//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=// // // This file defines the very important Value class. This is subclassed by a // bunch of other important classes, like Instruction, Function, Type, etc... // // This file also defines the Use<> template for users of value. // //===----------------------------------------------------------------------===// #ifndef LLVM_VALUE_H #define LLVM_VALUE_H #include #include "llvm/Annotation.h" #include "llvm/AbstractTypeUser.h" #include "Support/Casting.h" #include class User; class Type; class Constant; class Argument; class Instruction; class BasicBlock; class GlobalValue; class Function; class GlobalVariable; class SymbolTable; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// class Value : public Annotable, // Values are annotable public AbstractTypeUser { // Values use potentially abstract types public: enum ValueTy { TypeVal, // This is an instance of Type ConstantVal, // This is an instance of Constant ArgumentVal, // This is an instance of Argument InstructionVal, // This is an instance of Instruction BasicBlockVal, // This is an instance of BasicBlock FunctionVal, // This is an instance of Function GlobalVariableVal, // This is an instance of GlobalVariable }; private: std::vector Uses; std::string Name; PATypeHandle Ty; ValueTy VTy; Value(const Value &); // Do not implement protected: inline void setType(const Type *ty) { Ty = ty; } public: Value(const Type *Ty, ValueTy vty, const std::string &name = ""); virtual ~Value(); // Support for debugging void dump() const; // Implement operator<< on Value... virtual void print(std::ostream &O) const = 0; // All values can potentially be typed inline const Type *getType() const { return Ty; } // All values can potentially be named... inline bool hasName() const { return Name != ""; } inline const std::string &getName() const { return Name; } virtual void setName(const std::string &name, SymbolTable * = 0) { Name = name; } // Methods for determining the subtype of this Value. The getValueType() // method returns the type of the value directly. The cast*() methods are // equivalent to using dynamic_cast<>... if the cast is successful, this is // returned, otherwise you get a null pointer. // // The family of functions Val->castAsserting() is used in the same // way as the Val->cast() instructions, but they assert the expected // type instead of checking it at runtime. // inline ValueTy getValueType() const { return VTy; } // replaceAllUsesWith - Go through the uses list for this definition and make // each use point to "D" instead of "this". After this completes, 'this's // use list should be empty. // void replaceAllUsesWith(Value *D); // refineAbstractType - This function is implemented because we use // potentially abstract types, and these types may be resolved to more // concrete types after we are constructed. // virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); //---------------------------------------------------------------------- // Methods for handling the vector of uses of this Value. // typedef std::vector::iterator use_iterator; typedef std::vector::const_iterator use_const_iterator; inline unsigned use_size() const { return Uses.size(); } inline bool use_empty() const { return Uses.empty(); } inline use_iterator use_begin() { return Uses.begin(); } inline use_const_iterator use_begin() const { return Uses.begin(); } inline use_iterator use_end() { return Uses.end(); } inline use_const_iterator use_end() const { return Uses.end(); } inline User *use_back() { return Uses.back(); } inline const User *use_back() const { return Uses.back(); } inline void use_push_back(User *I) { Uses.push_back(I); } User *use_remove(use_iterator &I); inline void addUse(User *I) { Uses.push_back(I); } void killUse(User *I); }; inline std::ostream &operator<<(std::ostream &OS, const Value *V) { if (V == 0) OS << " value!\n"; else V->print(OS); return OS; } inline std::ostream &operator<<(std::ostream &OS, const Value &V) { V.print(OS); return OS; } //===----------------------------------------------------------------------===// // UseTy Class //===----------------------------------------------------------------------===// // UseTy and it's friendly typedefs (Use) are here to make keeping the "use" // list of a definition node up-to-date really easy. // template class UseTy { ValueSubclass *Val; User *U; public: inline UseTy(ValueSubclass *v, User *user) { Val = v; U = user; if (Val) Val->addUse(U); } inline ~UseTy() { if (Val) Val->killUse(U); } inline operator ValueSubclass *() const { return Val; } inline UseTy(const UseTy &user) { Val = 0; U = user.U; operator=(user.Val); } inline ValueSubclass *operator=(ValueSubclass *V) { if (Val) Val->killUse(U); Val = V; if (V) V->addUse(U); return V; } inline ValueSubclass *operator->() { return Val; } inline const ValueSubclass *operator->() const { return Val; } inline ValueSubclass *get() { return Val; } inline const ValueSubclass *get() const { return Val; } inline UseTy &operator=(const UseTy &user) { if (Val) Val->killUse(U); Val = user.Val; Val->addUse(U); return *this; } }; typedef UseTy Use; // Provide Use as a common UseTy type template struct simplify_type > { typedef typename simplify_type::SimpleType SimpleType; static SimpleType getSimplifiedValue(const UseTy &Val) { return (SimpleType)Val.get(); } }; template struct simplify_type > { typedef typename simplify_type::SimpleType SimpleType; static SimpleType getSimplifiedValue(const UseTy &Val) { return (SimpleType)Val.get(); } }; // isa - Provide some specializations of isa so that we don't have to include // the subtype header files to test to see if the value is a subclass... // template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::TypeVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::ConstantVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::ArgumentVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::InstructionVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::BasicBlockVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::FunctionVal; } template <> inline bool isa_impl(const Value &Val) { return Val.getValueType() == Value::GlobalVariableVal; } template <> inline bool isa_impl(const Value &Val) { return isa(Val) || isa(Val); } #endif