//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "codegenprepare" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/ValueMap.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/BypassSlowDivision.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace llvm::PatternMatch; STATISTIC(NumBlocksElim, "Number of blocks eliminated"); STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps"); STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " "of sunken Casts"); STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " "computations were sunk"); STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); STATISTIC(NumRetsDup, "Number of return instructions duplicated"); STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); static cl::opt DisableBranchOpts( "disable-cgp-branch-opts", cl::Hidden, cl::init(false), cl::desc("Disable branch optimizations in CodeGenPrepare")); static cl::opt DisableSelectToBranch( "disable-cgp-select2branch", cl::Hidden, cl::init(false), cl::desc("Disable select to branch conversion.")); namespace { typedef SmallPtrSet SetOfInstrs; typedef DenseMap InstrToOrigTy; class CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetMachine *TM; const TargetLowering *TLI; const TargetLibraryInfo *TLInfo; DominatorTree *DT; /// CurInstIterator - As we scan instructions optimizing them, this is the /// next instruction to optimize. Xforms that can invalidate this should /// update it. BasicBlock::iterator CurInstIterator; /// Keeps track of non-local addresses that have been sunk into a block. /// This allows us to avoid inserting duplicate code for blocks with /// multiple load/stores of the same address. ValueMap SunkAddrs; /// Keeps track of all truncates inserted for the current function. SetOfInstrs InsertedTruncsSet; /// Keeps track of the type of the related instruction before their /// promotion for the current function. InstrToOrigTy PromotedInsts; /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to /// be updated. bool ModifiedDT; /// OptSize - True if optimizing for size. bool OptSize; public: static char ID; // Pass identification, replacement for typeid explicit CodeGenPrepare(const TargetMachine *TM = 0) : FunctionPass(ID), TM(TM), TLI(0) { initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); const char *getPassName() const { return "CodeGen Prepare"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addRequired(); } private: bool EliminateFallThrough(Function &F); bool EliminateMostlyEmptyBlocks(Function &F); bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void EliminateMostlyEmptyBlock(BasicBlock *BB); bool OptimizeBlock(BasicBlock &BB); bool OptimizeInst(Instruction *I); bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); bool OptimizeInlineAsmInst(CallInst *CS); bool OptimizeCallInst(CallInst *CI); bool MoveExtToFormExtLoad(Instruction *I); bool OptimizeExtUses(Instruction *I); bool OptimizeSelectInst(SelectInst *SI); bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); bool DupRetToEnableTailCallOpts(BasicBlock *BB); bool PlaceDbgValues(Function &F); }; } char CodeGenPrepare::ID = 0; static void *initializeCodeGenPreparePassOnce(PassRegistry &Registry) { initializeTargetLibraryInfoPass(Registry); PassInfo *PI = new PassInfo( "Optimize for code generation", "codegenprepare", &CodeGenPrepare::ID, PassInfo::NormalCtor_t(callDefaultCtor), false, false, PassInfo::TargetMachineCtor_t(callTargetMachineCtor)); Registry.registerPass(*PI, true); return PI; } void llvm::initializeCodeGenPreparePass(PassRegistry &Registry) { CALL_ONCE_INITIALIZATION(initializeCodeGenPreparePassOnce) } FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { return new CodeGenPrepare(TM); } bool CodeGenPrepare::runOnFunction(Function &F) { bool EverMadeChange = false; // Clear per function information. InsertedTruncsSet.clear(); PromotedInsts.clear(); ModifiedDT = false; if (TM) TLI = TM->getTargetLowering(); TLInfo = &getAnalysis(); DominatorTreeWrapperPass *DTWP = getAnalysisIfAvailable(); DT = DTWP ? &DTWP->getDomTree() : 0; OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); /// This optimization identifies DIV instructions that can be /// profitably bypassed and carried out with a shorter, faster divide. if (!OptSize && TLI && TLI->isSlowDivBypassed()) { const DenseMap &BypassWidths = TLI->getBypassSlowDivWidths(); for (Function::iterator I = F.begin(); I != F.end(); I++) EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); } // Eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= EliminateMostlyEmptyBlocks(F); // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. EverMadeChange |= PlaceDbgValues(F); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator I = F.begin(); I != F.end(); ) { BasicBlock *BB = I++; MadeChange |= OptimizeBlock(*BB); } EverMadeChange |= MadeChange; } SunkAddrs.clear(); if (!DisableBranchOpts) { MadeChange = false; SmallPtrSet WorkList; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { SmallVector Successors(succ_begin(BB), succ_end(BB)); MadeChange |= ConstantFoldTerminator(BB, true); if (!MadeChange) continue; for (SmallVectorImpl::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Delete the dead blocks and any of their dead successors. MadeChange |= !WorkList.empty(); while (!WorkList.empty()) { BasicBlock *BB = *WorkList.begin(); WorkList.erase(BB); SmallVector Successors(succ_begin(BB), succ_end(BB)); DeleteDeadBlock(BB); for (SmallVectorImpl::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Merge pairs of basic blocks with unconditional branches, connected by // a single edge. if (EverMadeChange || MadeChange) MadeChange |= EliminateFallThrough(F); if (MadeChange) ModifiedDT = true; EverMadeChange |= MadeChange; } if (ModifiedDT && DT) DT->recalculate(F); return EverMadeChange; } /// EliminateFallThrough - Merge basic blocks which are connected /// by a single edge, where one of the basic blocks has a single successor /// pointing to the other basic block, which has a single predecessor. bool CodeGenPrepare::EliminateFallThrough(Function &F) { bool Changed = false; // Scan all of the blocks in the function, except for the entry block. for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If the destination block has a single pred, then this is a trivial // edge, just collapse it. BasicBlock *SinglePred = BB->getSinglePredecessor(); // Don't merge if BB's address is taken. if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; BranchInst *Term = dyn_cast(SinglePred->getTerminator()); if (Term && !Term->isConditional()) { Changed = true; DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); // Remember if SinglePred was the entry block of the function. // If so, we will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(BB, this); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); // We have erased a block. Update the iterator. I = BB; } } return Changed; } /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, /// debug info directives, and an unconditional branch. Passes before isel /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for /// isel. Start by eliminating these blocks so we can split them the way we /// want them. bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isUnconditional()) continue; // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. BasicBlock::iterator BBI = BI; if (BBI != BB->begin()) { --BBI; while (isa(BBI)) { if (BBI == BB->begin()) break; --BBI; } if (!isa(BBI) && !isa(BBI)) continue; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) continue; if (!CanMergeBlocks(BB, DestBB)) continue; EliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a /// single uncond branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. BasicBlock::const_iterator BBI = BB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { const Instruction *User = cast(*UI); if (User->getParent() != DestBB || !isa(User)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (User->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast(User)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet BBPreds; if (const PHINode *BBPN = dyn_cast(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? BBI = DestBB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { const Value *V1 = PN->getIncomingValueForBlock(Pred); const Value *V2 = PN->getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and /// an unconditional branch in it. void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { if (SinglePred != DestBB) { // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(DestBB, this); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); return; } } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. PHINode *PN; for (BasicBlock::iterator BBI = DestBB->begin(); (PN = dyn_cast(BBI)); ++BBI) { // Remove the incoming value for BB, and remember it. Value *InVal = PN->removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN->addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); if (DT && !ModifiedDT) { BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); DT->changeImmediateDominator(DestBB, NewIDom); DT->eraseNode(BB); } BB->eraseFromParent(); ++NumBlocksElim; DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); } /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), /// sink it into user blocks to reduce the number of virtual /// registers that must be created and coalesced. /// /// Return true if any changes are made. /// static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ // If this is a noop copy, EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::TypePromoteInteger) SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::TypePromoteInteger) DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap InsertedCasts; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) { UserBB = PN->getIncomingBlock(UI); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; ++NumCastUses; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce /// the number of virtual registers that must be created and coalesced. This is /// a clear win except on targets with multiple condition code registers /// (PowerPC), where it might lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool OptimizeCmpExpression(CmpInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCmp - Only insert a cmp in each block once. DenseMap InsertedCmps; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedCmp = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", InsertPt); MadeChange = true; } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; ++NumCmpUses; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } namespace { class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { protected: void replaceCall(Value *With) { CI->replaceAllUsesWith(With); CI->eraseFromParent(); } bool isFoldable(unsigned SizeCIOp, unsigned, bool) const { if (ConstantInt *SizeCI = dyn_cast(CI->getArgOperand(SizeCIOp))) return SizeCI->isAllOnesValue(); return false; } }; } // end anonymous namespace bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { BasicBlock *BB = CI->getParent(); // Lower inline assembly if we can. // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa(CI->getCalledValue())) { if (TLI->ExpandInlineAsm(CI)) { // Avoid invalidating the iterator. CurInstIterator = BB->begin(); // Avoid processing instructions out of order, which could cause // reuse before a value is defined. SunkAddrs.clear(); return true; } // Sink address computing for memory operands into the block. if (OptimizeInlineAsmInst(CI)) return true; } // Lower all uses of llvm.objectsize.* IntrinsicInst *II = dyn_cast(CI); if (II && II->getIntrinsicID() == Intrinsic::objectsize) { bool Min = (cast(II->getArgOperand(1))->getZExtValue() == 1); Type *ReturnTy = CI->getType(); Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); // Substituting this can cause recursive simplifications, which can // invalidate our iterator. Use a WeakVH to hold onto it in case this // happens. WeakVH IterHandle(CurInstIterator); replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0, TLInfo, ModifiedDT ? 0 : DT); // If the iterator instruction was recursively deleted, start over at the // start of the block. if (IterHandle != CurInstIterator) { CurInstIterator = BB->begin(); SunkAddrs.clear(); } return true; } if (II && TLI) { SmallVector PtrOps; Type *AccessTy; if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) while (!PtrOps.empty()) if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) return true; } // From here on out we're working with named functions. if (CI->getCalledFunction() == 0) return false; // We'll need DataLayout from here on out. const DataLayout *TD = TLI ? TLI->getDataLayout() : 0; if (!TD) return false; // Lower all default uses of _chk calls. This is very similar // to what InstCombineCalls does, but here we are only lowering calls // that have the default "don't know" as the objectsize. Anything else // should be left alone. CodeGenPrepareFortifiedLibCalls Simplifier; return Simplifier.fold(CI, TD, TLInfo); } /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return /// instructions to the predecessor to enable tail call optimizations. The /// case it is currently looking for is: /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// br label %return /// bb1: /// %tmp1 = tail call i32 @f1() /// br label %return /// bb2: /// %tmp2 = tail call i32 @f2() /// br label %return /// return: /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] /// ret i32 %retval /// @endcode /// /// => /// /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// ret i32 %tmp0 /// bb1: /// %tmp1 = tail call i32 @f1() /// ret i32 %tmp1 /// bb2: /// %tmp2 = tail call i32 @f2() /// ret i32 %tmp2 /// @endcode bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { if (!TLI) return false; ReturnInst *RI = dyn_cast(BB->getTerminator()); if (!RI) return false; PHINode *PN = 0; BitCastInst *BCI = 0; Value *V = RI->getReturnValue(); if (V) { BCI = dyn_cast(V); if (BCI) V = BCI->getOperand(0); PN = dyn_cast(V); if (!PN) return false; } if (PN && PN->getParent() != BB) return false; // It's not safe to eliminate the sign / zero extension of the return value. // See llvm::isInTailCallPosition(). const Function *F = BB->getParent(); AttributeSet CallerAttrs = F->getAttributes(); if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) return false; // Make sure there are no instructions between the PHI and return, or that the // return is the first instruction in the block. if (PN) { BasicBlock::iterator BI = BB->begin(); do { ++BI; } while (isa(BI)); if (&*BI == BCI) // Also skip over the bitcast. ++BI; if (&*BI != RI) return false; } else { BasicBlock::iterator BI = BB->begin(); while (isa(BI)) ++BI; if (&*BI != RI) return false; } /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail /// call. SmallVector TailCalls; if (PN) { for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { CallInst *CI = dyn_cast(PN->getIncomingValue(I)); // Make sure the phi value is indeed produced by the tail call. if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } else { SmallPtrSet VisitedBBs; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (!VisitedBBs.insert(*PI)) continue; BasicBlock::InstListType &InstList = (*PI)->getInstList(); BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); do { ++RI; } while (RI != RE && isa(&*RI)); if (RI == RE) continue; CallInst *CI = dyn_cast(&*RI); if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } bool Changed = false; for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { CallInst *CI = TailCalls[i]; CallSite CS(CI); // Conservatively require the attributes of the call to match those of the // return. Ignore noalias because it doesn't affect the call sequence. AttributeSet CalleeAttrs = CS.getAttributes(); if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias) != AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias)) continue; // Make sure the call instruction is followed by an unconditional branch to // the return block. BasicBlock *CallBB = CI->getParent(); BranchInst *BI = dyn_cast(CallBB->getTerminator()); if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) continue; // Duplicate the return into CallBB. (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); ModifiedDT = Changed = true; ++NumRetsDup; } // If we eliminated all predecessors of the block, delete the block now. if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) BB->eraseFromParent(); return Changed; } //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// namespace { /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode /// which holds actual Value*'s for register values. struct ExtAddrMode : public TargetLowering::AddrMode { Value *BaseReg; Value *ScaledReg; ExtAddrMode() : BaseReg(0), ScaledReg(0) {} void print(raw_ostream &OS) const; void dump() const; bool operator==(const ExtAddrMode& O) const { return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); } }; #ifndef NDEBUG static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { AM.print(OS); return OS; } #endif void ExtAddrMode::print(raw_ostream &OS) const { bool NeedPlus = false; OS << "["; if (BaseGV) { OS << (NeedPlus ? " + " : "") << "GV:"; BaseGV->printAsOperand(OS, /*PrintType=*/false); NeedPlus = true; } if (BaseOffs) OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; if (BaseReg) { OS << (NeedPlus ? " + " : "") << "Base:"; BaseReg->printAsOperand(OS, /*PrintType=*/false); NeedPlus = true; } if (Scale) { OS << (NeedPlus ? " + " : "") << Scale << "*"; ScaledReg->printAsOperand(OS, /*PrintType=*/false); } OS << ']'; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ExtAddrMode::dump() const { print(dbgs()); dbgs() << '\n'; } #endif /// \brief This class provides transaction based operation on the IR. /// Every change made through this class is recorded in the internal state and /// can be undone (rollback) until commit is called. class TypePromotionTransaction { /// \brief This represents the common interface of the individual transaction. /// Each class implements the logic for doing one specific modification on /// the IR via the TypePromotionTransaction. class TypePromotionAction { protected: /// The Instruction modified. Instruction *Inst; public: /// \brief Constructor of the action. /// The constructor performs the related action on the IR. TypePromotionAction(Instruction *Inst) : Inst(Inst) {} virtual ~TypePromotionAction() {} /// \brief Undo the modification done by this action. /// When this method is called, the IR must be in the same state as it was /// before this action was applied. /// \pre Undoing the action works if and only if the IR is in the exact same /// state as it was directly after this action was applied. virtual void undo() = 0; /// \brief Advocate every change made by this action. /// When the results on the IR of the action are to be kept, it is important /// to call this function, otherwise hidden information may be kept forever. virtual void commit() { // Nothing to be done, this action is not doing anything. } }; /// \brief Utility to remember the position of an instruction. class InsertionHandler { /// Position of an instruction. /// Either an instruction: /// - Is the first in a basic block: BB is used. /// - Has a previous instructon: PrevInst is used. union { Instruction *PrevInst; BasicBlock *BB; } Point; /// Remember whether or not the instruction had a previous instruction. bool HasPrevInstruction; public: /// \brief Record the position of \p Inst. InsertionHandler(Instruction *Inst) { BasicBlock::iterator It = Inst; HasPrevInstruction = (It != (Inst->getParent()->begin())); if (HasPrevInstruction) Point.PrevInst = --It; else Point.BB = Inst->getParent(); } /// \brief Insert \p Inst at the recorded position. void insert(Instruction *Inst) { if (HasPrevInstruction) { if (Inst->getParent()) Inst->removeFromParent(); Inst->insertAfter(Point.PrevInst); } else { Instruction *Position = Point.BB->getFirstInsertionPt(); if (Inst->getParent()) Inst->moveBefore(Position); else Inst->insertBefore(Position); } } }; /// \brief Move an instruction before another. class InstructionMoveBefore : public TypePromotionAction { /// Original position of the instruction. InsertionHandler Position; public: /// \brief Move \p Inst before \p Before. InstructionMoveBefore(Instruction *Inst, Instruction *Before) : TypePromotionAction(Inst), Position(Inst) { DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); Inst->moveBefore(Before); } /// \brief Move the instruction back to its original position. void undo() { DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); Position.insert(Inst); } }; /// \brief Set the operand of an instruction with a new value. class OperandSetter : public TypePromotionAction { /// Original operand of the instruction. Value *Origin; /// Index of the modified instruction. unsigned Idx; public: /// \brief Set \p Idx operand of \p Inst with \p NewVal. OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) : TypePromotionAction(Inst), Idx(Idx) { DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"); Origin = Inst->getOperand(Idx); Inst->setOperand(Idx, NewVal); } /// \brief Restore the original value of the instruction. void undo() { DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"); Inst->setOperand(Idx, Origin); } }; /// \brief Hide the operands of an instruction. /// Do as if this instruction was not using any of its operands. class OperandsHider : public TypePromotionAction { /// The list of original operands. SmallVector OriginalValues; public: /// \brief Remove \p Inst from the uses of the operands of \p Inst. OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); unsigned NumOpnds = Inst->getNumOperands(); OriginalValues.reserve(NumOpnds); for (unsigned It = 0; It < NumOpnds; ++It) { // Save the current operand. Value *Val = Inst->getOperand(It); OriginalValues.push_back(Val); // Set a dummy one. // We could use OperandSetter here, but that would implied an overhead // that we are not willing to pay. Inst->setOperand(It, UndefValue::get(Val->getType())); } } /// \brief Restore the original list of uses. void undo() { DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) Inst->setOperand(It, OriginalValues[It]); } }; /// \brief Build a truncate instruction. class TruncBuilder : public TypePromotionAction { public: /// \brief Build a truncate instruction of \p Opnd producing a \p Ty /// result. /// trunc Opnd to Ty. TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { IRBuilder<> Builder(Opnd); Inst = cast(Builder.CreateTrunc(Opnd, Ty, "promoted")); DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n"); } /// \brief Get the built instruction. Instruction *getBuiltInstruction() { return Inst; } /// \brief Remove the built instruction. void undo() { DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n"); Inst->eraseFromParent(); } }; /// \brief Build a sign extension instruction. class SExtBuilder : public TypePromotionAction { public: /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty /// result. /// sext Opnd to Ty. SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) : TypePromotionAction(Inst) { IRBuilder<> Builder(InsertPt); Inst = cast(Builder.CreateSExt(Opnd, Ty, "promoted")); DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n"); } /// \brief Get the built instruction. Instruction *getBuiltInstruction() { return Inst; } /// \brief Remove the built instruction. void undo() { DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n"); Inst->eraseFromParent(); } }; /// \brief Mutate an instruction to another type. class TypeMutator : public TypePromotionAction { /// Record the original type. Type *OrigTy; public: /// \brief Mutate the type of \p Inst into \p NewTy. TypeMutator(Instruction *Inst, Type *NewTy) : TypePromotionAction(Inst), OrigTy(Inst->getType()) { DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"); Inst->mutateType(NewTy); } /// \brief Mutate the instruction back to its original type. void undo() { DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"); Inst->mutateType(OrigTy); } }; /// \brief Replace the uses of an instruction by another instruction. class UsesReplacer : public TypePromotionAction { /// Helper structure to keep track of the replaced uses. struct InstructionAndIdx { /// The instruction using the instruction. Instruction *Inst; /// The index where this instruction is used for Inst. unsigned Idx; InstructionAndIdx(Instruction *Inst, unsigned Idx) : Inst(Inst), Idx(Idx) {} }; /// Keep track of the original uses (pair Instruction, Index). SmallVector OriginalUses; typedef SmallVectorImpl::iterator use_iterator; public: /// \brief Replace all the use of \p Inst by \p New. UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"); // Record the original uses. for (Value::use_iterator UseIt = Inst->use_begin(), EndIt = Inst->use_end(); UseIt != EndIt; ++UseIt) { Instruction *Use = cast(*UseIt); OriginalUses.push_back(InstructionAndIdx(Use, UseIt.getOperandNo())); } // Now, we can replace the uses. Inst->replaceAllUsesWith(New); } /// \brief Reassign the original uses of Inst to Inst. void undo() { DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); for (use_iterator UseIt = OriginalUses.begin(), EndIt = OriginalUses.end(); UseIt != EndIt; ++UseIt) { UseIt->Inst->setOperand(UseIt->Idx, Inst); } } }; /// \brief Remove an instruction from the IR. class InstructionRemover : public TypePromotionAction { /// Original position of the instruction. InsertionHandler Inserter; /// Helper structure to hide all the link to the instruction. In other /// words, this helps to do as if the instruction was removed. OperandsHider Hider; /// Keep track of the uses replaced, if any. UsesReplacer *Replacer; public: /// \brief Remove all reference of \p Inst and optinally replace all its /// uses with New. /// \pre If !Inst->use_empty(), then New != NULL InstructionRemover(Instruction *Inst, Value *New = NULL) : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), Replacer(NULL) { if (New) Replacer = new UsesReplacer(Inst, New); DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); Inst->removeFromParent(); } ~InstructionRemover() { delete Replacer; } /// \brief Really remove the instruction. void commit() { delete Inst; } /// \brief Resurrect the instruction and reassign it to the proper uses if /// new value was provided when build this action. void undo() { DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); Inserter.insert(Inst); if (Replacer) Replacer->undo(); Hider.undo(); } }; public: /// Restoration point. /// The restoration point is a pointer to an action instead of an iterator /// because the iterator may be invalidated but not the pointer. typedef const TypePromotionAction *ConstRestorationPt; /// Advocate every changes made in that transaction. void commit(); /// Undo all the changes made after the given point. void rollback(ConstRestorationPt Point); /// Get the current restoration point. ConstRestorationPt getRestorationPoint() const; /// \name API for IR modification with state keeping to support rollback. /// @{ /// Same as Instruction::setOperand. void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); /// Same as Instruction::eraseFromParent. void eraseInstruction(Instruction *Inst, Value *NewVal = NULL); /// Same as Value::replaceAllUsesWith. void replaceAllUsesWith(Instruction *Inst, Value *New); /// Same as Value::mutateType. void mutateType(Instruction *Inst, Type *NewTy); /// Same as IRBuilder::createTrunc. Instruction *createTrunc(Instruction *Opnd, Type *Ty); /// Same as IRBuilder::createSExt. Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); /// Same as Instruction::moveBefore. void moveBefore(Instruction *Inst, Instruction *Before); /// @} ~TypePromotionTransaction(); private: /// The ordered list of actions made so far. SmallVector Actions; typedef SmallVectorImpl::iterator CommitPt; }; void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, Value *NewVal) { Actions.push_back( new TypePromotionTransaction::OperandSetter(Inst, Idx, NewVal)); } void TypePromotionTransaction::eraseInstruction(Instruction *Inst, Value *NewVal) { Actions.push_back( new TypePromotionTransaction::InstructionRemover(Inst, NewVal)); } void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, Value *New) { Actions.push_back(new TypePromotionTransaction::UsesReplacer(Inst, New)); } void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { Actions.push_back(new TypePromotionTransaction::TypeMutator(Inst, NewTy)); } Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { TruncBuilder *TB = new TruncBuilder(Opnd, Ty); Actions.push_back(TB); return TB->getBuiltInstruction(); } Instruction *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, Type *Ty) { SExtBuilder *SB = new SExtBuilder(Inst, Opnd, Ty); Actions.push_back(SB); return SB->getBuiltInstruction(); } void TypePromotionTransaction::moveBefore(Instruction *Inst, Instruction *Before) { Actions.push_back( new TypePromotionTransaction::InstructionMoveBefore(Inst, Before)); } TypePromotionTransaction::ConstRestorationPt TypePromotionTransaction::getRestorationPoint() const { return Actions.rbegin() != Actions.rend() ? *Actions.rbegin() : NULL; } void TypePromotionTransaction::commit() { for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It) { (*It)->commit(); delete *It; } Actions.clear(); } void TypePromotionTransaction::rollback( TypePromotionTransaction::ConstRestorationPt Point) { while (!Actions.empty() && Point != (*Actions.rbegin())) { TypePromotionAction *Curr = Actions.pop_back_val(); Curr->undo(); delete Curr; } } TypePromotionTransaction::~TypePromotionTransaction() { for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It) delete *It; Actions.clear(); } /// \brief A helper class for matching addressing modes. /// /// This encapsulates the logic for matching the target-legal addressing modes. class AddressingModeMatcher { SmallVectorImpl &AddrModeInsts; const TargetLowering &TLI; /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and /// the memory instruction that we're computing this address for. Type *AccessTy; Instruction *MemoryInst; /// AddrMode - This is the addressing mode that we're building up. This is /// part of the return value of this addressing mode matching stuff. ExtAddrMode &AddrMode; /// The truncate instruction inserted by other CodeGenPrepare optimizations. const SetOfInstrs &InsertedTruncs; /// A map from the instructions to their type before promotion. InstrToOrigTy &PromotedInsts; /// The ongoing transaction where every action should be registered. TypePromotionTransaction &TPT; /// IgnoreProfitability - This is set to true when we should not do /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode /// always returns true. bool IgnoreProfitability; AddressingModeMatcher(SmallVectorImpl &AMI, const TargetLowering &T, Type *AT, Instruction *MI, ExtAddrMode &AM, const SetOfInstrs &InsertedTruncs, InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT) : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { IgnoreProfitability = false; } public: /// Match - Find the maximal addressing mode that a load/store of V can fold, /// give an access type of AccessTy. This returns a list of involved /// instructions in AddrModeInsts. /// \p InsertedTruncs The truncate instruction inserted by other /// CodeGenPrepare /// optimizations. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p The ongoing transaction where every action should be registered. static ExtAddrMode Match(Value *V, Type *AccessTy, Instruction *MemoryInst, SmallVectorImpl &AddrModeInsts, const TargetLowering &TLI, const SetOfInstrs &InsertedTruncs, InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT) { ExtAddrMode Result; bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, MemoryInst, Result, InsertedTruncs, PromotedInsts, TPT).MatchAddr(V, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); return Result; } private: bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); bool MatchAddr(Value *V, unsigned Depth); bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, bool *MovedAway = NULL); bool IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter); bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, Value *PromotedOperand) const; }; /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. /// Return true and update AddrMode if this addr mode is legal for the target, /// false if not. bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth) { // If Scale is 1, then this is the same as adding ScaleReg to the addressing // mode. Just process that directly. if (Scale == 1) return MatchAddr(ScaleReg, Depth); // If the scale is 0, it takes nothing to add this. if (Scale == 0) return true; // If we already have a scale of this value, we can add to it, otherwise, we // need an available scale field. if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) return false; ExtAddrMode TestAddrMode = AddrMode; // Add scale to turn X*4+X*3 -> X*7. This could also do things like // [A+B + A*7] -> [B+A*8]. TestAddrMode.Scale += Scale; TestAddrMode.ScaledReg = ScaleReg; // If the new address isn't legal, bail out. if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) return false; // It was legal, so commit it. AddrMode = TestAddrMode; // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now // to see if ScaleReg is actually X+C. If so, we can turn this into adding // X*Scale + C*Scale to addr mode. ConstantInt *CI = 0; Value *AddLHS = 0; if (isa(ScaleReg) && // not a constant expr. match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { TestAddrMode.ScaledReg = AddLHS; TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; // If this addressing mode is legal, commit it and remember that we folded // this instruction. if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { AddrModeInsts.push_back(cast(ScaleReg)); AddrMode = TestAddrMode; return true; } } // Otherwise, not (x+c)*scale, just return what we have. return true; } /// MightBeFoldableInst - This is a little filter, which returns true if an /// addressing computation involving I might be folded into a load/store /// accessing it. This doesn't need to be perfect, but needs to accept at least /// the set of instructions that MatchOperationAddr can. static bool MightBeFoldableInst(Instruction *I) { switch (I->getOpcode()) { case Instruction::BitCast: // Don't touch identity bitcasts. if (I->getType() == I->getOperand(0)->getType()) return false; return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return true; case Instruction::IntToPtr: // We know the input is intptr_t, so this is foldable. return true; case Instruction::Add: return true; case Instruction::Mul: case Instruction::Shl: // Can only handle X*C and X << C. return isa(I->getOperand(1)); case Instruction::GetElementPtr: return true; default: return false; } } /// \brief Hepler class to perform type promotion. class TypePromotionHelper { /// \brief Utility function to check whether or not a sign extension of /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either /// using the operands of \p Inst or promoting \p Inst. /// In other words, check if: /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType. /// #1 Promotion applies: /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...). /// #2 Operand reuses: /// sext opnd1 to ConsideredSExtType. /// \p PromotedInsts maps the instructions to their type before promotion. static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType, const InstrToOrigTy &PromotedInsts); /// \brief Utility function to determine if \p OpIdx should be promoted when /// promoting \p Inst. static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) { if (isa(Inst) && OpIdx == 0) return false; return true; } /// \brief Utility function to promote the operand of \p SExt when this /// operand is a promotable trunc or sext. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p CreatedInsts[out] contains how many non-free instructions have been /// created to promote the operand of SExt. /// Should never be called directly. /// \return The promoted value which is used instead of SExt. static Value *promoteOperandForTruncAndSExt(Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts); /// \brief Utility function to promote the operand of \p SExt when this /// operand is promotable and is not a supported trunc or sext. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p CreatedInsts[out] contains how many non-free instructions have been /// created to promote the operand of SExt. /// Should never be called directly. /// \return The promoted value which is used instead of SExt. static Value *promoteOperandForOther(Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts); public: /// Type for the utility function that promotes the operand of SExt. typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts); /// \brief Given a sign extend instruction \p SExt, return the approriate /// action to promote the operand of \p SExt instead of using SExt. /// \return NULL if no promotable action is possible with the current /// sign extension. /// \p InsertedTruncs keeps track of all the truncate instructions inserted by /// the others CodeGenPrepare optimizations. This information is important /// because we do not want to promote these instructions as CodeGenPrepare /// will reinsert them later. Thus creating an infinite loop: create/remove. /// \p PromotedInsts maps the instructions to their type before promotion. static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs, const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts); }; bool TypePromotionHelper::canGetThrough(const Instruction *Inst, Type *ConsideredSExtType, const InstrToOrigTy &PromotedInsts) { // We can always get through sext. if (isa(Inst)) return true; // We can get through binary operator, if it is legal. In other words, the // binary operator must have a nuw or nsw flag. const BinaryOperator *BinOp = dyn_cast(Inst); if (BinOp && isa(BinOp) && (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap())) return true; // Check if we can do the following simplification. // sext(trunc(sext)) --> sext if (!isa(Inst)) return false; Value *OpndVal = Inst->getOperand(0); // Check if we can use this operand in the sext. // If the type is larger than the result type of the sign extension, // we cannot. if (OpndVal->getType()->getIntegerBitWidth() > ConsideredSExtType->getIntegerBitWidth()) return false; // If the operand of the truncate is not an instruction, we will not have // any information on the dropped bits. // (Actually we could for constant but it is not worth the extra logic). Instruction *Opnd = dyn_cast(OpndVal); if (!Opnd) return false; // Check if the source of the type is narrow enough. // I.e., check that trunc just drops sign extended bits. // #1 get the type of the operand. const Type *OpndType; InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); if (It != PromotedInsts.end()) OpndType = It->second; else if (isa(Opnd)) OpndType = cast(Opnd)->getOperand(0)->getType(); else return false; // #2 check that the truncate just drop sign extended bits. if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) return true; return false; } TypePromotionHelper::Action TypePromotionHelper::getAction( Instruction *SExt, const SetOfInstrs &InsertedTruncs, const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { Instruction *SExtOpnd = dyn_cast(SExt->getOperand(0)); Type *SExtTy = SExt->getType(); // If the operand of the sign extension is not an instruction, we cannot // get through. // If it, check we can get through. if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts)) return NULL; // Do not promote if the operand has been added by codegenprepare. // Otherwise, it means we are undoing an optimization that is likely to be // redone, thus causing potential infinite loop. if (isa(SExtOpnd) && InsertedTruncs.count(SExtOpnd)) return NULL; // SExt or Trunc instructions. // Return the related handler. if (isa(SExtOpnd) || isa(SExtOpnd)) return promoteOperandForTruncAndSExt; // Regular instruction. // Abort early if we will have to insert non-free instructions. if (!SExtOpnd->hasOneUse() && !TLI.isTruncateFree(SExtTy, SExtOpnd->getType())) return NULL; return promoteOperandForOther; } Value *TypePromotionHelper::promoteOperandForTruncAndSExt( llvm::Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) { // By construction, the operand of SExt is an instruction. Otherwise we cannot // get through it and this method should not be called. Instruction *SExtOpnd = cast(SExt->getOperand(0)); // Replace sext(trunc(opnd)) or sext(sext(opnd)) // => sext(opnd). TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); CreatedInsts = 0; // Remove dead code. if (SExtOpnd->use_empty()) TPT.eraseInstruction(SExtOpnd); // Check if the sext is still needed. if (SExt->getType() != SExt->getOperand(0)->getType()) return SExt; // At this point we have: sext ty opnd to ty. // Reassign the uses of SExt to the opnd and remove SExt. Value *NextVal = SExt->getOperand(0); TPT.eraseInstruction(SExt, NextVal); return NextVal; } Value * TypePromotionHelper::promoteOperandForOther(Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) { // By construction, the operand of SExt is an instruction. Otherwise we cannot // get through it and this method should not be called. Instruction *SExtOpnd = cast(SExt->getOperand(0)); CreatedInsts = 0; if (!SExtOpnd->hasOneUse()) { // SExtOpnd will be promoted. // All its uses, but SExt, will need to use a truncated value of the // promoted version. // Create the truncate now. Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType()); Trunc->removeFromParent(); // Insert it just after the definition. Trunc->insertAfter(SExtOpnd); TPT.replaceAllUsesWith(SExtOpnd, Trunc); // Restore the operand of SExt (which has been replace by the previous call // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. TPT.setOperand(SExt, 0, SExtOpnd); } // Get through the Instruction: // 1. Update its type. // 2. Replace the uses of SExt by Inst. // 3. Sign extend each operand that needs to be sign extended. // Remember the original type of the instruction before promotion. // This is useful to know that the high bits are sign extended bits. PromotedInsts.insert( std::pair(SExtOpnd, SExtOpnd->getType())); // Step #1. TPT.mutateType(SExtOpnd, SExt->getType()); // Step #2. TPT.replaceAllUsesWith(SExt, SExtOpnd); // Step #3. Instruction *SExtForOpnd = SExt; DEBUG(dbgs() << "Propagate SExt to operands\n"); for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx; ++OpIdx) { DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n'); if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() || !shouldSExtOperand(SExtOpnd, OpIdx)) { DEBUG(dbgs() << "No need to propagate\n"); continue; } // Check if we can statically sign extend the operand. Value *Opnd = SExtOpnd->getOperand(OpIdx); if (const ConstantInt *Cst = dyn_cast(Opnd)) { DEBUG(dbgs() << "Statically sign extend\n"); TPT.setOperand( SExtOpnd, OpIdx, ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue())); continue; } // UndefValue are typed, so we have to statically sign extend them. if (isa(Opnd)) { DEBUG(dbgs() << "Statically sign extend\n"); TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType())); continue; } // Otherwise we have to explicity sign extend the operand. // Check if SExt was reused to sign extend an operand. if (!SExtForOpnd) { // If yes, create a new one. DEBUG(dbgs() << "More operands to sext\n"); SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType()); ++CreatedInsts; } TPT.setOperand(SExtForOpnd, 0, Opnd); // Move the sign extension before the insertion point. TPT.moveBefore(SExtForOpnd, SExtOpnd); TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd); // If more sext are required, new instructions will have to be created. SExtForOpnd = NULL; } if (SExtForOpnd == SExt) { DEBUG(dbgs() << "Sign extension is useless now\n"); TPT.eraseInstruction(SExt); } return SExtOpnd; } /// IsPromotionProfitable - Check whether or not promoting an instruction /// to a wider type was profitable. /// \p MatchedSize gives the number of instructions that have been matched /// in the addressing mode after the promotion was applied. /// \p SizeWithPromotion gives the number of created instructions for /// the promotion plus the number of instructions that have been /// matched in the addressing mode before the promotion. /// \p PromotedOperand is the value that has been promoted. /// \return True if the promotion is profitable, false otherwise. bool AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, Value *PromotedOperand) const { // We folded less instructions than what we created to promote the operand. // This is not profitable. if (MatchedSize < SizeWithPromotion) return false; if (MatchedSize > SizeWithPromotion) return true; // The promotion is neutral but it may help folding the sign extension in // loads for instance. // Check that we did not create an illegal instruction. Instruction *PromotedInst = dyn_cast(PromotedOperand); if (!PromotedInst) return false; int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); // If the ISDOpcode is undefined, it was undefined before the promotion. if (!ISDOpcode) return true; // Otherwise, check if the promoted instruction is legal or not. return TLI.isOperationLegalOrCustom(ISDOpcode, EVT::getEVT(PromotedInst->getType())); } /// MatchOperationAddr - Given an instruction or constant expr, see if we can /// fold the operation into the addressing mode. If so, update the addressing /// mode and return true, otherwise return false without modifying AddrMode. /// If \p MovedAway is not NULL, it contains the information of whether or /// not AddrInst has to be folded into the addressing mode on success. /// If \p MovedAway == true, \p AddrInst will not be part of the addressing /// because it has been moved away. /// Thus AddrInst must not be added in the matched instructions. /// This state can happen when AddrInst is a sext, since it may be moved away. /// Therefore, AddrInst may not be valid when MovedAway is true and it must /// not be referenced anymore. bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, bool *MovedAway) { // Avoid exponential behavior on extremely deep expression trees. if (Depth >= 5) return false; // By default, all matched instructions stay in place. if (MovedAway) *MovedAway = false; switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return MatchAddr(AddrInst->getOperand(0), Depth); case Instruction::IntToPtr: // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::BitCast: // BitCast is always a noop, and we can handle it as long as it is // int->int or pointer->pointer (we don't want int<->fp or something). if ((AddrInst->getOperand(0)->getType()->isPointerTy() || AddrInst->getOperand(0)->getType()->isIntegerTy()) && // Don't touch identity bitcasts. These were probably put here by LSR, // and we don't want to mess around with them. Assume it knows what it // is doing. AddrInst->getOperand(0)->getType() != AddrInst->getType()) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::Add: { // Check to see if we can merge in the RHS then the LHS. If so, we win. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Start a transaction at this point. // The LHS may match but not the RHS. // Therefore, we need a higher level restoration point to undo partially // matched operation. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); if (MatchAddr(AddrInst->getOperand(1), Depth+1) && MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; // Restore the old addr mode info. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. if (MatchAddr(AddrInst->getOperand(0), Depth+1) && MatchAddr(AddrInst->getOperand(1), Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); break; } //case Instruction::Or: // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. //break; case Instruction::Mul: case Instruction::Shl: { // Can only handle X*C and X << C. ConstantInt *RHS = dyn_cast(AddrInst->getOperand(1)); if (!RHS) return false; int64_t Scale = RHS->getSExtValue(); if (Opcode == Instruction::Shl) Scale = 1LL << Scale; return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most // one variable offset. int VariableOperand = -1; unsigned VariableScale = 0; int64_t ConstantOffset = 0; const DataLayout *TD = TLI.getDataLayout(); gep_type_iterator GTI = gep_type_begin(AddrInst); for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { if (StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast(AddrInst->getOperand(i))->getZExtValue(); ConstantOffset += SL->getElementOffset(Idx); } else { uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *CI = dyn_cast(AddrInst->getOperand(i))) { ConstantOffset += CI->getSExtValue()*TypeSize; } else if (TypeSize) { // Scales of zero don't do anything. // We only allow one variable index at the moment. if (VariableOperand != -1) return false; // Remember the variable index. VariableOperand = i; VariableScale = TypeSize; } } } // A common case is for the GEP to only do a constant offset. In this case, // just add it to the disp field and check validity. if (VariableOperand == -1) { AddrMode.BaseOffs += ConstantOffset; if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ // Check to see if we can fold the base pointer in too. if (MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; } AddrMode.BaseOffs -= ConstantOffset; return false; } // Save the valid addressing mode in case we can't match. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // See if the scale and offset amount is valid for this target. AddrMode.BaseOffs += ConstantOffset; // Match the base operand of the GEP. if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { // If it couldn't be matched, just stuff the value in a register. if (AddrMode.HasBaseReg) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); } // Match the remaining variable portion of the GEP. if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If it couldn't be matched, try stuffing the base into a register // instead of matching it, and retrying the match of the scale. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); if (AddrMode.HasBaseReg) return false; AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); AddrMode.BaseOffs += ConstantOffset; if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If even that didn't work, bail. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } } return true; } case Instruction::SExt: { // Try to move this sext out of the way of the addressing mode. Instruction *SExt = cast(AddrInst); // Ask for a method for doing so. TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( SExt, InsertedTruncs, TLI, PromotedInsts); if (!TPH) return false; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); unsigned CreatedInsts = 0; Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts); // SExt has been moved away. // Thus either it will be rematched later in the recursive calls or it is // gone. Anyway, we must not fold it into the addressing mode at this point. // E.g., // op = add opnd, 1 // idx = sext op // addr = gep base, idx // is now: // promotedOpnd = sext opnd <- no match here // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) // addr = gep base, op <- match if (MovedAway) *MovedAway = true; assert(PromotedOperand && "TypePromotionHelper should have filtered out those cases"); ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); if (!MatchAddr(PromotedOperand, Depth) || !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, PromotedOperand)) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); TPT.rollback(LastKnownGood); return false; } return true; } } return false; } /// MatchAddr - If we can, try to add the value of 'Addr' into the current /// addressing mode. If Addr can't be added to AddrMode this returns false and /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type /// or intptr_t for the target. /// bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { // Start a transaction at this point that we will rollback if the matching // fails. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); if (ConstantInt *CI = dyn_cast(Addr)) { // Fold in immediates if legal for the target. AddrMode.BaseOffs += CI->getSExtValue(); if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseOffs -= CI->getSExtValue(); } else if (GlobalValue *GV = dyn_cast(Addr)) { // If this is a global variable, try to fold it into the addressing mode. if (AddrMode.BaseGV == 0) { AddrMode.BaseGV = GV; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseGV = 0; } } else if (Instruction *I = dyn_cast(Addr)) { ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Check to see if it is possible to fold this operation. bool MovedAway = false; if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { // This instruction may have been move away. If so, there is nothing // to check here. if (MovedAway) return true; // Okay, it's possible to fold this. Check to see if it is actually // *profitable* to do so. We use a simple cost model to avoid increasing // register pressure too much. if (I->hasOneUse() || IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { AddrModeInsts.push_back(I); return true; } // It isn't profitable to do this, roll back. //cerr << "NOT FOLDING: " << *I; AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); } } else if (ConstantExpr *CE = dyn_cast(Addr)) { if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) return true; TPT.rollback(LastKnownGood); } else if (isa(Addr)) { // Null pointer gets folded without affecting the addressing mode. return true; } // Worse case, the target should support [reg] addressing modes. :) if (!AddrMode.HasBaseReg) { AddrMode.HasBaseReg = true; AddrMode.BaseReg = Addr; // Still check for legality in case the target supports [imm] but not [i+r]. if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.HasBaseReg = false; AddrMode.BaseReg = 0; } // If the base register is already taken, see if we can do [r+r]. if (AddrMode.Scale == 0) { AddrMode.Scale = 1; AddrMode.ScaledReg = Addr; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.Scale = 0; AddrMode.ScaledReg = 0; } // Couldn't match. TPT.rollback(LastKnownGood); return false; } /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified /// inline asm call are due to memory operands. If so, return true, otherwise /// return false. static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetLowering &TLI) { TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(OpInfo, SDValue()); // If this asm operand is our Value*, and if it isn't an indirect memory // operand, we can't fold it! if (OpInfo.CallOperandVal == OpVal && (OpInfo.ConstraintType != TargetLowering::C_Memory || !OpInfo.isIndirect)) return false; } return true; } /// FindAllMemoryUses - Recursively walk all the uses of I until we find a /// memory use. If we find an obviously non-foldable instruction, return true. /// Add the ultimately found memory instructions to MemoryUses. static bool FindAllMemoryUses(Instruction *I, SmallVectorImpl > &MemoryUses, SmallPtrSet &ConsideredInsts, const TargetLowering &TLI) { // If we already considered this instruction, we're done. if (!ConsideredInsts.insert(I)) return false; // If this is an obviously unfoldable instruction, bail out. if (!MightBeFoldableInst(I)) return true; // Loop over all the uses, recursively processing them. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { User *U = *UI; if (LoadInst *LI = dyn_cast(U)) { MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo())); continue; } if (StoreInst *SI = dyn_cast(U)) { unsigned opNo = UI.getOperandNo(); if (opNo == 0) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(SI, opNo)); continue; } if (CallInst *CI = dyn_cast(U)) { InlineAsm *IA = dyn_cast(CI->getCalledValue()); if (!IA) return true; // If this is a memory operand, we're cool, otherwise bail out. if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) return true; continue; } if (FindAllMemoryUses(cast(U), MemoryUses, ConsideredInsts, TLI)) return true; } return false; } /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at /// the use site that we're folding it into. If so, there is no cost to /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values /// that we know are live at the instruction already. bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, Value *KnownLive2) { // If Val is either of the known-live values, we know it is live! if (Val == 0 || Val == KnownLive1 || Val == KnownLive2) return true; // All values other than instructions and arguments (e.g. constants) are live. if (!isa(Val) && !isa(Val)) return true; // If Val is a constant sized alloca in the entry block, it is live, this is // true because it is just a reference to the stack/frame pointer, which is // live for the whole function. if (AllocaInst *AI = dyn_cast(Val)) if (AI->isStaticAlloca()) return true; // Check to see if this value is already used in the memory instruction's // block. If so, it's already live into the block at the very least, so we // can reasonably fold it. return Val->isUsedInBasicBlock(MemoryInst->getParent()); } /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing /// mode of the machine to fold the specified instruction into a load or store /// that ultimately uses it. However, the specified instruction has multiple /// uses. Given this, it may actually increase register pressure to fold it /// into the load. For example, consider this code: /// /// X = ... /// Y = X+1 /// use(Y) -> nonload/store /// Z = Y+1 /// load Z /// /// In this case, Y has multiple uses, and can be folded into the load of Z /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to /// be live at the use(Y) line. If we don't fold Y into load Z, we use one /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the /// number of computations either. /// /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If /// X was live across 'load Z' for other reasons, we actually *would* want to /// fold the addressing mode in the Z case. This would make Y die earlier. bool AddressingModeMatcher:: IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { if (IgnoreProfitability) return true; // AMBefore is the addressing mode before this instruction was folded into it, // and AMAfter is the addressing mode after the instruction was folded. Get // the set of registers referenced by AMAfter and subtract out those // referenced by AMBefore: this is the set of values which folding in this // address extends the lifetime of. // // Note that there are only two potential values being referenced here, // BaseReg and ScaleReg (global addresses are always available, as are any // folded immediates). Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; // If the BaseReg or ScaledReg was referenced by the previous addrmode, their // lifetime wasn't extended by adding this instruction. if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) BaseReg = 0; if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) ScaledReg = 0; // If folding this instruction (and it's subexprs) didn't extend any live // ranges, we're ok with it. if (BaseReg == 0 && ScaledReg == 0) return true; // If all uses of this instruction are ultimately load/store/inlineasm's, // check to see if their addressing modes will include this instruction. If // so, we can fold it into all uses, so it doesn't matter if it has multiple // uses. SmallVector, 16> MemoryUses; SmallPtrSet ConsideredInsts; if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) return false; // Has a non-memory, non-foldable use! // Now that we know that all uses of this instruction are part of a chain of // computation involving only operations that could theoretically be folded // into a memory use, loop over each of these uses and see if they could // *actually* fold the instruction. SmallVector MatchedAddrModeInsts; for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { Instruction *User = MemoryUses[i].first; unsigned OpNo = MemoryUses[i].second; // Get the access type of this use. If the use isn't a pointer, we don't // know what it accesses. Value *Address = User->getOperand(OpNo); if (!Address->getType()->isPointerTy()) return false; Type *AddressAccessTy = Address->getType()->getPointerElementType(); // Do a match against the root of this address, ignoring profitability. This // will tell us if the addressing mode for the memory operation will // *actually* cover the shared instruction. ExtAddrMode Result; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, MemoryInst, Result, InsertedTruncs, PromotedInsts, TPT); Matcher.IgnoreProfitability = true; bool Success = Matcher.MatchAddr(Address, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); // The match was to check the profitability, the changes made are not // part of the original matcher. Therefore, they should be dropped // otherwise the original matcher will not present the right state. TPT.rollback(LastKnownGood); // If the match didn't cover I, then it won't be shared by it. if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), I) == MatchedAddrModeInsts.end()) return false; MatchedAddrModeInsts.clear(); } return true; } } // end anonymous namespace /// IsNonLocalValue - Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast(V)) return I->getParent() != BB; return false; } /// OptimizeMemoryInst - Load and Store Instructions often have /// addressing modes that can do significant amounts of computation. As such, /// instruction selection will try to get the load or store to do as much /// computation as possible for the program. The problem is that isel can only /// see within a single block. As such, we sink as much legal addressing mode /// stuff into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy) { Value *Repl = Addr; // Try to collapse single-value PHI nodes. This is necessary to undo // unprofitable PRE transformations. SmallVector worklist; SmallPtrSet Visited; worklist.push_back(Addr); // Use a worklist to iteratively look through PHI nodes, and ensure that // the addressing mode obtained from the non-PHI roots of the graph // are equivalent. Value *Consensus = 0; unsigned NumUsesConsensus = 0; bool IsNumUsesConsensusValid = false; SmallVector AddrModeInsts; ExtAddrMode AddrMode; TypePromotionTransaction TPT; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); while (!worklist.empty()) { Value *V = worklist.back(); worklist.pop_back(); // Break use-def graph loops. if (!Visited.insert(V)) { Consensus = 0; break; } // For a PHI node, push all of its incoming values. if (PHINode *P = dyn_cast(V)) { for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) worklist.push_back(P->getIncomingValue(i)); continue; } // For non-PHIs, determine the addressing mode being computed. SmallVector NewAddrModeInsts; ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, PromotedInsts, TPT); // This check is broken into two cases with very similar code to avoid using // getNumUses() as much as possible. Some values have a lot of uses, so // calling getNumUses() unconditionally caused a significant compile-time // regression. if (!Consensus) { Consensus = V; AddrMode = NewAddrMode; AddrModeInsts = NewAddrModeInsts; continue; } else if (NewAddrMode == AddrMode) { if (!IsNumUsesConsensusValid) { NumUsesConsensus = Consensus->getNumUses(); IsNumUsesConsensusValid = true; } // Ensure that the obtained addressing mode is equivalent to that obtained // for all other roots of the PHI traversal. Also, when choosing one // such root as representative, select the one with the most uses in order // to keep the cost modeling heuristics in AddressingModeMatcher // applicable. unsigned NumUses = V->getNumUses(); if (NumUses > NumUsesConsensus) { Consensus = V; NumUsesConsensus = NumUses; AddrModeInsts = NewAddrModeInsts; } continue; } Consensus = 0; break; } // If the addressing mode couldn't be determined, or if multiple different // ones were determined, bail out now. if (!Consensus) { TPT.rollback(LastKnownGood); return false; } TPT.commit(); // Check to see if any of the instructions supersumed by this addr mode are // non-local to I's BB. bool AnyNonLocal = false; for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { AnyNonLocal = true; break; } } // If all the instructions matched are already in this BB, don't do anything. if (!AnyNonLocal) { DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. IRBuilder<> Builder(MemoryInst); // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse the // computation. Value *&SunkAddr = SunkAddrs[Addr]; if (SunkAddr) { DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); if (SunkAddr->getType() != Addr->getType()) SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); } else { DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); Value *Result = 0; // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType()->isPointerTy()) V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); if (V->getType() != IntPtrTy) V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); Result = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (V->getType()->isPointerTy()) { V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); } else if (cast(IntPtrTy)->getBitWidth() < cast(V->getType())->getBitWidth()) { V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); } else { V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr"); } if (AddrMode.Scale != 1) V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } if (Result == 0) SunkAddr = Constant::getNullValue(Addr->getType()); else SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); } MemoryInst->replaceUsesOfWith(Repl, SunkAddr); // If we have no uses, recursively delete the value and all dead instructions // using it. if (Repl->use_empty()) { // This can cause recursive deletion, which can invalidate our iterator. // Use a WeakVH to hold onto it in case this happens. WeakVH IterHandle(CurInstIterator); BasicBlock *BB = CurInstIterator->getParent(); RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); if (IterHandle != CurInstIterator) { // If the iterator instruction was recursively deleted, start over at the // start of the block. CurInstIterator = BB->begin(); SunkAddrs.clear(); } } ++NumMemoryInsts; return true; } /// OptimizeInlineAsmInst - If there are any memory operands, use /// OptimizeMemoryInst to sink their address computing into the block when /// possible / profitable. bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { bool MadeChange = false; TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS); unsigned ArgNo = 0; for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = CS->getArgOperand(ArgNo++); MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); } else if (OpInfo.Type == InlineAsm::isInput) ArgNo++; } return MadeChange; } /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same /// basic block as the load, unless conditions are unfavorable. This allows /// SelectionDAG to fold the extend into the load. /// bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { // Look for a load being extended. LoadInst *LI = dyn_cast(I->getOperand(0)); if (!LI) return false; // If they're already in the same block, there's nothing to do. if (LI->getParent() == I->getParent()) return false; // If the load has other users and the truncate is not free, this probably // isn't worthwhile. if (!LI->hasOneUse() && TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && !TLI->isTruncateFree(I->getType(), LI->getType())) return false; // Check whether the target supports casts folded into loads. unsigned LType; if (isa(I)) LType = ISD::ZEXTLOAD; else { assert(isa(I) && "Unexpected ext type!"); LType = ISD::SEXTLOAD; } if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) return false; // Move the extend into the same block as the load, so that SelectionDAG // can fold it. I->removeFromParent(); I->insertAfter(LI); ++NumExtsMoved; return true; } bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If the result of a {s|z}ext and its source are both live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa(Src) || DefBB != cast(Src)->getParent()) return false; bool DefIsLiveOut = false; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure none of the uses are PHI nodes. for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa(User) || isa(User) || isa(User)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap InsertedTruncs; bool MadeChange = false; for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); InsertedTruncsSet.insert(InsertedTrunc); } // Replace a use of the {s|z}ext source with a use of the result. TheUse = InsertedTrunc; ++NumExtUses; MadeChange = true; } return MadeChange; } /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be /// turned into an explicit branch. static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { // FIXME: This should use the same heuristics as IfConversion to determine // whether a select is better represented as a branch. This requires that // branch probability metadata is preserved for the select, which is not the // case currently. CmpInst *Cmp = dyn_cast(SI->getCondition()); // If the branch is predicted right, an out of order CPU can avoid blocking on // the compare. Emit cmovs on compares with a memory operand as branches to // avoid stalls on the load from memory. If the compare has more than one use // there's probably another cmov or setcc around so it's not worth emitting a // branch. if (!Cmp) return false; Value *CmpOp0 = Cmp->getOperand(0); Value *CmpOp1 = Cmp->getOperand(1); // We check that the memory operand has one use to avoid uses of the loaded // value directly after the compare, making branches unprofitable. return Cmp->hasOneUse() && ((isa(CmpOp0) && CmpOp0->hasOneUse()) || (isa(CmpOp1) && CmpOp1->hasOneUse())); } /// If we have a SelectInst that will likely profit from branch prediction, /// turn it into a branch. bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); // Can we convert the 'select' to CF ? if (DisableSelectToBranch || OptSize || !TLI || VectorCond) return false; TargetLowering::SelectSupportKind SelectKind; if (VectorCond) SelectKind = TargetLowering::VectorMaskSelect; else if (SI->getType()->isVectorTy()) SelectKind = TargetLowering::ScalarCondVectorVal; else SelectKind = TargetLowering::ScalarValSelect; // Do we have efficient codegen support for this kind of 'selects' ? if (TLI->isSelectSupported(SelectKind)) { // We have efficient codegen support for the select instruction. // Check if it is profitable to keep this 'select'. if (!TLI->isPredictableSelectExpensive() || !isFormingBranchFromSelectProfitable(SI)) return false; } ModifiedDT = true; // First, we split the block containing the select into 2 blocks. BasicBlock *StartBlock = SI->getParent(); BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); // Create a new block serving as the landing pad for the branch. BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", NextBlock->getParent(), NextBlock); // Move the unconditional branch from the block with the select in it into our // landing pad block. StartBlock->getTerminator()->eraseFromParent(); BranchInst::Create(NextBlock, SmallBlock); // Insert the real conditional branch based on the original condition. BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); // The select itself is replaced with a PHI Node. PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); PN->takeName(SI); PN->addIncoming(SI->getTrueValue(), StartBlock); PN->addIncoming(SI->getFalseValue(), SmallBlock); SI->replaceAllUsesWith(PN); SI->eraseFromParent(); // Instruct OptimizeBlock to skip to the next block. CurInstIterator = StartBlock->end(); ++NumSelectsExpanded; return true; } bool isBroadcastShuffle(ShuffleVectorInst *SVI) { SmallVector Mask(SVI->getShuffleMask()); int SplatElem = -1; for (unsigned i = 0; i < Mask.size(); ++i) { if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) return false; SplatElem = Mask[i]; } return true; } /// Some targets have expensive vector shifts if the lanes aren't all the same /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases /// it's often worth sinking a shufflevector splat down to its use so that /// codegen can spot all lanes are identical. bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { BasicBlock *DefBB = SVI->getParent(); // Only do this xform if variable vector shifts are particularly expensive. if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) return false; // We only expect better codegen by sinking a shuffle if we can recognise a // constant splat. if (!isBroadcastShuffle(SVI)) return false; // InsertedShuffles - Only insert a shuffle in each block once. DenseMap InsertedShuffles; bool MadeChange = false; for (Value::use_iterator UI = SVI->use_begin(), E = SVI->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // For now only apply this when the splat is used by a shift instruction. if (!User->isShift()) continue; // Everything checks out, sink the shuffle if the user's block doesn't // already have a copy. Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; if (!InsertedShuffle) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), SVI->getOperand(2), "", InsertPt); } User->replaceUsesOfWith(SVI, InsertedShuffle); MadeChange = true; } // If we removed all uses, nuke the shuffle. if (SVI->use_empty()) { SVI->eraseFromParent(); MadeChange = true; } return MadeChange; } bool CodeGenPrepare::OptimizeInst(Instruction *I) { if (PHINode *P = dyn_cast(I)) { // It is possible for very late stage optimizations (such as SimplifyCFG) // to introduce PHI nodes too late to be cleaned up. If we detect such a // trivial PHI, go ahead and zap it here. if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : 0, TLInfo, DT)) { P->replaceAllUsesWith(V); P->eraseFromParent(); ++NumPHIsElim; return true; } return false; } if (CastInst *CI = dyn_cast(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa(CI->getOperand(0))) return false; if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) return true; if (isa(I) || isa(I)) { bool MadeChange = MoveExtToFormExtLoad(I); return MadeChange | OptimizeExtUses(I); } return false; } if (CmpInst *CI = dyn_cast(I)) if (!TLI || !TLI->hasMultipleConditionRegisters()) return OptimizeCmpExpression(CI); if (LoadInst *LI = dyn_cast(I)) { if (TLI) return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); return false; } if (StoreInst *SI = dyn_cast(I)) { if (TLI) return OptimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType()); return false; } if (GetElementPtrInst *GEPI = dyn_cast(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); ++NumGEPsElim; OptimizeInst(NC); return true; } return false; } if (CallInst *CI = dyn_cast(I)) return OptimizeCallInst(CI); if (SelectInst *SI = dyn_cast(I)) return OptimizeSelectInst(SI); if (ShuffleVectorInst *SVI = dyn_cast(I)) return OptimizeShuffleVectorInst(SVI); return false; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { SunkAddrs.clear(); bool MadeChange = false; CurInstIterator = BB.begin(); while (CurInstIterator != BB.end()) MadeChange |= OptimizeInst(CurInstIterator++); MadeChange |= DupRetToEnableTailCallOpts(&BB); return MadeChange; } // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. bool CodeGenPrepare::PlaceDbgValues(Function &F) { bool MadeChange = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { Instruction *PrevNonDbgInst = NULL; for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) { Instruction *Insn = BI; ++BI; DbgValueInst *DVI = dyn_cast(Insn); if (!DVI) { PrevNonDbgInst = Insn; continue; } Instruction *VI = dyn_cast_or_null(DVI->getValue()); if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); DVI->removeFromParent(); if (isa(VI)) DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); else DVI->insertAfter(VI); MadeChange = true; ++NumDbgValueMoved; } } } return MadeChange; }