//===- LazyLiveness.cpp - Lazy, CFG-invariant liveness information --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a lazy liveness analysis as per "Fast Liveness Checking // for SSA-form Programs," by Boissinot, et al. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lazyliveness" #include "llvm/CodeGen/LazyLiveness.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" using namespace llvm; char LazyLiveness::ID = 0; static RegisterPass X("lazy-liveness", "Lazy Liveness Analysis"); void LazyLiveness::computeBackedgeChain(MachineFunction& mf, MachineBasicBlock* MBB) { SparseBitVector<128> tmp = rv[MBB]; tmp.set(preorder[MBB]); tmp &= backedge_source; calculated.set(preorder[MBB]); for (SparseBitVector<128>::iterator I = tmp.begin(); I != tmp.end(); ++I) { assert(rev_preorder.size() > *I && "Unknown block!"); MachineBasicBlock* SrcMBB = rev_preorder[*I]; for (MachineBasicBlock::succ_iterator SI = SrcMBB->succ_begin(), SE = SrcMBB->succ_end(); SI != SE; ++SI) { MachineBasicBlock* TgtMBB = *SI; if (backedges.count(std::make_pair(SrcMBB, TgtMBB)) && !rv[MBB].test(preorder[TgtMBB])) { if (!calculated.test(preorder[TgtMBB])) computeBackedgeChain(mf, TgtMBB); tv[MBB].set(preorder[TgtMBB]); SparseBitVector<128> right = tv[TgtMBB]; tv[MBB] |= right; } } tv[MBB].reset(preorder[MBB]); } } bool LazyLiveness::runOnMachineFunction(MachineFunction &mf) { rv.clear(); tv.clear(); backedges.clear(); backedge_source.clear(); backedge_target.clear(); calculated.clear(); preorder.clear(); rev_preorder.clear(); rv.resize(mf.size()); tv.resize(mf.size()); preorder.resize(mf.size()); rev_preorder.reserve(mf.size()); MRI = &mf.getRegInfo(); MachineDominatorTree& MDT = getAnalysis(); // Step 0: Compute preorder numbering for all MBBs. unsigned num = 0; for (df_iterator DI = df_begin(MDT.getRootNode()), DE = df_end(MDT.getRootNode()); DI != DE; ++DI) { preorder[(*DI)->getBlock()] = num++; rev_preorder.push_back((*DI)->getBlock()); } // Step 1: Compute the transitive closure of the CFG, ignoring backedges. for (po_iterator POI = po_begin(&*mf.begin()), POE = po_end(&*mf.begin()); POI != POE; ++POI) { MachineBasicBlock* MBB = *POI; SparseBitVector<128>& entry = rv[MBB]; entry.set(preorder[MBB]); for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { DenseMap >::iterator SII = rv.find(*SI); // Because we're iterating in postorder, any successor that does not yet // have an rv entry must be on a backedge. if (SII != rv.end()) { entry |= SII->second; } else { backedges.insert(std::make_pair(MBB, *SI)); backedge_source.set(preorder[MBB]); backedge_target.set(preorder[*SI]); } } } for (SparseBitVector<128>::iterator I = backedge_source.begin(); I != backedge_source.end(); ++I) computeBackedgeChain(mf, rev_preorder[*I]); for (po_iterator POI = po_begin(&*mf.begin()), POE = po_end(&*mf.begin()); POI != POE; ++POI) if (!backedge_target.test(preorder[*POI])) for (MachineBasicBlock::succ_iterator SI = (*POI)->succ_begin(), SE = (*POI)->succ_end(); SI != SE; ++SI) if (!backedges.count(std::make_pair(*POI, *SI)) && tv.count(*SI)) { SparseBitVector<128> right = tv[*SI]; tv[*POI] |= right; } for (po_iterator POI = po_begin(&*mf.begin()), POE = po_end(&*mf.begin()); POI != POE; ++POI) tv[*POI].set(preorder[*POI]); return false; } bool LazyLiveness::vregLiveIntoMBB(unsigned vreg, MachineBasicBlock* MBB) { MachineDominatorTree& MDT = getAnalysis(); MachineBasicBlock* DefMBB = MRI->def_begin(vreg)->getParent(); unsigned def = preorder[DefMBB]; unsigned max_dom = 0; for (df_iterator DI = df_begin(MDT[DefMBB]), DE = df_end(MDT[DefMBB]); DI != DE; ++DI) { if (preorder[DI->getBlock()] > max_dom) { max_dom = preorder[(*DI)->getBlock()]; } } if (preorder[MBB] <= def || max_dom < preorder[MBB]) return false; SparseBitVector<128>::iterator I = tv[MBB].begin(); while (I != tv[MBB].end() && *I <= def) ++I; while (I != tv[MBB].end() && *I < max_dom) { for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(vreg), UE = MachineRegisterInfo::use_end(); UI != UE; ++UI) { MachineBasicBlock* UseMBB = UI->getParent(); if (rv[rev_preorder[*I]].test(preorder[UseMBB])) return true; unsigned t_dom = 0; for (df_iterator DI = df_begin(MDT[rev_preorder[*I]]), DE = df_end(MDT[rev_preorder[*I]]); DI != DE; ++DI) if (preorder[DI->getBlock()] > t_dom) { max_dom = preorder[(*DI)->getBlock()]; } I = tv[MBB].begin(); while (I != tv[MBB].end() && *I < t_dom) ++I; } } return false; }