodes can use it during solving, but not before) bool SDTActive; public: static char ID; Andersens() : ModulePass(&ID) {} bool runOnModule(Module &M) { InitializeAliasAnalysis(this); IdentifyObjects(M); CollectConstraints(M); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa-constraints" DEBUG(PrintConstraints()); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa" SolveConstraints(); DEBUG(PrintPointsToGraph()); // Free the constraints list, as we don't need it to respond to alias // requests. std::vector().swap(Constraints); //These are needed for Print() (-analyze in opt) //ObjectNodes.clear(); //ReturnNodes.clear(); //VarargNodes.clear(); return false; } void releaseMemory() { // FIXME: Until we have transitively required passes working correctly, // this cannot be enabled! Otherwise, using -count-aa with the pass // causes memory to be freed too early. :( #if 0 // The memory objects and ValueNodes data structures at the only ones that // are still live after construction. std::vector().swap(GraphNodes); ValueNodes.clear(); #endif } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AliasAnalysis::getAnalysisUsage(AU); AU.setPreservesAll(); // Does not transform code } //------------------------------------------------ // Implement the AliasAnalysis API // AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size); virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); void getMustAliases(Value *P, std::vector &RetVals); bool pointsToConstantMemory(const Value *P); virtual void deleteValue(Value *V) { ValueNodes.erase(V); getAnalysis().deleteValue(V); } virtual void copyValue(Value *From, Value *To) { ValueNodes[To] = ValueNodes[From]; getAnalysis().copyValue(From, To); } private: /// getNode - Return the node corresponding to the specified pointer scalar. /// unsigned getNode(Value *V) { if (Constant *C = dyn_cast(V)) if (!isa(C)) return getNodeForConstantPointer(C); DenseMap::iterator I = ValueNodes.find(V); if (I == ValueNodes.end()) { #ifndef NDEBUG V->dump(); #endif assert(0 && "Value does not have a node in the points-to graph!"); } return I->second; } /// getObject - Return the node corresponding to the memory object for the /// specified global or allocation instruction. unsigned getObject(Value *V) const { DenseMap::iterator I = ObjectNodes.find(V); assert(I != ObjectNodes.end() && "Value does not have an object in the points-to graph!"); return I->second; } /// getReturnNode - Return the node representing the return value for the /// specified function. unsigned getReturnNode(Function *F) const { DenseMap::iterator I = ReturnNodes.find(F); assert(I != ReturnNodes.end() && "Function does not return a value!"); return I->second; } /// getVarargNode - Return the node representing the variable arguments /// formal for the specified function. unsigned getVarargNode(Function *F) const { DenseMap::iterator I = VarargNodes.find(F); assert(I != VarargNodes.end() && "Function does not take var args!"); return I->second; } /// getNodeValue - Get the node for the specified LLVM value and set the /// value for it to be the specified value. unsigned getNodeValue(Value &V) { unsigned Index = getNode(&V); GraphNodes[Index].setValue(&V); return Index; } unsigned UniteNodes(unsigned First, unsigned Second, bool UnionByRank = true); unsigned FindNode(unsigned Node); unsigned FindNode(unsigned Node) const; void IdentifyObjects(Module &M); void CollectConstraints(Module &M); bool AnalyzeUsesOfFunction(Value *); void CreateConstraintGraph(); void OptimizeConstraints(); unsigned FindEquivalentNode(unsigned, unsigned); void ClumpAddressTaken(); void RewriteConstraints(); void HU(); void HVN(); void HCD(); void Search(unsigned Node); void UnitePointerEquivalences(); void SolveConstraints(); bool QueryNode(unsigned Node); void Condense(unsigned Node); void HUValNum(unsigned Node); void HVNValNum(unsigned Node); unsigned getNodeForConstantPointer(Constant *C); unsigned getNodeForConstantPointerTarget(Constant *C); void AddGlobalInitializerConstraints(unsigned, Constant *C); void AddConstraintsForNonInternalLinkage(Function *F); void AddConstraintsForCall(CallSite CS, Function *F); bool AddConstraintsForExternalCall(CallSite CS, Function *F); void PrintNode(const Node *N) const; void PrintConstraints() const ; void PrintConstraint(const Constraint &) const; void PrintLabels() const; void PrintPointsToGraph() const; //===------------------------------------------------------------------===// // Instruction visitation methods for adding constraints // friend class InstVisitor; void visitReturnInst(ReturnInst &RI); void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); } void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); } void visitCallSite(CallSite CS); void visitAllocationInst(AllocationInst &AI); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitPHINode(PHINode &PN); void visitCastInst(CastInst &CI); void visitICmpInst(ICmpInst &ICI) {} // NOOP! void visitFCmpInst(FCmpInst &ICI) {} // NOOP! void visitSelectInst(SelectInst &SI); void visitVAArg(VAArgInst &I); void visitInstruction(Instruction &I); //===------------------------------------------------------------------===// // Implement Analyize interface // void print(std::ostream &O, const Module* M) const { PrintPointsToGraph(); } }; } char Andersens::ID = 0; static RegisterPass X("anders-aa", "Andersen's Interprocedural Alias Analysis", false, true); static RegisterAnalysisGroup Y(X); // Initialize Timestamp Counter (static). unsigned Andersens::Node::Counter = 0; ModulePass *llvm::createAndersensPass() { return new Andersens(); } //===----------------------------------------------------------------------===// // AliasAnalysis Interface Implementation //===----------------------------------------------------------------------===// AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { Node *N1 = &GraphNodes[FindNode(getNode(const_cast(V1)))]; Node *N2 = &GraphNodes[FindNode(getNode(const_cast(V2)))]; // Check to see if the two pointers are known to not alias. They don't alias // if their points-to sets do not intersect. if (!N1->intersectsIgnoring(N2, NullObject)) return NoAlias; return AliasAnalysis::alias(V1, V1Size, V2, V2Size); } AliasAnalysis::ModRefResult Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) { // The only thing useful that we can contribute for mod/ref information is // when calling external function calls: if we know that memory never escapes // from the program, it cannot be modified by an external call. // // NOTE: This is not really safe, at least not when the entire program is not // available. The deal is that the external function could call back into the // program and modify stuff. We ignore this technical niggle for now. This // is, after all, a "research quality" implementation of Andersen's analysis. if (Function *F = CS.getCalledFunction()) if (F->isDeclaration()) { Node *N1 = &GraphNodes[FindNode(getNode(P))]; if (N1->PointsTo->empty()) return NoModRef; #if FULL_UNIVERSAL if (!UniversalSet->PointsTo->test(FindNode(getNode(P)))) return NoModRef; // Universal set does not contain P #else if (!N1->PointsTo->test(UniversalSet)) return NoModRef; // P doesn't point to the universal set. #endif } return AliasAnalysis::getModRefInfo(CS, P, Size); } AliasAnalysis::ModRefResult Andersens::getModRefInfo(CallSite CS1, CallSite CS2) { return AliasAnalysis::getModRefInfo(CS1,CS2); } /// getMustAlias - We can provide must alias information if we know that a /// pointer can only point to a specific function or the null pointer. /// Unfortunately we cannot determine must-alias information for global /// variables or any other memory memory objects because we do not track whether /// a pointer points to the beginning of an object or a field of it. void Andersens::getMustAliases(Value *P, std::vector &RetVals) { Node *N = &GraphNodes[FindNode(getNode(P))]; if (N->PointsTo->count() == 1) { Node *Pointee = &GraphNodes[N->PointsTo->find_first()]; // If a function is the only object in the points-to set, then it must be // the destination. Note that we can't handle global variables here, // because we don't know if the pointer is actually pointing to a field of // the global or to the beginning of it. if (Value *V = Pointee->getValue()) { if (Function *F = dyn_cast(V)) RetVals.push_back(F); } else { // If the object in the points-to set is the null object, then the null // pointer is a must alias. if (Pointee == &GraphNodes[NullObject]) RetVals.push_back(Constant::getNullValue(P->getType())); } } AliasAnalysis::getMustAliases(P, RetVals); } /// pointsToConstantMemory - If we can determine that this pointer only points /// to constant memory, return true. In practice, this means that if the /// pointer can only point to constant globals, functions, or the null pointer, /// return true. /// bool Andersens::pointsToConstantMemory(const Value *P) { Node *N = &GraphNodes[FindNode(getNode(const_cast(P)))]; unsigned i; for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); bi != N->PointsTo->end(); ++bi) { i = *bi; Node *Pointee = &GraphNodes[i]; if (Value *V = Pointee->getValue()) { if (!isa(V) || (isa(V) && !cast(V)->isConstant())) return AliasAnalysis::pointsToConstantMemory(P); } else { if (i != NullObject) return AliasAnalysis::pointsToConstantMemory(P); } } return true; } //===----------------------------------------------------------------------===// // Object Identification Phase //===----------------------------------------------------------------------===// /// IdentifyObjects - This stage scans the program, adding an entry to the /// GraphNodes list for each memory object in the program (global stack or /// heap), and populates the ValueNodes and ObjectNodes maps for these objects. /// void Andersens::IdentifyObjects(Module &M) { unsigned NumObjects = 0; // Object #0 is always the universal set: the object that we don't know // anything about. assert(NumObjects == UniversalSet && "Something changed!"); ++NumObjects; // Object #1 always represents the null pointer. assert(NumObjects == NullPtr && "Something changed!"); ++NumObjects; // Object #2 always represents the null object (the object pointed to by null) assert(NumObjects == NullObject && "Something changed!"); ++NumObjects; // Add all the globals first. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { ObjectNodes[I] = NumObjects++; ValueNodes[I] = NumObjects++; } // Add nodes for all of the functions and the instructions inside of them. for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { // The function itself is a memory object. unsigned First = NumObjects; ValueNodes[F] = NumObjects++; if (isa(F->getFunctionType()->getReturnType())) ReturnNodes[F] = NumObjects++; if (F->getFunctionType()->isVarArg()) VarargNodes[F] = NumObjects++; // Add nodes for all of the incoming pointer arguments. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { if (isa(I->getType())) ValueNodes[I] = NumObjects++; } MaxK[First] = NumObjects - First; // Scan the function body, creating a memory object for each heap/stack // allocation in the body of the function and a node to represent all // pointer values defined by instructions and used as operands. for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { // If this is an heap or stack allocation, create a node for the memory // object. if (isa(II->getType())) { ValueNodes[&*II] = NumObjects++; if (AllocationInst *AI = dyn_cast(&*II)) ObjectNodes[AI] = NumObjects++; } // Calls to inline asm need to be added as well because the callee isn't // referenced anywhere else. if (CallInst *CI = dyn_cast(&*II)) { Value *Callee = CI->getCalledValue(); if (isa(Callee)) ValueNodes[Callee] = NumObjects++; } } } // Now that we know how many objects to create, make them all now! GraphNodes.resize(NumObjects); NumNodes += NumObjects; } //===----------------------------------------------------------------------===// // Constraint Identification Phase //===----------------------------------------------------------------------===// /// getNodeForConstantPointer - Return the node corresponding to the constant /// pointer itself. unsigned Andersens::getNodeForConstantPointer(Constant *C) { assert(isa(C->getType()) && "Not a constant pointer!"); if (isa(C) || isa(C)) return NullPtr; else if (GlobalValue *GV = dyn_cast(C)) return getNode(GV); else if (ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: return getNodeForConstantPointer(CE->getOperand(0)); case Instruction::IntToPtr: return UniversalSet; case Instruction::BitCast: return getNodeForConstantPointer(CE->getOperand(0)); default: cerr << "Constant Expr not yet handled: " << *CE << "\n"; assert(0); } } else { assert(0 && "Unknown constant pointer!"); } return 0; } /// getNodeForConstantPointerTarget - Return the node POINTED TO by the /// specified constant pointer. unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) { assert(isa(C->getType()) && "Not a constant pointer!"); if (isa(C)) return NullObject; else if (GlobalValue *GV = dyn_cast(C)) return getObject(GV); else if (ConstantExpr *CE = dyn_cast(C)) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: return getNodeForConstantPointerTarget(CE->getOperand(0)); case Instruction::IntToPtr: return UniversalSet; case Instruction::BitCast: return getNodeForConstantPointerTarget(CE->getOperand(0)); default: cerr << "Constant Expr not yet handled: " << *CE << "\n"; assert(0); } } else { assert(0 && "Unknown constant pointer!"); } return 0; } /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory /// object N, which contains values indicated by C. void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex, Constant *C) { if (C->getType()->isSingleValueType()) { if (isa(C->getType())) Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, getNodeForConstantPointer(C))); } else if (C->isNullValue()) { Constraints.push_back(Constraint(Constraint::Copy, NodeIndex, NullObject)); return; } else if (!isa(C)) { // If this is an array or struct, include constraints for each element. assert(isa(C) || isa(C)); for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) AddGlobalInitializerConstraints(NodeIndex, cast(C->getOperand(i))); } } /// AddConstraintsForNonInternalLinkage - If this function does not have /// internal linkage, realize that we can't trust anything passed into or /// returned by this function. void Andersens::AddConstraintsForNonInternalLinkage(Function *F) { for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) // If this is an argument of an externally accessible function, the // incoming pointer might point to anything. Constraints.push_back(Constraint(Constraint::Copy, getNode(I), UniversalSet)); } /// AddConstraintsForCall - If this is a call to a "known" function, add the /// constraints and return true. If this is a call to an unknown function, /// return false. bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) { assert(F->isDeclaration() && "Not an external function!"); // These functions don't induce any points-to constraints. if (F->getName() == "atoi" || F->getName() == "atof" || F->getName() == "atol" || F->getName() == "atoll" || F->getName() == "remove" || F->getName() == "unlink" || F->getName() == "rename" || F->getName() == "memcmp" || F->getName() == "llvm.memset" || F->getName() == "strcmp" || F->getName() == "strncmp" || F->getName() == "execl" || F->getName() == "execlp" || F->getName() == "execle" || F->getName() == "execv" || F->getName() == "execvp" || F->getName() == "chmod" || F->getName() == "puts" || F->getName() == "write" || F->getName() == "open" || F->getName() == "create" || F->getName() == "truncate" || F->getName() == "chdir" || F->getName() == "mkdir" || F->getName() == "rmdir" || F->getName() == "read" || F->getName() == "pipe" || F->getName() == "wait" || F->getName() == "time" || F->getName() == "stat" || F->getName() == "fstat" || F->getName() == "lstat" || F->getName() == "strtod" || F->getName() == "strtof" || F->getName() == "strtold" || F->getName() == "fopen" || F->getName() == "fdopen" || F->getName() == "freopen" || F->getName() == "fflush" || F->getName() == "feof" || F->getName() == "fileno" || F->getName() == "clearerr" || F->getName() == "rewind" || F->getName() == "ftell" || F->getName() == "ferror" || F->getName() == "fgetc" || F->getName() == "fgetc" || F->getName() == "_IO_getc" || F->getName() == "fwrite" || F->getName() == "fread" || F->getName() == "fgets" || F->getName() == "ungetc" || F->getName() == "fputc" || F->getName() == "fputs" || F->getName() == "putc" || F->getName() == "ftell" || F->getName() == "rewind" || F->getName() == "_IO_putc" || F->getName() == "fseek" || F->getName() == "fgetpos" || F->getName() == "fsetpos" || F->getName() == "printf" || F->getName() == "fprintf" || F->getName() == "sprintf" || F->getName() == "vprintf" || F->getName() == "vfprintf" || F->getName() == "vsprintf" || F->getName() == "scanf" || F->getName() == "fscanf" || F->getName() == "sscanf" || F->getName() == "__assert_fail" || F->getName() == "modf") return true; // These functions do induce points-to edges. if (F->getName() == "llvm.memcpy" || F->getName() == "llvm.memmove" || F->getName() == "memmove") { const FunctionType *FTy = F->getFunctionType(); if (FTy->getNumParams() > 1 && isa(FTy->getParamType(0)) && isa(FTy->getParamType(1))) { // *Dest = *Src, which requires an artificial graph node to represent the // constraint. It is broken up into *Dest = temp, temp = *Src unsigned FirstArg = getNode(CS.getArgument(0)); unsigned SecondArg = getNode(CS.getArgument(1)); unsigned TempArg = GraphNodes.size(); GraphNodes.push_back(Node()); Constraints.push_back(Constraint(Constraint::Store, FirstArg, TempArg)); Constraints.push_back(Constraint(Constraint::Load, TempArg, SecondArg)); // In addition, Dest = Src Constraints.push_back(Constraint(Constraint::Copy, FirstArg, SecondArg)); return true; } } // Result = Arg0 if (F->getName() == "realloc" || F->getName() == "strchr" || F->getName() == "strrchr" || F->getName() == "strstr" || F->getName() == "strtok") { const FunctionType *FTy = F->getFunctionType(); if (FTy->getNumParams() > 0 && isa(FTy->getParamType(0))) { Constraints.push_back(Constraint(Constraint::Copy, getNode(CS.getInstruction()), getNode(CS.getArgument(0)))); return true; } } return false; } /// AnalyzeUsesOfFunction - Look at all of the users of the specified function. /// If this is used by anything complex (i.e., the address escapes), return /// true. bool Andersens::AnalyzeUsesOfFunction(Value *V) { if (!isa(V->getType())) return true; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) if (dyn_cast(*UI)) { return false; } else if (StoreInst *SI = dyn_cast(*UI)) { if (V == SI->getOperand(1)) { return false; } else if (SI->getOperand(1)) { return true; // Storing the pointer } } else if (GetElementPtrInst *GEP = dyn_cast(*UI)) { if (AnalyzeUsesOfFunction(GEP)) return true; } else if (CallInst *CI = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) if (CI->getOperand(i) == V) return true; } else if (InvokeInst *II = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i) if (II->getOperand(i) == V) return true; } else if (ConstantExpr *CE = dyn_cast(*UI)) { if (CE->getOpcode() == Instruction::GetElementPtr || CE->getOpcode() == Instruction::BitCast) { if (AnalyzeUsesOfFunction(CE)) return true; } else { return true; } } else if (ICmpInst *ICI = dyn_cast(*UI)) { if (!isa(ICI->getOperand(1))) return true; // Allow comparison against null. } else if (dyn_cast(*UI)) { return false; } else { return true; } return false; } /// CollectConstraints - This stage scans the program, adding a constraint to /// the Constraints list for each instruction in the program that induces a /// constraint, and setting up the initial points-to graph. /// void Andersens::CollectConstraints(Module &M) { // First, the universal set points to itself. Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet, UniversalSet)); Constraints.push_back(Constraint(Constraint::Store, UniversalSet, UniversalSet)); // Next, the null pointer points to the null object. Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject)); // Next, add any constraints on global variables and their initializers. for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { // Associate the address of the global object as pointing to the memory for // the global: &G = unsigned ObjectIndex = getObject(I); Node *Object = &GraphNodes[ObjectIndex]; Object->setValue(I); Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I), ObjectIndex)); if (I->hasInitializer()) { AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer()); } else { // If it doesn't have an initializer (i.e. it's defined in another // translation unit), it points to the universal set. Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex, UniversalSet)); } } for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { // Set up the return value node. if (isa(F->getFunctionType()->getReturnType())) GraphNodes[getReturnNode(F)].setValue(F); if (F->getFunctionType()->isVarArg()) GraphNodes[getVarargNode(F)].setValue(F); // Set up incoming argument nodes. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) getNodeValue(*I); // At some point we should just add constraints for the escaping functions // at solve time, but this slows down solving. For now, we simply mark // address taken functions as escaping and treat them as external. if (!F->hasInternalLinkage() || AnalyzeUsesOfFunction(F)) AddConstraintsForNonInternalLinkage(F); if (!F->isDeclaration()) { // Scan the function body, creating a memory object for each heap/stack // allocation in the body of the function and a node to represent all // pointer values defined by instructions and used as operands. visit(F); } else { // External functions that return pointers return the universal set. if (isa(F->getFunctionType()->getReturnType())) Constraints.push_back(Constraint(Constraint::Copy, getReturnNode(F), UniversalSet)); // Any pointers that are passed into the function have the universal set // stored into them. for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (isa(I->getType())) { // Pointers passed into external functions could have anything stored // through them. Constraints.push_back(Constraint(Constraint::Store, getNode(I), UniversalSet)); // Memory objects passed into external function calls can have the // universal set point to them. #if FULL_UNIVERSAL Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(I))); #else Constraints.push_back(Constraint(Constraint::Copy, getNode(I), UniversalSet)); #endif } // If this is an external varargs function, it can also store pointers // into any pointers passed through the varargs section. if (F->getFunctionType()->isVarArg()) Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F), UniversalSet)); } } NumConstraints += Constraints.size(); } void Andersens::visitInstruction(Instruction &I) { #ifdef NDEBUG return; // This function is just a big assert. #endif if (isa(I)) return; // Most instructions don't have any effect on pointer values. switch (I.getOpcode()) { case Instruction::Br: case Instruction::Switch: case Instruction::Unwind: case Instruction::Unreachable: case Instruction::Free: case Instruction::ICmp: case Instruction::FCmp: return; default: // Is this something we aren't handling yet? cerr << "Unknown instruction: " << I; abort(); } } void Andersens::visitAllocationInst(AllocationInst &AI) { unsigned ObjectIndex = getObject(&AI); GraphNodes[ObjectIndex].setValue(&AI); Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(AI), ObjectIndex)); } void Andersens::visitReturnInst(ReturnInst &RI) { if (RI.getNumOperands() && isa(RI.getOperand(0)->getType())) // return V --> Constraints.push_back(Constraint(Constraint::Copy, getReturnNode(RI.getParent()->getParent()), getNode(RI.getOperand(0)))); } void Andersens::visitLoadInst(LoadInst &LI) { if (isa(LI.getType())) // P1 = load P2 --> Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI), getNode(LI.getOperand(0)))); } void Andersens::visitStoreInst(StoreInst &SI) { if (isa(SI.getOperand(0)->getType())) // store P1, P2 --> Constraints.push_back(Constraint(Constraint::Store, getNode(SI.getOperand(1)), getNode(SI.getOperand(0)))); } void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) { // P1 = getelementptr P2, ... --> Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP), getNode(GEP.getOperand(0)))); } void Andersens::visitPHINode(PHINode &PN) { if (isa(PN.getType())) { unsigned PNN = getNodeValue(PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) // P1 = phi P2, P3 --> , , ... Constraints.push_back(Constraint(Constraint::Copy, PNN, getNode(PN.getIncomingValue(i)))); } } void Andersens::visitCastInst(CastInst &CI) { Value *Op = CI.getOperand(0); if (isa(CI.getType())) { if (isa(Op->getType())) { // P1 = cast P2 --> Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), getNode(CI.getOperand(0)))); } else { // P1 = cast int --> #if 0 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI), UniversalSet)); #else getNodeValue(CI); #endif } } else if (isa(Op->getType())) { // int = cast P1 --> #if 0 Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(CI.getOperand(0)))); #else getNode(CI.getOperand(0)); #endif } } void Andersens::visitSelectInst(SelectInst &SI) { if (isa(SI.getType())) { unsigned SIN = getNodeValue(SI); // P1 = select C, P2, P3 ---> , Constraints.push_back(Constraint(Constraint::Copy, SIN, getNode(SI.getOperand(1)))); Constraints.push_back(Constraint(Constraint::Copy, SIN, getNode(SI.getOperand(2)))); } } void Andersens::visitVAArg(VAArgInst &I) { assert(0 && "vaarg not handled yet!"); } /// AddConstraintsForCall - Add constraints for a call with actual arguments /// specified by CS to the function specified by F. Note that the types of /// arguments might not match up in the case where this is an indirect call and /// the function pointer has been casted. If this is the case, do something /// reasonable. void Andersens::AddConstraintsForCall(CallSite CS, Function *F) { Value *CallValue = CS.getCalledValue(); bool IsDeref = F == NULL; // If this is a call to an external function, try to handle it directly to get // some taste of context sensitivity. if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F)) return; if (isa(CS.getType())) { unsigned CSN = getNode(CS.getInstruction()); if (!F || isa(F->getFunctionType()->getReturnType())) { if (IsDeref) Constraints.push_back(Constraint(Constraint::Load, CSN, getNode(CallValue), CallReturnPos)); else Constraints.push_back(Constraint(Constraint::Copy, CSN, getNode(CallValue) + CallReturnPos)); } else { // If the function returns a non-pointer value, handle this just like we // treat a nonpointer cast to pointer. Constraints.push_back(Constraint(Constraint::Copy, CSN, UniversalSet)); } } else if (F && isa(F->getFunctionType()->getReturnType())) { #if FULL_UNIVERSAL Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(CallValue) + CallReturnPos)); #else Constraints.push_back(Constraint(Constraint::Copy, getNode(CallValue) + CallReturnPos, UniversalSet)); #endif } CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end(); bool external = !F || F->isDeclaration(); if (F) { // Direct Call Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end(); for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) { #if !FULL_UNIVERSAL if (external && isa((*ArgI)->getType())) { // Add constraint that ArgI can now point to anything due to // escaping, as can everything it points to. The second portion of // this should be taken care of by universal = *universal Constraints.push_back(Constraint(Constraint::Copy, getNode(*ArgI), UniversalSet)); } #endif if (isa(AI->getType())) { if (isa((*ArgI)->getType())) { // Copy the actual argument into the formal argument. Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), getNode(*ArgI))); } else { Constraints.push_back(Constraint(Constraint::Copy, getNode(AI), UniversalSet)); } } else if (isa((*ArgI)->getType())) { #if FULL_UNIVERSAL Constraints.push_back(Constraint(Constraint::Copy, UniversalSet, getNode(*ArgI))); #else Constraints.push_back(Constraint(Constraint::Copy, getNode(*ArgI), UniversalSet)); #endif } } } else { //Indirect Call unsigned ArgPos = CallFirstArgPos; for (; ArgI != ArgE; ++ArgI) { if (isa((*ArgI)->getType())) { // Copy the actual argument into the formal argument. Constraints.push_back(Constraint(Constraint::Store, getNode(CallValue), getNode(*ArgI), ArgPos++)); } else { Constraints.push_back(Constraint(Constraint::Store, getNode (CallValue), UniversalSet, ArgPos++)); } } } // Copy all pointers passed through the varargs section to the varargs node. if (F && F->getFunctionType()->isVarArg()) for (; ArgI != ArgE; ++ArgI) if (isa((*ArgI)->getType())) Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F), getNode(*ArgI))); // If more arguments are passed in than we track, just drop them on the floor. } void Andersens::visitCallSite(CallSite CS) { if (isa(CS.getType())) getNodeValue(*CS.getInstruction()); if (Function *F = CS.getCalledFunction()) { AddConstraintsForCall(CS, F); } else { AddConstraintsForCall(CS, NULL); } } //===----------------------------------------------------------------------===// // Constraint Solving Phase //===----------------------------------------------------------------------===// /// intersects - Return true if the points-to set of this node intersects /// with the points-to set of the specified node. bool Andersens::Node::intersects(Node *N) const { return PointsTo->intersects(N->PointsTo); } /// intersectsIgnoring - Return true if the points-to set of this node /// intersects with the points-to set of the specified node on any nodes /// except for the specified node to ignore. bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const { // TODO: If we are only going to call this with the same value for Ignoring, // we should move the special values out of the points-to bitmap. bool WeHadIt = PointsTo->test(Ignoring); bool NHadIt = N->PointsTo->test(Ignoring); bool Result = false; if (WeHadIt) PointsTo->reset(Ignoring); if (NHadIt) N->PointsTo->reset(Ignoring); Result = PointsTo->intersects(N->PointsTo); if (WeHadIt) PointsTo->set(Ignoring); if (NHadIt) N->PointsTo->set(Ignoring); return Result; } void dumpToDOUT(SparseBitVector<> *bitmap) { #ifndef NDEBUG dump(*bitmap, DOUT); #endif } /// Clump together address taken variables so that the points-to sets use up /// less space and can be operated on faster. void Andersens::ClumpAddressTaken() { #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa-renumber" std::vector Translate; std::vector NewGraphNodes; Translate.resize(GraphNodes.size()); unsigned NewPos = 0; for (unsigned i = 0; i < Constraints.size(); ++i) { Constraint &C = Constraints[i]; if (C.Type == Constraint::AddressOf) { GraphNodes[C.Src].AddressTaken = true; } } for (unsigned i = 0; i < NumberSpecialNodes; ++i) { unsigned Pos = NewPos++; Translate[i] = Pos; NewGraphNodes.push_back(GraphNodes[i]); DOUT << "Renumbering node " << i << " to node " << Pos << "\n"; } // I believe this ends up being faster than making two vectors and splicing // them. for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) { if (GraphNodes[i].AddressTaken) { unsigned Pos = NewPos++; Translate[i] = Pos; NewGraphNodes.push_back(GraphNodes[i]); DOUT << "Renumbering node " << i << " to node " << Pos << "\n"; } } for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) { if (!GraphNodes[i].AddressTaken) { unsigned Pos = NewPos++; Translate[i] = Pos; NewGraphNodes.push_back(GraphNodes[i]); DOUT << "Renumbering node " << i << " to node " << Pos << "\n"; } } for (DenseMap::iterator Iter = ValueNodes.begin(); Iter != ValueNodes.end(); ++Iter) Iter->second = Translate[Iter->second]; for (DenseMap::iterator Iter = ObjectNodes.begin(); Iter != ObjectNodes.end(); ++Iter) Iter->second = Translate[Iter->second]; for (DenseMap::iterator Iter = ReturnNodes.begin(); Iter != ReturnNodes.end(); ++Iter) Iter->second = Translate[Iter->second]; for (DenseMap::iterator Iter = VarargNodes.begin(); Iter != VarargNodes.end(); ++Iter) Iter->second = Translate[Iter->second]; for (unsigned i = 0; i < Constraints.size(); ++i) { Constraint &C = Constraints[i]; C.Src = Translate[C.Src]; C.Dest = Translate[C.Dest]; } GraphNodes.swap(NewGraphNodes); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa" } /// The technique used here is described in "Exploiting Pointer and Location /// Equivalence to Optimize Pointer Analysis. In the 14th International Static /// Analysis Symposium (SAS), August 2007." It is known as the "HVN" algorithm, /// and is equivalent to value numbering the collapsed constraint graph without /// evaluating unions. This is used as a pre-pass to HU in order to resolve /// first order pointer dereferences and speed up/reduce memory usage of HU. /// Running both is equivalent to HRU without the iteration /// HVN in more detail: /// Imagine the set of constraints was simply straight line code with no loops /// (we eliminate cycles, so there are no loops), such as: /// E = &D /// E = &C /// E = F /// F = G /// G = F /// Applying value numbering to this code tells us: /// G == F == E /// /// For HVN, this is as far as it goes. We assign new value numbers to every /// "address node", and every "reference node". /// To get the optimal result for this, we use a DFS + SCC (since all nodes in a /// cycle must have the same value number since the = operation is really /// inclusion, not overwrite), and value number nodes we receive points-to sets /// before we value our own node. /// The advantage of HU over HVN is that HU considers the inclusion property, so /// that if you have /// E = &D /// E = &C /// E = F /// F = G /// F = &D /// G = F /// HU will determine that G == F == E. HVN will not, because it cannot prove /// that the points to information ends up being the same because they all /// receive &D from E anyway. void Andersens::HVN() { DOUT << "Beginning HVN\n"; // Build a predecessor graph. This is like our constraint graph with the // edges going in the opposite direction, and there are edges for all the // constraints, instead of just copy constraints. We also build implicit // edges for constraints are implied but not explicit. I.E for the constraint // a = &b, we add implicit edges *a = b. This helps us capture more cycles for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { Constraint &C = Constraints[i]; if (C.Type == Constraint::AddressOf) { GraphNodes[C.Src].AddressTaken = true; GraphNodes[C.Src].Direct = false; // Dest = &src edge unsigned AdrNode = C.Src + FirstAdrNode; if (!GraphNodes[C.Dest].PredEdges) GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; GraphNodes[C.Dest].PredEdges->set(AdrNode); // *Dest = src edge unsigned RefNode = C.Dest + FirstRefNode; if (!GraphNodes[RefNode].ImplicitPredEdges) GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; GraphNodes[RefNode].ImplicitPredEdges->set(C.Src); } else if (C.Type == Constraint::Load) { if (C.Offset == 0) { // dest = *src edge if (!GraphNodes[C.Dest].PredEdges) GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode); } else { GraphNodes[C.Dest].Direct = false; } } else if (C.Type == Constraint::Store) { if (C.Offset == 0) { // *dest = src edge unsigned RefNode = C.Dest + FirstRefNode; if (!GraphNodes[RefNode].PredEdges) GraphNodes[RefNode].PredEdges = new SparseBitVector<>; GraphNodes[RefNode].PredEdges->set(C.Src); } } else { // Dest = Src edge and *Dest = *Src edge if (!GraphNodes[C.Dest].PredEdges) GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; GraphNodes[C.Dest].PredEdges->set(C.Src); unsigned RefNode = C.Dest + FirstRefNode; if (!GraphNodes[RefNode].ImplicitPredEdges) GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode); } } PEClass = 1; // Do SCC finding first to condense our predecessor graph DFSNumber = 0; Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); for (unsigned i = 0; i < FirstRefNode; ++i) { unsigned Node = VSSCCRep[i]; if (!Node2Visited[Node]) HVNValNum(Node); } for (BitVectorMap::iterator Iter = Set2PEClass.begin(); Iter != Set2PEClass.end(); ++Iter) delete Iter->first; Set2PEClass.clear(); Node2DFS.clear(); Node2Deleted.clear(); Node2Visited.clear(); DOUT << "Finished HVN\n"; } /// This is the workhorse of HVN value numbering. We combine SCC finding at the /// same time because it's easy. void Andersens::HVNValNum(unsigned NodeIndex) { unsigned MyDFS = DFSNumber++; Node *N = &GraphNodes[NodeIndex]; Node2Visited[NodeIndex] = true; Node2DFS[NodeIndex] = MyDFS; // First process all our explicit edges if (N->PredEdges) for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); Iter != N->PredEdges->end(); ++Iter) { unsigned j = VSSCCRep[*Iter]; if (!Node2Deleted[j]) { if (!Node2Visited[j]) HVNValNum(j); if (Node2DFS[NodeIndex] > Node2DFS[j]) Node2DFS[NodeIndex] = Node2DFS[j]; } } // Now process all the implicit edges if (N->ImplicitPredEdges) for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin(); Iter != N->ImplicitPredEdges->end(); ++Iter) { unsigned j = VSSCCRep[*Iter]; if (!Node2Deleted[j]) { if (!Node2Visited[j]) HVNValNum(j); if (Node2DFS[NodeIndex] > Node2DFS[j]) Node2DFS[NodeIndex] = Node2DFS[j]; } } // See if we found any cycles if (MyDFS == Node2DFS[NodeIndex]) { while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) { unsigned CycleNodeIndex = SCCStack.top(); Node *CycleNode = &GraphNodes[CycleNodeIndex]; VSSCCRep[CycleNodeIndex] = NodeIndex; // Unify the nodes N->Direct &= CycleNode->Direct; if (CycleNode->PredEdges) { if (!N->PredEdges) N->PredEdges = new SparseBitVector<>; *(N->PredEdges) |= CycleNode->PredEdges; delete CycleNode->PredEdges; CycleNode->PredEdges = NULL; } if (CycleNode->ImplicitPredEdges) { if (!N->ImplicitPredEdges) N->ImplicitPredEdges = new SparseBitVector<>; *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges; delete CycleNode->ImplicitPredEdges; CycleNode->ImplicitPredEdges = NULL; } SCCStack.pop(); } Node2Deleted[NodeIndex] = true; if (!N->Direct) { GraphNodes[NodeIndex].PointerEquivLabel = PEClass++; return; } // Collect labels of successor nodes bool AllSame = true; unsigned First = ~0; SparseBitVector<> *Labels = new SparseBitVector<>; bool Used = false; if (N->PredEdges) for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); Iter != N->PredEdges->end(); ++Iter) { unsigned j = VSSCCRep[*Iter]; unsigned Label = GraphNodes[j].PointerEquivLabel; // Ignore labels that are equal to us or non-pointers if (j == NodeIndex || Label == 0) continue; if (First == (unsigned)~0) First = Label; else if (First != Label) AllSame = false; Labels->set(Label); } // We either have a non-pointer, a copy of an existing node, or a new node. // Assign the appropriate pointer equivalence label. if (Labels->empty()) { GraphNodes[NodeIndex].PointerEquivLabel = 0; } else if (AllSame) { GraphNodes[NodeIndex].PointerEquivLabel = First; } else { GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels]; if (GraphNodes[NodeIndex].PointerEquivLabel == 0) { unsigned EquivClass = PEClass++; Set2PEClass[Labels] = EquivClass; GraphNodes[NodeIndex].PointerEquivLabel = EquivClass; Used = true; } } if (!Used) delete Labels; } else { SCCStack.push(NodeIndex); } } /// The technique used here is described in "Exploiting Pointer and Location /// Equivalence to Optimize Pointer Analysis. In the 14th International Static /// Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm, /// and is equivalent to value numbering the collapsed constraint graph /// including evaluating unions. void Andersens::HU() { DOUT << "Beginning HU\n"; // Build a predecessor graph. This is like our constraint graph with the // edges going in the opposite direction, and there are edges for all the // constraints, instead of just copy constraints. We also build implicit // edges for constraints are implied but not explicit. I.E for the constraint // a = &b, we add implicit edges *a = b. This helps us capture more cycles for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { Constraint &C = Constraints[i]; if (C.Type == Constraint::AddressOf) { GraphNodes[C.Src].AddressTaken = true; GraphNodes[C.Src].Direct = false; GraphNodes[C.Dest].PointsTo->set(C.Src); // *Dest = src edge unsigned RefNode = C.Dest + FirstRefNode; if (!GraphNodes[RefNode].ImplicitPredEdges) GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; GraphNodes[RefNode].ImplicitPredEdges->set(C.Src); GraphNodes[C.Src].PointedToBy->set(C.Dest); } else if (C.Type == Constraint::Load) { if (C.Offset == 0) { // dest = *src edge if (!GraphNodes[C.Dest].PredEdges) GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode); } else { GraphNodes[C.Dest].Direct = false; } } else if (C.Type == Constraint::Store) { if (C.Offset == 0) { // *dest = src edge unsigned RefNode = C.Dest + FirstRefNode; if (!GraphNodes[RefNode].PredEdges) GraphNodes[RefNode].PredEdges = new SparseBitVector<>; GraphNodes[RefNode].PredEdges->set(C.Src); } } else { // Dest = Src edge and *Dest = *Src edg if (!GraphNodes[C.Dest].PredEdges) GraphNodes[C.Dest].PredEdges = new SparseBitVector<>; GraphNodes[C.Dest].PredEdges->set(C.Src); unsigned RefNode = C.Dest + FirstRefNode; if (!GraphNodes[RefNode].ImplicitPredEdges) GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>; GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode); } } PEClass = 1; // Do SCC finding first to condense our predecessor graph DFSNumber = 0; Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); for (unsigned i = 0; i < FirstRefNode; ++i) { if (FindNode(i) == i) { unsigned Node = VSSCCRep[i]; if (!Node2Visited[Node]) Condense(Node); } } // Reset tables for actual labeling Node2DFS.clear(); Node2Visited.clear(); Node2Deleted.clear(); // Pre-grow our densemap so that we don't get really bad behavior Set2PEClass.resize(GraphNodes.size()); // Visit the condensed graph and generate pointer equivalence labels. Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); for (unsigned i = 0; i < FirstRefNode; ++i) { if (FindNode(i) == i) { unsigned Node = VSSCCRep[i]; if (!Node2Visited[Node]) HUValNum(Node); } } // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller. Set2PEClass.clear(); DOUT << "Finished HU\n"; } /// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla. void Andersens::Condense(unsigned NodeIndex) { unsigned MyDFS = DFSNumber++; Node *N = &GraphNodes[NodeIndex]; Node2Visited[NodeIndex] = true; Node2DFS[NodeIndex] = MyDFS; // First process all our explicit edges if (N->PredEdges) for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); Iter != N->PredEdges->end(); ++Iter) { unsigned j = VSSCCRep[*Iter]; if (!Node2Deleted[j]) { if (!Node2Visited[j]) Condense(j); if (Node2DFS[NodeIndex] > Node2DFS[j]) Node2DFS[NodeIndex] = Node2DFS[j]; } } // Now process all the implicit edges if (N->ImplicitPredEdges) for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin(); Iter != N->ImplicitPredEdges->end(); ++Iter) { unsigned j = VSSCCRep[*Iter]; if (!Node2Deleted[j]) { if (!Node2Visited[j]) Condense(j); if (Node2DFS[NodeIndex] > Node2DFS[j]) Node2DFS[NodeIndex] = Node2DFS[j]; } } // See if we found any cycles if (MyDFS == Node2DFS[NodeIndex]) { while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) { unsigned CycleNodeIndex = SCCStack.top(); Node *CycleNode = &GraphNodes[CycleNodeIndex]; VSSCCRep[CycleNodeIndex] = NodeIndex; // Unify the nodes N->Direct &= CycleNode->Direct; *(N->PointsTo) |= CycleNode->PointsTo; delete CycleNode->PointsTo; CycleNode->PointsTo = NULL; if (CycleNode->PredEdges) { if (!N->PredEdges) N->PredEdges = new SparseBitVector<>; *(N->PredEdges) |= CycleNode->PredEdges; delete CycleNode->PredEdges; CycleNode->PredEdges = NULL; } if (CycleNode->ImplicitPredEdges) { if (!N->ImplicitPredEdges) N->ImplicitPredEdges = new SparseBitVector<>; *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges; delete CycleNode->ImplicitPredEdges; CycleNode->ImplicitPredEdges = NULL; } SCCStack.pop(); } Node2Deleted[NodeIndex] = true; // Set up number of incoming edges for other nodes if (N->PredEdges) for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); Iter != N->PredEdges->end(); ++Iter) ++GraphNodes[VSSCCRep[*Iter]].NumInEdges; } else { SCCStack.push(NodeIndex); } } void Andersens::HUValNum(unsigned NodeIndex) { Node *N = &GraphNodes[NodeIndex]; Node2Visited[NodeIndex] = true; // Eliminate dereferences of non-pointers for those non-pointers we have // already identified. These are ref nodes whose non-ref node: // 1. Has already been visited determined to point to nothing (and thus, a // dereference of it must point to nothing) // 2. Any direct node with no predecessor edges in our graph and with no // points-to set (since it can't point to anything either, being that it // receives no points-to sets and has none). if (NodeIndex >= FirstRefNode) { unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)]; if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel) || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges && GraphNodes[j].PointsTo->empty())){ return; } } // Process all our explicit edges if (N->PredEdges) for (SparseBitVector<>::iterator Iter = N->PredEdges->begin(); Iter != N->PredEdges->end(); ++Iter) { unsigned j = VSSCCRep[*Iter]; if (!Node2Visited[j]) HUValNum(j); // If this edge turned out to be the same as us, or got no pointer // equivalence label (and thus points to nothing) , just decrement our // incoming edges and continue. if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) { --GraphNodes[j].NumInEdges; continue; } *(N->PointsTo) |= GraphNodes[j].PointsTo; // If we didn't end up storing this in the hash, and we're done with all // the edges, we don't need the points-to set anymore. --GraphNodes[j].NumInEdges; if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) { delete GraphNodes[j].PointsTo; GraphNodes[j].PointsTo = NULL; } } // If this isn't a direct node, generate a fresh variable. if (!N->Direct) { N->PointsTo->set(FirstRefNode + NodeIndex); } // See If we have something equivalent to us, if not, generate a new // equivalence class. if (N->PointsTo->empty()) { delete N->PointsTo; N->PointsTo = NULL; } else { if (N->Direct) { N->PointerEquivLabel = Set2PEClass[N->PointsTo]; if (N->PointerEquivLabel == 0) { unsigned EquivClass = PEClass++; N->StoredInHash = true; Set2PEClass[N->PointsTo] = EquivClass; N->PointerEquivLabel = EquivClass; } } else { N->PointerEquivLabel = PEClass++; } } } /// Rewrite our list of constraints so that pointer equivalent nodes are /// replaced by their the pointer equivalence class representative. void Andersens::RewriteConstraints() { std::vector NewConstraints; DenseSet Seen; PEClass2Node.clear(); PENLEClass2Node.clear(); // We may have from 1 to Graphnodes + 1 equivalence classes. PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1); PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1); // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent // nodes, and rewriting constraints to use the representative nodes. for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { Constraint &C = Constraints[i]; unsigned RHSNode = FindNode(C.Src); unsigned LHSNode = FindNode(C.Dest); unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel; unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel; // First we try to eliminate constraints for things we can prove don't point // to anything. if (LHSLabel == 0) { DEBUG(PrintNode(&GraphNodes[LHSNode])); DOUT << " is a non-pointer, ignoring constraint.\n"; continue; } if (RHSLabel == 0) { DEBUG(PrintNode(&GraphNodes[RHSNode])); DOUT << " is a non-pointer, ignoring constraint.\n"; continue; } // This constraint may be useless, and it may become useless as we translate // it. if (C.Src == C.Dest && C.Type == Constraint::Copy) continue; C.Src = FindEquivalentNode(RHSNode, RHSLabel); C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel); if ((C.Src == C.Dest && C.Type == Constraint::Copy) || Seen.count(C)) continue; Seen.insert(C); NewConstraints.push_back(C); } Constraints.swap(NewConstraints); PEClass2Node.clear(); } /// See if we have a node that is pointer equivalent to the one being asked /// about, and if so, unite them and return the equivalent node. Otherwise, /// return the original node. unsigned Andersens::FindEquivalentNode(unsigned NodeIndex, unsigned NodeLabel) { if (!GraphNodes[NodeIndex].AddressTaken) { if (PEClass2Node[NodeLabel] != -1) { // We found an existing node with the same pointer label, so unify them. // We specifically request that Union-By-Rank not be used so that // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around. return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false); } else { PEClass2Node[NodeLabel] = NodeIndex; PENLEClass2Node[NodeLabel] = NodeIndex; } } else if (PENLEClass2Node[NodeLabel] == -1) { PENLEClass2Node[NodeLabel] = NodeIndex; } return NodeIndex; } void Andersens::PrintLabels() const { for (unsigned i = 0; i < GraphNodes.size(); ++i) { if (i < FirstRefNode) { PrintNode(&GraphNodes[i]); } else if (i < FirstAdrNode) { DOUT << "REF("; PrintNode(&GraphNodes[i-FirstRefNode]); DOUT <<")"; } else { DOUT << "ADR("; PrintNode(&GraphNodes[i-FirstAdrNode]); DOUT <<")"; } DOUT << " has pointer label " << GraphNodes[i].PointerEquivLabel << " and SCC rep " << VSSCCRep[i] << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct") << "\n"; } } /// The technique used here is described in "The Ant and the /// Grasshopper: Fast and Accurate Pointer Analysis for Millions of /// Lines of Code. In Programming Language Design and Implementation /// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle /// Detection) algorithm. It is called a hybrid because it performs an /// offline analysis and uses its results during the solving (online) /// phase. This is just the offline portion; the results of this /// operation are stored in SDT and are later used in SolveContraints() /// and UniteNodes(). void Andersens::HCD() { DOUT << "Starting HCD.\n"; HCDSCCRep.resize(GraphNodes.size()); for (unsigned i = 0; i < GraphNodes.size(); ++i) { GraphNodes[i].Edges = new SparseBitVector<>; HCDSCCRep[i] = i; } for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { Constraint &C = Constraints[i]; assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size()); if (C.Type == Constraint::AddressOf) { continue; } else if (C.Type == Constraint::Load) { if( C.Offset == 0 ) GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode); } else if (C.Type == Constraint::Store) { if( C.Offset == 0 ) GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src); } else { GraphNodes[C.Dest].Edges->set(C.Src); } } Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false); SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1); DFSNumber = 0; for (unsigned i = 0; i < GraphNodes.size(); ++i) { unsigned Node = HCDSCCRep[i]; if (!Node2Deleted[Node]) Search(Node); } for (unsigned i = 0; i < GraphNodes.size(); ++i) if (GraphNodes[i].Edges != NULL) { delete GraphNodes[i].Edges; GraphNodes[i].Edges = NULL; } while( !SCCStack.empty() ) SCCStack.pop(); Node2DFS.clear(); Node2Visited.clear(); Node2Deleted.clear(); HCDSCCRep.clear(); DOUT << "HCD complete.\n"; } // Component of HCD: // Use Nuutila's variant of Tarjan's algorithm to detect // Strongly-Connected Components (SCCs). For non-trivial SCCs // containing ref nodes, insert the appropriate information in SDT. void Andersens::Search(unsigned Node) { unsigned MyDFS = DFSNumber++; Node2Visited[Node] = true; Node2DFS[Node] = MyDFS; for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(), End = GraphNodes[Node].Edges->end(); Iter != End; ++Iter) { unsigned J = HCDSCCRep[*Iter]; assert(GraphNodes[J].isRep() && "Debug check; must be representative"); if (!Node2Deleted[J]) { if (!Node2Visited[J]) Search(J); if (Node2DFS[Node] > Node2DFS[J]) Node2DFS[Node] = Node2DFS[J]; } } if( MyDFS != Node2DFS[Node] ) { SCCStack.push(Node); return; } // This node is the root of a SCC, so process it. // // If the SCC is "non-trivial" (not a singleton) and contains a reference // node, we place this SCC into SDT. We unite the nodes in any case. if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) { SparseBitVector<> SCC; SCC.set(Node); bool Ref = (Node >= FirstRefNode); Node2Deleted[Node] = true; do { unsigned P = SCCStack.top(); SCCStack.pop(); Ref |= (P >= FirstRefNode); SCC.set(P); HCDSCCRep[P] = Node; } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS); if (Ref) { unsigned Rep = SCC.find_first(); assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!"); SparseBitVector<>::iterator i = SCC.begin(); // Skip over the non-ref nodes while( *i < FirstRefNode ) ++i; while( i != SCC.end() ) SDT[ (*i++) - FirstRefNode ] = Rep; } } } /// Optimize the constraints by performing offline variable substitution and /// other optimizations. void Andersens::OptimizeConstraints() { DOUT << "Beginning constraint optimization\n"; SDTActive = false; // Function related nodes need to stay in the same relative position and can't // be location equivalent. for (std::map::iterator Iter = MaxK.begin(); Iter != MaxK.end(); ++Iter) { for (unsigned i = Iter->first; i != Iter->first + Iter->second; ++i) { GraphNodes[i].AddressTaken = true; GraphNodes[i].Direct = false; } } ClumpAddressTaken(); FirstRefNode = GraphNodes.size(); FirstAdrNode = FirstRefNode + GraphNodes.size(); GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(), Node(false)); VSSCCRep.resize(GraphNodes.size()); for (unsigned i = 0; i < GraphNodes.size(); ++i) { VSSCCRep[i] = i; } HVN(); for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *N = &GraphNodes[i]; delete N->PredEdges; N->PredEdges = NULL; delete N->ImplicitPredEdges; N->ImplicitPredEdges = NULL; } #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa-labels" DEBUG(PrintLabels()); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa" RewriteConstraints(); // Delete the adr nodes. GraphNodes.resize(FirstRefNode * 2); // Now perform HU for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *N = &GraphNodes[i]; if (FindNode(i) == i) { N->PointsTo = new SparseBitVector<>; N->PointedToBy = new SparseBitVector<>; // Reset our labels } VSSCCRep[i] = i; N->PointerEquivLabel = 0; } HU(); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa-labels" DEBUG(PrintLabels()); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa" RewriteConstraints(); for (unsigned i = 0; i < GraphNodes.size(); ++i) { if (FindNode(i) == i) { Node *N = &GraphNodes[i]; delete N->PointsTo; N->PointsTo = NULL; delete N->PredEdges; N->PredEdges = NULL; delete N->ImplicitPredEdges; N->ImplicitPredEdges = NULL; delete N->PointedToBy; N->PointedToBy = NULL; } } // perform Hybrid Cycle Detection (HCD) HCD(); SDTActive = true; // No longer any need for the upper half of GraphNodes (for ref nodes). GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end()); // HCD complete. DOUT << "Finished constraint optimization\n"; FirstRefNode = 0; FirstAdrNode = 0; } /// Unite pointer but not location equivalent variables, now that the constraint /// graph is built. void Andersens::UnitePointerEquivalences() { DOUT << "Uniting remaining pointer equivalences\n"; for (unsigned i = 0; i < GraphNodes.size(); ++i) { if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) { unsigned Label = GraphNodes[i].PointerEquivLabel; if (Label && PENLEClass2Node[Label] != -1) UniteNodes(i, PENLEClass2Node[Label]); } } DOUT << "Finished remaining pointer equivalences\n"; PENLEClass2Node.clear(); } /// Create the constraint graph used for solving points-to analysis. /// void Andersens::CreateConstraintGraph() { for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { Constraint &C = Constraints[i]; assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size()); if (C.Type == Constraint::AddressOf) GraphNodes[C.Dest].PointsTo->set(C.Src); else if (C.Type == Constraint::Load) GraphNodes[C.Src].Constraints.push_back(C); else if (C.Type == Constraint::Store) GraphNodes[C.Dest].Constraints.push_back(C); else if (C.Offset != 0) GraphNodes[C.Src].Constraints.push_back(C); else GraphNodes[C.Src].Edges->set(C.Dest); } } // Perform DFS and cycle detection. bool Andersens::QueryNode(unsigned Node) { assert(GraphNodes[Node].isRep() && "Querying a non-rep node"); unsigned OurDFS = ++DFSNumber; SparseBitVector<> ToErase; SparseBitVector<> NewEdges; Tarjan2DFS[Node] = OurDFS; // Changed denotes a change from a recursive call that we will bubble up. // Merged is set if we actually merge a node ourselves. bool Changed = false, Merged = false; for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin(); bi != GraphNodes[Node].Edges->end(); ++bi) { unsigned RepNode = FindNode(*bi); // If this edge points to a non-representative node but we are // already planning to add an edge to its representative, we have no // need for this edge anymore. if (RepNode != *bi && NewEdges.test(RepNode)){ ToErase.set(*bi); continue; } // Continue about our DFS. if (!Tarjan2Deleted[RepNode]){ if (Tarjan2DFS[RepNode] == 0) { Changed |= QueryNode(RepNode); // May have been changed by QueryNode RepNode = FindNode(RepNode); } if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node]) Tarjan2DFS[Node] = Tarjan2DFS[RepNode]; } // We may have just discovered that this node is part of a cycle, in // which case we can also erase it. if (RepNode != *bi) { ToErase.set(*bi); NewEdges.set(RepNode); } } GraphNodes[Node].Edges->intersectWithComplement(ToErase); GraphNodes[Node].Edges |= NewEdges; // If this node is a root of a non-trivial SCC, place it on our // worklist to be processed. if (OurDFS == Tarjan2DFS[Node]) { while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) { Node = UniteNodes(Node, SCCStack.top()); SCCStack.pop(); Merged = true; } Tarjan2Deleted[Node] = true; if (Merged) NextWL->insert(&GraphNodes[Node]); } else { SCCStack.push(Node); } return(Changed | Merged); } /// SolveConstraints - This stage iteratively processes the constraints list /// propagating constraints (adding edges to the Nodes in the points-to graph) /// until a fixed point is reached. /// /// We use a variant of the technique called "Lazy Cycle Detection", which is /// described in "The Ant and the Grasshopper: Fast and Accurate Pointer /// Analysis for Millions of Lines of Code. In Programming Language Design and /// Implementation (PLDI), June 2007." /// The paper describes performing cycle detection one node at a time, which can /// be expensive if there are no cycles, but there are long chains of nodes that /// it heuristically believes are cycles (because it will DFS from each node /// without state from previous nodes). /// Instead, we use the heuristic to build a worklist of nodes to check, then /// cycle detect them all at the same time to do this more cheaply. This /// catches cycles slightly later than the original technique did, but does it /// make significantly cheaper. void Andersens::SolveConstraints() { CurrWL = &w1; NextWL = &w2; OptimizeConstraints(); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa-constraints" DEBUG(PrintConstraints()); #undef DEBUG_TYPE #define DEBUG_TYPE "anders-aa" for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *N = &GraphNodes[i]; N->PointsTo = new SparseBitVector<>; N->OldPointsTo = new SparseBitVector<>; N->Edges = new SparseBitVector<>; } CreateConstraintGraph(); UnitePointerEquivalences(); assert(SCCStack.empty() && "SCC Stack should be empty by now!"); Node2DFS.clear(); Node2Deleted.clear(); Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0); Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false); DFSNumber = 0; DenseSet Seen; DenseSet, PairKeyInfo> EdgesChecked; // Order graph and add initial nodes to work list. for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *INode = &GraphNodes[i]; // Add to work list if it's a representative and can contribute to the // calculation right now. if (INode->isRep() && !INode->PointsTo->empty() && (!INode->Edges->empty() || !INode->Constraints.empty())) { INode->Stamp(); CurrWL->insert(INode); } } std::queue TarjanWL; #if !FULL_UNIVERSAL // "Rep and special variables" - in order for HCD to maintain conservative // results when !FULL_UNIVERSAL, we need to treat the special variables in // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of // the analysis - it's ok to add edges from the special nodes, but never // *to* the special nodes. std::vector RSV; #endif while( !CurrWL->empty() ) { DOUT << "Starting iteration #" << ++NumIters << "\n"; Node* CurrNode; unsigned CurrNodeIndex; // Actual cycle checking code. We cycle check all of the lazy cycle // candidates from the last iteration in one go. if (!TarjanWL.empty()) { DFSNumber = 0; Tarjan2DFS.clear(); Tarjan2Deleted.clear(); while (!TarjanWL.empty()) { unsigned int ToTarjan = TarjanWL.front(); TarjanWL.pop(); if (!Tarjan2Deleted[ToTarjan] && GraphNodes[ToTarjan].isRep() && Tarjan2DFS[ToTarjan] == 0) QueryNode(ToTarjan); } } // Add to work list if it's a representative and can contribute to the // calculation right now. while( (CurrNode = CurrWL->pop()) != NULL ) { CurrNodeIndex = CurrNode - &GraphNodes[0]; CurrNode->Stamp(); // Figure out the changed points to bits SparseBitVector<> CurrPointsTo; CurrPointsTo.intersectWithComplement(CurrNode->PointsTo, CurrNode->OldPointsTo); if (CurrPointsTo.empty()) continue; *(CurrNode->OldPointsTo) |= CurrPointsTo; // Check the offline-computed equivalencies from HCD. bool SCC = false; unsigned Rep; if (SDT[CurrNodeIndex] >= 0) { SCC = true; Rep = FindNode(SDT[CurrNodeIndex]); #if !FULL_UNIVERSAL RSV.clear(); #endif for (SparseBitVector<>::iterator bi = CurrPointsTo.begin(); bi != CurrPointsTo.end(); ++bi) { unsigned Node = FindNode(*bi); #if !FULL_UNIVERSAL if (Node < NumberSpecialNodes) { RSV.push_back(Node); continue; } #endif Rep = UniteNodes(Rep,Node); } #if !FULL_UNIVERSAL RSV.push_back(Rep); #endif NextWL->insert(&GraphNodes[Rep]); if ( ! CurrNode->isRep() ) continue; } Seen.clear(); /* Now process the constraints for this node. */ for (std::list::iterator li = CurrNode->Constraints.begin(); li != CurrNode->Constraints.end(); ) { li->Src = FindNode(li->Src); li->Dest = FindNode(li->Dest); // Delete redundant constraints if( Seen.count(*li) ) { std::list::iterator lk = li; li++; CurrNode->Constraints.erase(lk); ++NumErased; continue; } Seen.insert(*li); // Src and Dest will be the vars we are going to process. // This may look a bit ugly, but what it does is allow us to process // both store and load constraints with the same code. // Load constraints say that every member of our RHS solution has K // added to it, and that variable gets an edge to LHS. We also union // RHS+K's solution into the LHS solution. // Store constraints say that every member of our LHS solution has K // added to it, and that variable gets an edge from RHS. We also union // RHS's solution into the LHS+K solution. unsigned *Src; unsigned *Dest; unsigned K = li->Offset; unsigned CurrMember; if (li->Type == Constraint::Load) { Src = &CurrMember; Dest = &li->Dest; } else if (li->Type == Constraint::Store) { Src = &li->Src; Dest = &CurrMember; } else { // TODO Handle offseted copy constraint li++; continue; } // See if we can use Hybrid Cycle Detection (that is, check // if it was a statically detected offline equivalence that // involves pointers; if so, remove the redundant constraints). if( SCC && K == 0 ) { #if FULL_UNIVERSAL CurrMember = Rep; if (GraphNodes[*Src].Edges->test_and_set(*Dest)) if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo)) NextWL->insert(&GraphNodes[*Dest]); #else for (unsigned i=0; i < RSV.size(); ++i) { CurrMember = RSV[i]; if (*Dest < NumberSpecialNodes) continue; if (GraphNodes[*Src].Edges->test_and_set(*Dest)) if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo)) NextWL->insert(&GraphNodes[*Dest]); } #endif // since all future elements of the points-to set will be // equivalent to the current ones, the complex constraints // become redundant. // std::list::iterator lk = li; li++; #if !FULL_UNIVERSAL // In this case, we can still erase the constraints when the // elements of the points-to sets are referenced by *Dest, // but not when they are referenced by *Src (i.e. for a Load // constraint). This is because if another special variable is // put into the points-to set later, we still need to add the // new edge from that special variable. if( lk->Type != Constraint::Load) #endif GraphNodes[CurrNodeIndex].Constraints.erase(lk); } else { const SparseBitVector<> &Solution = CurrPointsTo; for (SparseBitVector<>::iterator bi = Solution.begin(); bi != Solution.end(); ++bi) { CurrMember = *bi; // Need to increment the member by K since that is where we are // supposed to copy to/from. Note that in positive weight cycles, // which occur in address taking of fields, K can go past // MaxK[CurrMember] elements, even though that is all it could point // to. if (K > 0 && K > MaxK[CurrMember]) continue; else CurrMember = FindNode(CurrMember + K); // Add an edge to the graph, so we can just do regular // bitmap ior next time. It may also let us notice a cycle. #if !FULL_UNIVERSAL if (*Dest < NumberSpecialNodes) continue; #endif if (GraphNodes[*Src].Edges->test_and_set(*Dest)) if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo)) NextWL->insert(&GraphNodes[*Dest]); } li++; } } SparseBitVector<> NewEdges; SparseBitVector<> ToErase; // Now all we have left to do is propagate points-to info along the // edges, erasing the redundant edges. for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin(); bi != CurrNode->Edges->end(); ++bi) { unsigned DestVar = *bi; unsigned Rep = FindNode(DestVar); // If we ended up with this node as our destination, or we've already // got an edge for the representative, delete the current edge. if (Rep == CurrNodeIndex || (Rep != DestVar && NewEdges.test(Rep))) { ToErase.set(DestVar); continue; } std::pair edge(CurrNodeIndex,Rep); // This is where we do lazy cycle detection. // If this is a cycle candidate (equal points-to sets and this // particular edge has not been cycle-checked previously), add to the // list to check for cycles on the next iteration. if (!EdgesChecked.count(edge) && *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) { EdgesChecked.insert(edge); TarjanWL.push(Rep); } // Union the points-to sets into the dest #if !FULL_UNIVERSAL if (Rep >= NumberSpecialNodes) #endif if (GraphNodes[Rep].PointsTo |= CurrPointsTo) { NextWL->insert(&GraphNodes[Rep]); } // If this edge's destination was collapsed, rewrite the edge. if (Rep != DestVar) { ToErase.set(DestVar); NewEdges.set(Rep); } } CurrNode->Edges->intersectWithComplement(ToErase); CurrNode->Edges |= NewEdges; } // Switch to other work list. WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t; } Node2DFS.clear(); Node2Deleted.clear(); for (unsigned i = 0; i < GraphNodes.size(); ++i) { Node *N = &GraphNodes[i]; delete N->OldPointsTo; delete N->Edges; } SDTActive = false; SDT.clear(); } //===----------------------------------------------------------------------===// // Union-Find //===----------------------------------------------------------------------===// // Unite nodes First and Second, returning the one which is now the // representative node. First and Second are indexes into GraphNodes unsigned Andersens::UniteNodes(unsigned First, unsigned Second, bool UnionByRank) { assert (First < GraphNodes.size() && Second < GraphNodes.size() && "Attempting to merge nodes that don't exist"); Node *FirstNode = &GraphNodes[First]; Node *SecondNode = &GraphNodes[Second]; assert (SecondNode->isRep() && FirstNode->isRep() && "Trying to unite two non-representative nodes!"); if (First == Second) return First; if (UnionByRank) { int RankFirst = (int) FirstNode ->NodeRep; int RankSecond = (int) SecondNode->NodeRep; // Rank starts at -1 and gets decremented as it increases. // Translation: higher rank, lower NodeRep value, which is always negative. if (RankFirst > RankSecond) { unsigned t = First; First = Second; Second = t; Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp; } else if (RankFirst == RankSecond) { FirstNode->NodeRep = (unsigned) (RankFirst - 1); } } SecondNode->NodeRep = First; #if !FULL_UNIVERSAL if (First >= NumberSpecialNodes) #endif if (FirstNode->PointsTo && SecondNode->PointsTo) FirstNode->PointsTo |= *(SecondNode->PointsTo); if (FirstNode->Edges && SecondNode->Edges) FirstNode->Edges |= *(SecondNode->Edges); if (!SecondNode->Constraints.empty()) FirstNode->Constraints.splice(FirstNode->Constraints.begin(), SecondNode->Constraints); if (FirstNode->OldPointsTo) { delete FirstNode->OldPointsTo; FirstNode->OldPointsTo = new SparseBitVector<>; } // Destroy interesting parts of the merged-from node. delete SecondNode->OldPointsTo; delete SecondNode->Edges; delete SecondNode->PointsTo; SecondNode->Edges = NULL; SecondNode->PointsTo = NULL; SecondNode->OldPointsTo = NULL; NumUnified++; DOUT << "Unified Node "; DEBUG(PrintNode(FirstNode)); DOUT << " and Node "; DEBUG(PrintNode(SecondNode)); DOUT << "\n"; if (SDTActive) if (SDT[Second] >= 0) { if (SDT[First] < 0) SDT[First] = SDT[Second]; else { UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) ); First = FindNode(First); } } return First; } // Find the index into GraphNodes of the node representing Node, performing // path compression along the way unsigned Andersens::FindNode(unsigned NodeIndex) { assert (NodeIndex < GraphNodes.size() && "Attempting to find a node that can't exist"); Node *N = &GraphNodes[NodeIndex]; if (N->isRep()) return NodeIndex; else return (N->NodeRep = FindNode(N->NodeRep)); } // Find the index into GraphNodes of the node representing Node, // don't perform path compression along the way (for Print) unsigned Andersens::FindNode(unsigned NodeIndex) const { assert (NodeIndex < GraphNodes.size() && "Attempting to find a node that can't exist"); const Node *N = &GraphNodes[NodeIndex]; if (N->isRep()) return NodeIndex; else return FindNode(N->NodeRep); } //===----------------------------------------------------------------------===// // Debugging Output //===----------------------------------------------------------------------===// void Andersens::PrintNode(const Node *N) const { if (N == &GraphNodes[UniversalSet]) { cerr << ""; return; } else if (N == &GraphNodes[NullPtr]) { cerr << ""; return; } else if (N == &GraphNodes[NullObject]) { cerr << ""; return; } if (!N->getValue()) { cerr << "artificial" << (intptr_t) N; return; } assert(N->getValue() != 0 && "Never set node label!"); Value *V = N->getValue(); if (Function *F = dyn_cast(V)) { if (isa(F->getFunctionType()->getReturnType()) && N == &GraphNodes[getReturnNode(F)]) { cerr << F->getName() << ":retval"; return; } else if (F->getFunctionType()->isVarArg() && N == &GraphNodes[getVarargNode(F)]) { cerr << F->getName() << ":vararg"; return; } } if (Instruction *I = dyn_cast(V)) cerr << I->getParent()->getParent()->getName() << ":"; else if (Argument *Arg = dyn_cast(V)) cerr << Arg->getParent()->getName() << ":"; if (V->hasName()) cerr << V->getName(); else cerr << "(unnamed)"; if (isa(V) || isa(V)) if (N == &GraphNodes[getObject(V)]) cerr << ""; } void Andersens::PrintConstraint(const Constraint &C) const { if (C.Type == Constraint::Store) { cerr << "*"; if (C.Offset != 0) cerr << "("; } PrintNode(&GraphNodes[C.Dest]); if (C.Type == Constraint::Store && C.Offset != 0) cerr << " + " << C.Offset << ")"; cerr << " = "; if (C.Type == Constraint::Load) { cerr << "*"; if (C.Offset != 0) cerr << "("; } else if (C.Type == Constraint::AddressOf) cerr << "&"; PrintNode(&GraphNodes[C.Src]); if (C.Offset != 0 && C.Type != Constraint::Store) cerr << " + " << C.Offset; if (C.Type == Constraint::Load && C.Offset != 0) cerr << ")"; cerr << "\n"; } void Andersens::PrintConstraints() const { cerr << "Constraints:\n"; for (unsigned i = 0, e = Constraints.size(); i != e; ++i) PrintConstraint(Constraints[i]); } void Andersens::PrintPointsToGraph() const { cerr << "Points-to graph:\n"; for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) { const Node *N = &GraphNodes[i]; if (FindNode(i) != i) { PrintNode(N); cerr << "\t--> same as "; PrintNode(&GraphNodes[FindNode(i)]); cerr << "\n"; } else { cerr << "[" << (N->PointsTo->count()) << "] "; PrintNode(N); cerr << "\t--> "; bool first = true; for (SparseBitVector<>::iterator bi = N->PointsTo->begin(); bi != N->PointsTo->end(); ++bi) { if (!first) cerr << ", "; PrintNode(&GraphNodes[*bi]); first = false; } cerr << "\n"; } } }