//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the ARM Disassembler. // It contains code to implement the public interfaces of ARMDisassembler and // ThumbDisassembler, both of which are instances of MCDisassembler. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-disassembler" #include "ARMDisassembler.h" #include "ARMDisassemblerCore.h" #include "llvm/MC/EDInstInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" //#define DEBUG(X) do { X; } while (0) /// ARMGenDecoderTables.inc - ARMDecoderTables.inc is tblgen'ed from /// ARMDecoderEmitter.cpp TableGen backend. It contains: /// /// o Mappings from opcode to ARM/Thumb instruction format /// /// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function /// for an ARM instruction. /// /// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding /// function for a Thumb instruction. /// #include "ARMGenDecoderTables.inc" #include "ARMGenEDInfo.inc" using namespace llvm; /// showBitVector - Use the raw_ostream to log a diagnostic message describing /// the inidividual bits of the instruction. /// static inline void showBitVector(raw_ostream &os, const uint32_t &insn) { // Split the bit position markers into more than one lines to fit 80 columns. os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11" << " 10 9 8 7 6 5 4 3 2 1 0 \n"; os << "---------------------------------------------------------------" << "----------------------------------\n"; os << '|'; for (unsigned i = 32; i != 0; --i) { if (insn >> (i - 1) & 0x01) os << " 1"; else os << " 0"; os << (i%4 == 1 ? '|' : ':'); } os << '\n'; // Split the bit position markers into more than one lines to fit 80 columns. os << "---------------------------------------------------------------" << "----------------------------------\n"; os << '\n'; } /// decodeARMInstruction is a decorator function which tries special cases of /// instruction matching before calling the auto-generated decoder function. static unsigned decodeARMInstruction(uint32_t &insn) { if (slice(insn, 31, 28) == 15) goto AutoGenedDecoder; // Special case processing, if any, goes here.... // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB. // The insufficient encoding information of the combined instruction confuses // the decoder wrt BFC/BFI. Therefore, we try to recover here. // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111. // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111. if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) { if (slice(insn, 3, 0) == 15) return ARM::BFC; else return ARM::BFI; } // Ditto for STRBT, which is a super-instruction for A8.6.199 Encodings // A1 & A2. // As a result, the decoder fails to deocode USAT properly. if (slice(insn, 27, 21) == 0x37 && slice(insn, 5, 4) == 1) return ARM::USAT; // As a result, the decoder fails to deocode UQADD16 properly. if (slice(insn, 27, 20) == 0x66 && slice(insn, 7, 4) == 1) return ARM::UQADD16; // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8. // As a result, the decoder fails to decode UMULL properly. if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) { return ARM::UMULL; } // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195. // As a result, the decoder fails to decode SBFX properly. if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5) return ARM::SBFX; // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198. // As a result, the decoder fails to decode UBFX properly. if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5) return ARM::UBFX; // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2. // As a result, the decoder fails to deocode SSAT properly. if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1) return ARM::SSAT; // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147. // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT. if (slice(insn, 27, 24) == 0) { switch (slice(insn, 21, 20)) { case 2: switch (slice(insn, 7, 4)) { case 11: return ARM::STRHT; default: break; // fallthrough } break; case 3: switch (slice(insn, 7, 4)) { case 11: return ARM::LDRHT; case 13: return ARM::LDRSBT; case 15: return ARM::LDRSHT; default: break; // fallthrough } break; default: break; // fallthrough } } // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153. // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST // properly. if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) { unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21); switch (slice(insn, 7, 4)) { case 11: switch (PW) { case 2: // Offset return ARM::STRH; case 3: // Pre-indexed return ARM::STRH_PRE; case 0: // Post-indexed return ARM::STRH_POST; default: break; // fallthrough } break; case 13: switch (PW) { case 2: // Offset return ARM::LDRD; case 3: // Pre-indexed return ARM::LDRD_PRE; case 0: // Post-indexed return ARM::LDRD_POST; default: break; // fallthrough } break; case 15: switch (PW) { case 2: // Offset return ARM::STRD; case 3: // Pre-indexed return ARM::STRD_PRE; case 0: // Post-indexed return ARM::STRD_POST; default: break; // fallthrough } break; default: break; // fallthrough } } // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153. // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST // properly. if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) { unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21); switch (slice(insn, 7, 4)) { case 11: switch (PW) { case 2: // Offset return ARM::LDRH; case 3: // Pre-indexed return ARM::LDRH_PRE; case 0: // Post-indexed return ARM::LDRH_POST; default: break; // fallthrough } break; case 13: switch (PW) { case 2: // Offset return ARM::LDRSB; case 3: // Pre-indexed return ARM::LDRSB_PRE; case 0: // Post-indexed return ARM::LDRSB_POST; default: break; // fallthrough } break; case 15: switch (PW) { case 2: // Offset return ARM::LDRSH; case 3: // Pre-indexed return ARM::LDRSH_PRE; case 0: // Post-indexed return ARM::LDRSH_POST; default: break; // fallthrough } break; default: break; // fallthrough } } AutoGenedDecoder: // Calling the auto-generated decoder function. return decodeInstruction(insn); } // Helper function for special case handling of LDR (literal) and friends. // See, for example, A6.3.7 Load word: Table A6-18 Load word. // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode // before returning it. static unsigned T2Morph2LoadLiteral(unsigned Opcode) { switch (Opcode) { default: return Opcode; // Return unmorphed opcode. case ARM::t2LDR_POST: case ARM::t2LDR_PRE: case ARM::t2LDRi12: case ARM::t2LDRi8: case ARM::t2LDRs: case ARM::t2LDRT: return ARM::t2LDRpci; case ARM::t2LDRB_POST: case ARM::t2LDRB_PRE: case ARM::t2LDRBi12: case ARM::t2LDRBi8: case ARM::t2LDRBs: case ARM::t2LDRBT: return ARM::t2LDRBpci; case ARM::t2LDRH_POST: case ARM::t2LDRH_PRE: case ARM::t2LDRHi12: case ARM::t2LDRHi8: case ARM::t2LDRHs: case ARM::t2LDRHT: return ARM::t2LDRHpci; case ARM::t2LDRSB_POST: case ARM::t2LDRSB_PRE: case ARM::t2LDRSBi12: case ARM::t2LDRSBi8: case ARM::t2LDRSBs: case ARM::t2LDRSBT: return ARM::t2LDRSBpci; case ARM::t2LDRSH_POST: case ARM::t2LDRSH_PRE: case ARM::t2LDRSHi12: case ARM::t2LDRSHi8: case ARM::t2LDRSHs: case ARM::t2LDRSHT: return ARM::t2LDRSHpci; } } /// decodeThumbSideEffect is a decorator function which can potentially twiddle /// the instruction or morph the returned opcode under Thumb2. /// /// First it checks whether the insn is a NEON or VFP instr; if true, bit /// twiddling could be performed on insn to turn it into an ARM NEON/VFP /// equivalent instruction and decodeInstruction is called with the transformed /// insn. /// /// Next, there is special handling for Load byte/halfword/word instruction by /// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded /// Thumb2 instruction. See comments below for further details. /// /// Finally, one last check is made to see whether the insn is a NEON/VFP and /// decodeInstruction(insn) is invoked on the original insn. /// /// Otherwise, decodeThumbInstruction is called with the original insn. static unsigned decodeThumbSideEffect(bool IsThumb2, unsigned &insn) { if (IsThumb2) { uint16_t op1 = slice(insn, 28, 27); uint16_t op2 = slice(insn, 26, 20); // A6.3 32-bit Thumb instruction encoding // Table A6-9 32-bit Thumb instruction encoding // The coprocessor instructions of interest are transformed to their ARM // equivalents. // --------- Transform Begin Marker --------- if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) { // A7.4 Advanced SIMD data-processing instructions // U bit of Thumb corresponds to Inst{24} of ARM. uint16_t U = slice(op1, 1, 1); // Inst{28-24} of ARM = {1,0,0,1,U}; uint16_t bits28_24 = 9 << 1 | U; DEBUG(showBitVector(errs(), insn)); setSlice(insn, 28, 24, bits28_24); return decodeInstruction(insn); } if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) { // A7.7 Advanced SIMD element or structure load/store instructions // Inst{27-24} of Thumb = 0b1001 // Inst{27-24} of ARM = 0b0100 DEBUG(showBitVector(errs(), insn)); setSlice(insn, 27, 24, 4); return decodeInstruction(insn); } // --------- Transform End Marker --------- // See, for example, A6.3.7 Load word: Table A6-18 Load word. // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode // before returning it to our caller. if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1 && slice(insn, 19, 16) == 15) return T2Morph2LoadLiteral(decodeThumbInstruction(insn)); // One last check for NEON/VFP instructions. if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1) return decodeInstruction(insn); // Fall through. } return decodeThumbInstruction(insn); } // // Public interface for the disassembler // bool ARMDisassembler::getInstruction(MCInst &MI, uint64_t &Size, const MemoryObject &Region, uint64_t Address, raw_ostream &os) const { // The machine instruction. uint32_t insn; uint8_t bytes[4]; // We want to read exactly 4 bytes of data. if (Region.readBytes(Address, 4, (uint8_t*)bytes, NULL) == -1) return false; // Encoded as a small-endian 32-bit word in the stream. insn = (bytes[3] << 24) | (bytes[2] << 16) | (bytes[1] << 8) | (bytes[0] << 0); unsigned Opcode = decodeARMInstruction(insn); ARMFormat Format = ARMFormats[Opcode]; Size = 4; DEBUG({ errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode) << " Format=" << stringForARMFormat(Format) << '(' << (int)Format << ")\n"; showBitVector(errs(), insn); }); ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format); if (!Builder) return false; if (!Builder->Build(MI, insn)) return false; delete Builder; return true; } bool ThumbDisassembler::getInstruction(MCInst &MI, uint64_t &Size, const MemoryObject &Region, uint64_t Address, raw_ostream &os) const { // The Thumb instruction stream is a sequence of halhwords. // This represents the first halfword as well as the machine instruction // passed to decodeThumbInstruction(). For 16-bit Thumb instruction, the top // halfword of insn is 0x00 0x00; otherwise, the first halfword is moved to // the top half followed by the second halfword. unsigned insn = 0; // Possible second halfword. uint16_t insn1 = 0; // A6.1 Thumb instruction set encoding // // If bits [15:11] of the halfword being decoded take any of the following // values, the halfword is the first halfword of a 32-bit instruction: // o 0b11101 // o 0b11110 // o 0b11111. // // Otherwise, the halfword is a 16-bit instruction. // Read 2 bytes of data first. uint8_t bytes[2]; if (Region.readBytes(Address, 2, (uint8_t*)bytes, NULL) == -1) return false; // Encoded as a small-endian 16-bit halfword in the stream. insn = (bytes[1] << 8) | bytes[0]; unsigned bits15_11 = slice(insn, 15, 11); bool IsThumb2 = false; // 32-bit instructions if the bits [15:11] of the halfword matches // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }. if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) { IsThumb2 = true; if (Region.readBytes(Address + 2, 2, (uint8_t*)bytes, NULL) == -1) return false; // Encoded as a small-endian 16-bit halfword in the stream. insn1 = (bytes[1] << 8) | bytes[0]; insn = (insn << 16 | insn1); } // The insn could potentially be bit-twiddled in order to be decoded as an ARM // NEON/VFP opcode. In such case, the modified insn is later disassembled as // an ARM NEON/VFP instruction. // // This is a short term solution for lack of encoding bits specified for the // Thumb2 NEON/VFP instructions. The long term solution could be adding some // infrastructure to have each instruction support more than one encodings. // Which encoding is used would be based on which subtarget the compiler/ // disassembler is working with at the time. This would allow the sharing of // the NEON patterns between ARM and Thumb2, as well as potential greater // sharing between the regular ARM instructions and the 32-bit wide Thumb2 // instructions as well. unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn); ARMFormat Format = ARMFormats[Opcode]; Size = IsThumb2 ? 4 : 2; DEBUG({ errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode) << " Format=" << stringForARMFormat(Format) << '(' << (int)Format << ")\n"; showBitVector(errs(), insn); }); ARMBasicMCBuilder *Builder = CreateMCBuilder(Opcode, Format); if (!Builder) return false; Builder->SetSession(const_cast(&SO)); if (!Builder->Build(MI, insn)) return false; delete Builder; return true; } // A8.6.50 // Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition. static unsigned short CountITSize(unsigned ITMask) { // First count the trailing zeros of the IT mask. unsigned TZ = CountTrailingZeros_32(ITMask); if (TZ > 3) { DEBUG(errs() << "Encoding error: IT Mask '0000'"); return 0; } return (4 - TZ); } /// Init ITState. Note that at least one bit is always 1 in mask. bool Session::InitIT(unsigned short bits7_0) { ITCounter = CountITSize(slice(bits7_0, 3, 0)); if (ITCounter == 0) return false; // A8.6.50 IT unsigned short FirstCond = slice(bits7_0, 7, 4); if (FirstCond == 0xF) { DEBUG(errs() << "Encoding error: IT FirstCond '1111'"); return false; } if (FirstCond == 0xE && ITCounter != 1) { DEBUG(errs() << "Encoding error: IT FirstCond '1110' && Mask != '1000'"); return false; } ITState = bits7_0; return true; } /// Update ITState if necessary. void Session::UpdateIT() { assert(ITCounter); --ITCounter; if (ITCounter == 0) ITState = 0; else { unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1; setSlice(ITState, 4, 0, NewITState4_0); } } static MCDisassembler *createARMDisassembler(const Target &T) { return new ARMDisassembler; } static MCDisassembler *createThumbDisassembler(const Target &T) { return new ThumbDisassembler; } extern "C" void LLVMInitializeARMDisassembler() { // Register the disassembler. TargetRegistry::RegisterMCDisassembler(TheARMTarget, createARMDisassembler); TargetRegistry::RegisterMCDisassembler(TheThumbTarget, createThumbDisassembler); } EDInstInfo *ARMDisassembler::getEDInfo() const { return instInfoARM; } EDInstInfo *ThumbDisassembler::getEDInfo() const { return instInfoARM; }