//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes how to lower LLVM code to machine code. This has two // main components: // // 1. Which ValueTypes are natively supported by the target. // 2. Which operations are supported for supported ValueTypes. // 3. Cost thresholds for alternative implementations of certain operations. // // In addition it has a few other components, like information about FP // immediates. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETLOWERING_H #define LLVM_TARGET_TARGETLOWERING_H #include "llvm/CallingConv.h" #include "llvm/InlineAsm.h" #include "llvm/Attributes.h" #include "llvm/Support/CallSite.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/Support/DebugLoc.h" #include "llvm/Target/TargetCallingConv.h" #include "llvm/Target/TargetMachine.h" #include #include #include namespace llvm { class CallInst; class CCState; class FastISel; class FunctionLoweringInfo; class ImmutableCallSite; class IntrinsicInst; class MachineBasicBlock; class MachineFunction; class MachineInstr; class MachineJumpTableInfo; class MCContext; class MCExpr; template class SmallVectorImpl; class TargetData; class TargetRegisterClass; class TargetLibraryInfo; class TargetLoweringObjectFile; class Value; namespace Sched { enum Preference { None, // No preference Source, // Follow source order. RegPressure, // Scheduling for lowest register pressure. Hybrid, // Scheduling for both latency and register pressure. ILP, // Scheduling for ILP in low register pressure mode. VLIW // Scheduling for VLIW targets. }; } //===----------------------------------------------------------------------===// /// TargetLowering - This class defines information used to lower LLVM code to /// legal SelectionDAG operators that the target instruction selector can accept /// natively. /// /// This class also defines callbacks that targets must implement to lower /// target-specific constructs to SelectionDAG operators. /// class TargetLowering { TargetLowering(const TargetLowering&); // DO NOT IMPLEMENT void operator=(const TargetLowering&); // DO NOT IMPLEMENT public: /// LegalizeAction - This enum indicates whether operations are valid for a /// target, and if not, what action should be used to make them valid. enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand, // Try to expand this to other ops, otherwise use a libcall. Custom // Use the LowerOperation hook to implement custom lowering. }; /// LegalizeTypeAction - This enum indicates whether a types are legal for a /// target, and if not, what action should be used to make them valid. enum LegalizeTypeAction { TypeLegal, // The target natively supports this type. TypePromoteInteger, // Replace this integer with a larger one. TypeExpandInteger, // Split this integer into two of half the size. TypeSoftenFloat, // Convert this float to a same size integer type. TypeExpandFloat, // Split this float into two of half the size. TypeScalarizeVector, // Replace this one-element vector with its element. TypeSplitVector, // Split this vector into two of half the size. TypeWidenVector // This vector should be widened into a larger vector. }; enum BooleanContent { // How the target represents true/false values. UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. ZeroOrOneBooleanContent, // All bits zero except for bit 0. ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. }; enum SelectSupportKind { ScalarValSelect, // The target supports scalar selects (ex: cmov). ScalarCondVectorVal, // The target supports selects with a scalar condition // and vector values (ex: cmov). VectorMaskSelect // The target supports vector selects with a vector // mask (ex: x86 blends). }; static ISD::NodeType getExtendForContent(BooleanContent Content) { switch (Content) { case UndefinedBooleanContent: // Extend by adding rubbish bits. return ISD::ANY_EXTEND; case ZeroOrOneBooleanContent: // Extend by adding zero bits. return ISD::ZERO_EXTEND; case ZeroOrNegativeOneBooleanContent: // Extend by copying the sign bit. return ISD::SIGN_EXTEND; } llvm_unreachable("Invalid content kind"); } /// NOTE: The constructor takes ownership of TLOF. explicit TargetLowering(const TargetMachine &TM, const TargetLoweringObjectFile *TLOF); virtual ~TargetLowering(); const TargetMachine &getTargetMachine() const { return TM; } const TargetData *getTargetData() const { return TD; } const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; } bool isBigEndian() const { return !IsLittleEndian; } bool isLittleEndian() const { return IsLittleEndian; } MVT getPointerTy() const { return PointerTy; } virtual MVT getShiftAmountTy(EVT LHSTy) const; /// isSelectExpensive - Return true if the select operation is expensive for /// this target. bool isSelectExpensive() const { return SelectIsExpensive; } virtual bool isSelectSupported(SelectSupportKind kind) const { return true; } /// isIntDivCheap() - Return true if integer divide is usually cheaper than /// a sequence of several shifts, adds, and multiplies for this target. bool isIntDivCheap() const { return IntDivIsCheap; } /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of /// srl/add/sra. bool isPow2DivCheap() const { return Pow2DivIsCheap; } /// isJumpExpensive() - Return true if Flow Control is an expensive operation /// that should be avoided. bool isJumpExpensive() const { return JumpIsExpensive; } /// isPredictableSelectExpensive - Return true if selects are only cheaper /// than branches if the branch is unlikely to be predicted right. bool isPredictableSelectExpensive() const { return predictableSelectIsExpensive; } /// getSetCCResultType - Return the ValueType of the result of SETCC /// operations. Also used to obtain the target's preferred type for /// the condition operand of SELECT and BRCOND nodes. In the case of /// BRCOND the argument passed is MVT::Other since there are no other /// operands to get a type hint from. virtual EVT getSetCCResultType(EVT VT) const; /// getCmpLibcallReturnType - Return the ValueType for comparison /// libcalls. Comparions libcalls include floating point comparion calls, /// and Ordered/Unordered check calls on floating point numbers. virtual MVT::SimpleValueType getCmpLibcallReturnType() const; /// getBooleanContents - For targets without i1 registers, this gives the /// nature of the high-bits of boolean values held in types wider than i1. /// "Boolean values" are special true/false values produced by nodes like /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. /// Not to be confused with general values promoted from i1. /// Some cpus distinguish between vectors of boolean and scalars; the isVec /// parameter selects between the two kinds. For example on X86 a scalar /// boolean should be zero extended from i1, while the elements of a vector /// of booleans should be sign extended from i1. BooleanContent getBooleanContents(bool isVec) const { return isVec ? BooleanVectorContents : BooleanContents; } /// getSchedulingPreference - Return target scheduling preference. Sched::Preference getSchedulingPreference() const { return SchedPreferenceInfo; } /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to /// different scheduling heuristics for different nodes. This function returns /// the preference (or none) for the given node. virtual Sched::Preference getSchedulingPreference(SDNode *) const { return Sched::None; } /// getRegClassFor - Return the register class that should be used for the /// specified value type. virtual const TargetRegisterClass *getRegClassFor(EVT VT) const { assert(VT.isSimple() && "getRegClassFor called on illegal type!"); const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; assert(RC && "This value type is not natively supported!"); return RC; } /// getRepRegClassFor - Return the 'representative' register class for the /// specified value type. The 'representative' register class is the largest /// legal super-reg register class for the register class of the value type. /// For example, on i386 the rep register class for i8, i16, and i32 are GR32; /// while the rep register class is GR64 on x86_64. virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const { assert(VT.isSimple() && "getRepRegClassFor called on illegal type!"); const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy]; return RC; } /// getRepRegClassCostFor - Return the cost of the 'representative' register /// class for the specified value type. virtual uint8_t getRepRegClassCostFor(EVT VT) const { assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!"); return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy]; } /// isTypeLegal - Return true if the target has native support for the /// specified value type. This means that it has a register that directly /// holds it without promotions or expansions. bool isTypeLegal(EVT VT) const { assert(!VT.isSimple() || (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0; } class ValueTypeActionImpl { /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum /// that indicates how instruction selection should deal with the type. uint8_t ValueTypeActions[MVT::LAST_VALUETYPE]; public: ValueTypeActionImpl() { std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0); } LegalizeTypeAction getTypeAction(MVT VT) const { return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy]; } void setTypeAction(EVT VT, LegalizeTypeAction Action) { unsigned I = VT.getSimpleVT().SimpleTy; ValueTypeActions[I] = Action; } }; const ValueTypeActionImpl &getValueTypeActions() const { return ValueTypeActions; } /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal (return 'Legal') or we need to promote it to a larger /// type (return 'Promote'), or we need to expand it into multiple registers /// of smaller integer type (return 'Expand'). 'Custom' is not an option. LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).first; } LegalizeTypeAction getTypeAction(MVT VT) const { return ValueTypeActions.getTypeAction(VT); } /// getTypeToTransformTo - For types supported by the target, this is an /// identity function. For types that must be promoted to larger types, this /// returns the larger type to promote to. For integer types that are larger /// than the largest integer register, this contains one step in the expansion /// to get to the smaller register. For illegal floating point types, this /// returns the integer type to transform to. EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).second; } /// getTypeToExpandTo - For types supported by the target, this is an /// identity function. For types that must be expanded (i.e. integer types /// that are larger than the largest integer register or illegal floating /// point types), this returns the largest legal type it will be expanded to. EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { assert(!VT.isVector()); while (true) { switch (getTypeAction(Context, VT)) { case TypeLegal: return VT; case TypeExpandInteger: VT = getTypeToTransformTo(Context, VT); break; default: llvm_unreachable("Type is not legal nor is it to be expanded!"); } } } /// getVectorTypeBreakdown - Vector types are broken down into some number of /// legal first class types. For example, EVT::v8f32 maps to 2 EVT::v4f32 /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack. /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. /// unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, EVT &RegisterVT) const; /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If /// this is the case, it returns true and store the intrinsic /// information into the IntrinsicInfo that was passed to the function. struct IntrinsicInfo { unsigned opc; // target opcode EVT memVT; // memory VT const Value* ptrVal; // value representing memory location int offset; // offset off of ptrVal unsigned align; // alignment bool vol; // is volatile? bool readMem; // reads memory? bool writeMem; // writes memory? }; virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, unsigned /*Intrinsic*/) const { return false; } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will materialize /// the FP immediate as a load from a constant pool. virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { return false; } /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. virtual bool isShuffleMaskLegal(const SmallVectorImpl &/*Mask*/, EVT /*VT*/) const { return true; } /// canOpTrap - Returns true if the operation can trap for the value type. /// VT must be a legal type. By default, we optimistically assume most /// operations don't trap except for divide and remainder. virtual bool canOpTrap(unsigned Op, EVT VT) const; /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is /// used by Targets can use this to indicate if there is a suitable /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant /// pool entry. virtual bool isVectorClearMaskLegal(const SmallVectorImpl &/*Mask*/, EVT /*VT*/) const { return false; } /// getOperationAction - Return how this operation should be treated: either /// it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getOperationAction(unsigned Op, EVT VT) const { if (VT.isExtended()) return Expand; // If a target-specific SDNode requires legalization, require the target // to provide custom legalization for it. if (Op > array_lengthof(OpActions[0])) return Custom; unsigned I = (unsigned) VT.getSimpleVT().SimpleTy; return (LegalizeAction)OpActions[I][Op]; } /// isOperationLegalOrCustom - Return true if the specified operation is /// legal on this target or can be made legal with custom lowering. This /// is used to help guide high-level lowering decisions. bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom); } /// isOperationLegal - Return true if the specified operation is legal on this /// target. bool isOperationLegal(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && getOperationAction(Op, VT) == Legal; } /// getLoadExtAction - Return how this load with extension should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const { assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType]; } /// isLoadExtLegal - Return true if the specified load with extension is legal /// on this target. bool isLoadExtLegal(unsigned ExtType, EVT VT) const { return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal; } /// getTruncStoreAction - Return how this store with truncation should be /// treated: either it is legal, needs to be promoted to a larger size, needs /// to be expanded to some other code sequence, or the target has a custom /// expander for it. LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const { assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE && MemVT.getSimpleVT() < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy] [MemVT.getSimpleVT().SimpleTy]; } /// isTruncStoreLegal - Return true if the specified store with truncation is /// legal on this target. bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { return isTypeLegal(ValVT) && MemVT.isSimple() && getTruncStoreAction(ValVT, MemVT) == Legal; } /// getIndexedLoadAction - Return how the indexed load should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getIndexedLoadAction(unsigned IdxMode, EVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy; return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); } /// isIndexedLoadLegal - Return true if the specified indexed load is legal /// on this target. bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedLoadAction(IdxMode, VT) == Legal || getIndexedLoadAction(IdxMode, VT) == Custom); } /// getIndexedStoreAction - Return how the indexed store should be treated: /// either it is legal, needs to be promoted to a larger size, needs to be /// expanded to some other code sequence, or the target has a custom expander /// for it. LegalizeAction getIndexedStoreAction(unsigned IdxMode, EVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy; return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); } /// isIndexedStoreLegal - Return true if the specified indexed load is legal /// on this target. bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedStoreAction(IdxMode, VT) == Legal || getIndexedStoreAction(IdxMode, VT) == Custom); } /// getCondCodeAction - Return how the condition code should be treated: /// either it is legal, needs to be expanded to some other code sequence, /// or the target has a custom expander for it. LegalizeAction getCondCodeAction(ISD::CondCode CC, EVT VT) const { assert((unsigned)CC < array_lengthof(CondCodeActions) && (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 && "Table isn't big enough!"); LegalizeAction Action = (LegalizeAction) ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3); assert(Action != Promote && "Can't promote condition code!"); return Action; } /// isCondCodeLegal - Return true if the specified condition code is legal /// on this target. bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const { return getCondCodeAction(CC, VT) == Legal || getCondCodeAction(CC, VT) == Custom; } /// getTypeToPromoteTo - If the action for this operation is to promote, this /// method returns the ValueType to promote to. EVT getTypeToPromoteTo(unsigned Op, EVT VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!"); // See if this has an explicit type specified. std::map, MVT::SimpleValueType>::const_iterator PTTI = PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy)); if (PTTI != PromoteToType.end()) return PTTI->second; assert((VT.isInteger() || VT.isFloatingPoint()) && "Cannot autopromote this type, add it with AddPromotedToType."); EVT NVT = VT; do { NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1); assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!isTypeLegal(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; } /// getValueType - Return the EVT corresponding to this LLVM type. /// This is fixed by the LLVM operations except for the pointer size. If /// AllowUnknown is true, this will return MVT::Other for types with no EVT /// counterpart (e.g. structs), otherwise it will assert. EVT getValueType(Type *Ty, bool AllowUnknown = false) const { // Lower scalar pointers to native pointer types. if (Ty->isPointerTy()) return PointerTy; if (Ty->isVectorTy()) { VectorType *VTy = cast(Ty); Type *Elm = VTy->getElementType(); // Lower vectors of pointers to native pointer types. if (Elm->isPointerTy()) Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext()); return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), VTy->getNumElements()); } return EVT::getEVT(Ty, AllowUnknown); } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. virtual unsigned getByValTypeAlignment(Type *Ty) const; /// getRegisterType - Return the type of registers that this ValueType will /// eventually require. EVT getRegisterType(MVT VT) const { assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.SimpleTy]; } /// getRegisterType - Return the type of registers that this ValueType will /// eventually require. EVT getRegisterType(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1, RegisterVT; unsigned NumIntermediates; (void)getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, RegisterVT); return RegisterVT; } if (VT.isInteger()) { return getRegisterType(Context, getTypeToTransformTo(Context, VT)); } llvm_unreachable("Unsupported extended type!"); } /// getNumRegisters - Return the number of registers that this ValueType will /// eventually require. This is one for any types promoted to live in larger /// registers, but may be more than one for types (like i64) that are split /// into pieces. For types like i140, which are first promoted then expanded, /// it is the number of registers needed to hold all the bits of the original /// type. For an i140 on a 32 bit machine this means 5 registers. unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(NumRegistersForVT)); return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1, VT2; unsigned NumIntermediates; return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); } if (VT.isInteger()) { unsigned BitWidth = VT.getSizeInBits(); unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); return (BitWidth + RegWidth - 1) / RegWidth; } llvm_unreachable("Unsupported extended type!"); } /// ShouldShrinkFPConstant - If true, then instruction selection should /// seek to shrink the FP constant of the specified type to a smaller type /// in order to save space and / or reduce runtime. virtual bool ShouldShrinkFPConstant(EVT) const { return true; } /// hasTargetDAGCombine - If true, the target has custom DAG combine /// transformations that it can perform for the specified node. bool hasTargetDAGCombine(ISD::NodeType NT) const { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memset. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. /// @brief Get maximum # of store operations permitted for llvm.memset unsigned getMaxStoresPerMemset(bool OptSize) const { return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset; } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memcpy. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. /// @brief Get maximum # of store operations permitted for llvm.memcpy unsigned getMaxStoresPerMemcpy(bool OptSize) const { return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy; } /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memmove. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. /// @brief Get maximum # of store operations permitted for llvm.memmove unsigned getMaxStoresPerMemmove(bool OptSize) const { return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove; } /// This function returns true if the target allows unaligned memory accesses. /// of the specified type. This is used, for example, in situations where an /// array copy/move/set is converted to a sequence of store operations. It's /// use helps to ensure that such replacements don't generate code that causes /// an alignment error (trap) on the target machine. /// @brief Determine if the target supports unaligned memory accesses. virtual bool allowsUnalignedMemoryAccesses(EVT) const { return false; } /// This function returns true if the target would benefit from code placement /// optimization. /// @brief Determine if the target should perform code placement optimization. bool shouldOptimizeCodePlacement() const { return benefitFromCodePlacementOpt; } /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If /// 'IsZeroVal' is true, that means it's safe to return a /// non-scalar-integer type, e.g. empty string source, constant, or loaded /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is /// constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. virtual EVT getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/, unsigned /*SrcAlign*/, bool /*IsZeroVal*/, bool /*MemcpyStrSrc*/, MachineFunction &/*MF*/) const { return MVT::Other; } /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp /// to implement llvm.setjmp. bool usesUnderscoreSetJmp() const { return UseUnderscoreSetJmp; } /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp /// to implement llvm.longjmp. bool usesUnderscoreLongJmp() const { return UseUnderscoreLongJmp; } /// supportJumpTables - return whether the target can generate code for /// jump tables. bool supportJumpTables() const { return SupportJumpTables; } /// getStackPointerRegisterToSaveRestore - If a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. unsigned getStackPointerRegisterToSaveRestore() const { return StackPointerRegisterToSaveRestore; } /// getExceptionPointerRegister - If a physical register, this returns /// the register that receives the exception address on entry to a landing /// pad. unsigned getExceptionPointerRegister() const { return ExceptionPointerRegister; } /// getExceptionSelectorRegister - If a physical register, this returns /// the register that receives the exception typeid on entry to a landing /// pad. unsigned getExceptionSelectorRegister() const { return ExceptionSelectorRegister; } /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never /// set, the default is 200) unsigned getJumpBufSize() const { return JumpBufSize; } /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes /// (if never set, the default is 0) unsigned getJumpBufAlignment() const { return JumpBufAlignment; } /// getMinStackArgumentAlignment - return the minimum stack alignment of an /// argument. unsigned getMinStackArgumentAlignment() const { return MinStackArgumentAlignment; } /// getMinFunctionAlignment - return the minimum function alignment. /// unsigned getMinFunctionAlignment() const { return MinFunctionAlignment; } /// getPrefFunctionAlignment - return the preferred function alignment. /// unsigned getPrefFunctionAlignment() const { return PrefFunctionAlignment; } /// getPrefLoopAlignment - return the preferred loop alignment. /// unsigned getPrefLoopAlignment() const { return PrefLoopAlignment; } /// getShouldFoldAtomicFences - return whether the combiner should fold /// fence MEMBARRIER instructions into the atomic intrinsic instructions. /// bool getShouldFoldAtomicFences() const { return ShouldFoldAtomicFences; } /// getInsertFencesFor - return whether the DAG builder should automatically /// insert fences and reduce ordering for atomics. /// bool getInsertFencesForAtomic() const { return InsertFencesForAtomic; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; } /// getJumpTableEncoding - Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. virtual unsigned getJumpTableEncoding() const; virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, MCContext &/*Ctx*/) const { llvm_unreachable("Need to implement this hook if target has custom JTIs"); } /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC /// jumptable. virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const; /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an /// MCExpr. virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const; /// isOffsetFoldingLegal - Return true if folding a constant offset /// with the given GlobalAddress is legal. It is frequently not legal in /// PIC relocation models. virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; /// getStackCookieLocation - Return true if the target stores stack /// protector cookies at a fixed offset in some non-standard address /// space, and populates the address space and offset as /// appropriate. virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/, unsigned &/*Offset*/) const { return false; } /// getMaximalGlobalOffset - Returns the maximal possible offset which can be /// used for loads / stores from the global. virtual unsigned getMaximalGlobalOffset() const { return 0; } //===--------------------------------------------------------------------===// // TargetLowering Optimization Methods // /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two /// SDValues for returning information from TargetLowering to its clients /// that want to combine struct TargetLoweringOpt { SelectionDAG &DAG; bool LegalTys; bool LegalOps; SDValue Old; SDValue New; explicit TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO) : DAG(InDAG), LegalTys(LT), LegalOps(LO) {} bool LegalTypes() const { return LegalTys; } bool LegalOperations() const { return LegalOps; } bool CombineTo(SDValue O, SDValue N) { Old = O; New = N; return true; } /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if /// there are any bits set in the constant that are not demanded. If so, /// shrink the constant and return true. bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded); /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening /// cast, but it could be generalized for targets with other types of /// implicit widening casts. bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, DebugLoc dl); }; /// SimplifyDemandedBits - Look at Op. At this point, we know that only the /// DemandedMask bits of the result of Op are ever used downstream. If we can /// use this information to simplify Op, create a new simplified DAG node and /// return true, returning the original and new nodes in Old and New. /// Otherwise, analyze the expression and return a mask of KnownOne and /// KnownZero bits for the expression (used to simplify the caller). /// The KnownZero/One bits may only be accurate for those bits in the /// DemandedMask. bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, APInt &KnownZero, APInt &KnownOne, TargetLoweringOpt &TLO, unsigned Depth = 0) const; /// computeMaskedBitsForTargetNode - Determine which of the bits specified in /// Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const; /// ComputeNumSignBitsForTargetNode - This method can be implemented by /// targets that want to expose additional information about sign bits to the /// DAG Combiner. virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth = 0) const; struct DAGCombinerInfo { void *DC; // The DAG Combiner object. bool BeforeLegalize; bool BeforeLegalizeOps; bool CalledByLegalizer; public: SelectionDAG &DAG; DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc) : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo), CalledByLegalizer(cl), DAG(dag) {} bool isBeforeLegalize() const { return BeforeLegalize; } bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; } bool isCalledByLegalizer() const { return CalledByLegalizer; } void AddToWorklist(SDNode *N); void RemoveFromWorklist(SDNode *N); SDValue CombineTo(SDNode *N, const std::vector &To, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); }; /// SimplifySetCC - Try to simplify a setcc built with the specified operands /// and cc. If it is unable to simplify it, return a null SDValue. SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, DebugLoc dl) const; /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the /// node is a GlobalAddress + offset. virtual bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; /// PerformDAGCombine - This method will be invoked for all target nodes and /// for any target-independent nodes that the target has registered with /// invoke it for. /// /// The semantics are as follows: /// Return Value: /// SDValue.Val == 0 - No change was made /// SDValue.Val == N - N was replaced, is dead, and is already handled. /// otherwise - N should be replaced by the returned Operand. /// /// In addition, methods provided by DAGCombinerInfo may be used to perform /// more complex transformations. /// virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; /// isTypeDesirableForOp - Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 /// instruction encodings are longer and some i16 instructions are slow. virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { // By default, assume all legal types are desirable. return isTypeLegal(VT); } /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner /// to transform a floating point op of specified opcode to a equivalent op of /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM. virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, EVT /*VT*/) const { return false; } /// IsDesirableToPromoteOp - This method query the target whether it is /// beneficial for dag combiner to promote the specified node. If true, it /// should return the desired promotion type by reference. virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { return false; } //===--------------------------------------------------------------------===// // TargetLowering Configuration Methods - These methods should be invoked by // the derived class constructor to configure this object for the target. // protected: /// setBooleanContents - Specify how the target extends the result of a /// boolean value from i1 to a wider type. See getBooleanContents. void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; } /// setBooleanVectorContents - Specify how the target extends the result /// of a vector boolean value from a vector of i1 to a wider type. See /// getBooleanContents. void setBooleanVectorContents(BooleanContent Ty) { BooleanVectorContents = Ty; } /// setSchedulingPreference - Specify the target scheduling preference. void setSchedulingPreference(Sched::Preference Pref) { SchedPreferenceInfo = Pref; } /// setUseUnderscoreSetJmp - Indicate whether this target prefers to /// use _setjmp to implement llvm.setjmp or the non _ version. /// Defaults to false. void setUseUnderscoreSetJmp(bool Val) { UseUnderscoreSetJmp = Val; } /// setUseUnderscoreLongJmp - Indicate whether this target prefers to /// use _longjmp to implement llvm.longjmp or the non _ version. /// Defaults to false. void setUseUnderscoreLongJmp(bool Val) { UseUnderscoreLongJmp = Val; } /// setSupportJumpTables - Indicate whether the target can generate code for /// jump tables. void setSupportJumpTables(bool Val) { SupportJumpTables = Val; } /// setStackPointerRegisterToSaveRestore - If set to a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. void setStackPointerRegisterToSaveRestore(unsigned R) { StackPointerRegisterToSaveRestore = R; } /// setExceptionPointerRegister - If set to a physical register, this sets /// the register that receives the exception address on entry to a landing /// pad. void setExceptionPointerRegister(unsigned R) { ExceptionPointerRegister = R; } /// setExceptionSelectorRegister - If set to a physical register, this sets /// the register that receives the exception typeid on entry to a landing /// pad. void setExceptionSelectorRegister(unsigned R) { ExceptionSelectorRegister = R; } /// SelectIsExpensive - Tells the code generator not to expand operations /// into sequences that use the select operations if possible. void setSelectIsExpensive(bool isExpensive = true) { SelectIsExpensive = isExpensive; } /// JumpIsExpensive - Tells the code generator not to expand sequence of /// operations into a separate sequences that increases the amount of /// flow control. void setJumpIsExpensive(bool isExpensive = true) { JumpIsExpensive = isExpensive; } /// setIntDivIsCheap - Tells the code generator that integer divide is /// expensive, and if possible, should be replaced by an alternate sequence /// of instructions not containing an integer divide. void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; } /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate /// srl/add/sra for a signed divide by power of two, and let the target handle /// it. void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; } /// addRegisterClass - Add the specified register class as an available /// regclass for the specified value type. This indicates the selector can /// handle values of that class natively. void addRegisterClass(EVT VT, const TargetRegisterClass *RC) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); AvailableRegClasses.push_back(std::make_pair(VT, RC)); RegClassForVT[VT.getSimpleVT().SimpleTy] = RC; } /// findRepresentativeClass - Return the largest legal super-reg register class /// of the register class for the specified type and its associated "cost". virtual std::pair findRepresentativeClass(EVT VT) const; /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void computeRegisterProperties(); /// setOperationAction - Indicate that the specified operation does not work /// with the specified type and indicate what to do about it. void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) { assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action; } /// setLoadExtAction - Indicate that the specified load with extension does /// not work with the specified type and indicate what to do about it. void setLoadExtAction(unsigned ExtType, MVT VT, LegalizeAction Action) { assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action; } /// setTruncStoreAction - Indicate that the specified truncating store does /// not work with the specified type and indicate what to do about it. void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) { assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE && "Table isn't big enough!"); TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action; } /// setIndexedLoadAction - Indicate that the specified indexed load does or /// does not work with the specified type and indicate what to do abort /// it. NOTE: All indexed mode loads are initialized to Expand in /// TargetLowering.cpp void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Load action are kept in the upper half. IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; } /// setIndexedStoreAction - Indicate that the specified indexed store does or /// does not work with the specified type and indicate what to do about /// it. NOTE: All indexed mode stores are initialized to Expand in /// TargetLowering.cpp void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Store action are kept in the lower half. IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); } /// setCondCodeAction - Indicate that the specified condition code is or isn't /// supported on the target and indicate what to do about it. void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) { assert(VT < MVT::LAST_VALUETYPE && (unsigned)CC < array_lengthof(CondCodeActions) && "Table isn't big enough!"); CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.SimpleTy*2); CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2; } /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the /// promotion code defaults to trying a larger integer/fp until it can find /// one that works. If that default is insufficient, this method can be used /// by the target to override the default. void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; } /// setTargetDAGCombine - Targets should invoke this method for each target /// independent node that they want to provide a custom DAG combiner for by /// implementing the PerformDAGCombine virtual method. void setTargetDAGCombine(ISD::NodeType NT) { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); } /// setJumpBufSize - Set the target's required jmp_buf buffer size (in /// bytes); default is 200 void setJumpBufSize(unsigned Size) { JumpBufSize = Size; } /// setJumpBufAlignment - Set the target's required jmp_buf buffer /// alignment (in bytes); default is 0 void setJumpBufAlignment(unsigned Align) { JumpBufAlignment = Align; } /// setMinFunctionAlignment - Set the target's minimum function alignment (in /// log2(bytes)) void setMinFunctionAlignment(unsigned Align) { MinFunctionAlignment = Align; } /// setPrefFunctionAlignment - Set the target's preferred function alignment. /// This should be set if there is a performance benefit to /// higher-than-minimum alignment (in log2(bytes)) void setPrefFunctionAlignment(unsigned Align) { PrefFunctionAlignment = Align; } /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default /// alignment is zero, it means the target does not care about loop alignment. /// The alignment is specified in log2(bytes). void setPrefLoopAlignment(unsigned Align) { PrefLoopAlignment = Align; } /// setMinStackArgumentAlignment - Set the minimum stack alignment of an /// argument (in log2(bytes)). void setMinStackArgumentAlignment(unsigned Align) { MinStackArgumentAlignment = Align; } /// setShouldFoldAtomicFences - Set if the target's implementation of the /// atomic operation intrinsics includes locking. Default is false. void setShouldFoldAtomicFences(bool fold) { ShouldFoldAtomicFences = fold; } /// setInsertFencesForAtomic - Set if the DAG builder should /// automatically insert fences and reduce the order of atomic memory /// operations to Monotonic. void setInsertFencesForAtomic(bool fence) { InsertFencesForAtomic = fence; } public: //===--------------------------------------------------------------------===// // Lowering methods - These methods must be implemented by targets so that // the SelectionDAGLowering code knows how to lower these. // /// LowerFormalArguments - This hook must be implemented to lower the /// incoming (formal) arguments, described by the Ins array, into the /// specified DAG. The implementation should fill in the InVals array /// with legal-type argument values, and return the resulting token /// chain value. /// virtual SDValue LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl &/*Ins*/, DebugLoc /*dl*/, SelectionDAG &/*DAG*/, SmallVectorImpl &/*InVals*/) const { llvm_unreachable("Not Implemented"); } struct ArgListEntry { SDValue Node; Type* Ty; bool isSExt : 1; bool isZExt : 1; bool isInReg : 1; bool isSRet : 1; bool isNest : 1; bool isByVal : 1; uint16_t Alignment; ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), isSRet(false), isNest(false), isByVal(false), Alignment(0) { } }; typedef std::vector ArgListTy; /// CallLoweringInfo - This structure contains all information that is /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the /// SelectionDAG builder needs to lower a call, and targets will see this /// struct in their LowerCall implementation. struct CallLoweringInfo { SDValue Chain; Type *RetTy; bool RetSExt : 1; bool RetZExt : 1; bool IsVarArg : 1; bool IsInReg : 1; bool DoesNotReturn : 1; bool IsReturnValueUsed : 1; // IsTailCall should be modified by implementations of // TargetLowering::LowerCall that perform tail call conversions. bool IsTailCall; unsigned NumFixedArgs; CallingConv::ID CallConv; SDValue Callee; ArgListTy &Args; SelectionDAG &DAG; DebugLoc DL; ImmutableCallSite *CS; SmallVector Outs; SmallVector OutVals; SmallVector Ins; /// CallLoweringInfo - Constructs a call lowering context based on the /// ImmutableCallSite \p cs. CallLoweringInfo(SDValue chain, Type *retTy, FunctionType *FTy, bool isTailCall, SDValue callee, ArgListTy &args, SelectionDAG &dag, DebugLoc dl, ImmutableCallSite &cs) : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)), RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()), IsInReg(cs.paramHasAttr(0, Attribute::InReg)), DoesNotReturn(cs.doesNotReturn()), IsReturnValueUsed(!cs.getInstruction()->use_empty()), IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()), CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag), DL(dl), CS(&cs) {} /// CallLoweringInfo - Constructs a call lowering context based on the /// provided call information. CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt, bool isVarArg, bool isInReg, unsigned numFixedArgs, CallingConv::ID callConv, bool isTailCall, bool doesNotReturn, bool isReturnValueUsed, SDValue callee, ArgListTy &args, SelectionDAG &dag, DebugLoc dl) : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt), IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn), IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall), NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee), Args(args), DAG(dag), DL(dl), CS(NULL) {} }; /// LowerCallTo - This function lowers an abstract call to a function into an /// actual call. This returns a pair of operands. The first element is the /// return value for the function (if RetTy is not VoidTy). The second /// element is the outgoing token chain. It calls LowerCall to do the actual /// lowering. std::pair LowerCallTo(CallLoweringInfo &CLI) const; /// LowerCall - This hook must be implemented to lower calls into the /// the specified DAG. The outgoing arguments to the call are described /// by the Outs array, and the values to be returned by the call are /// described by the Ins array. The implementation should fill in the /// InVals array with legal-type return values from the call, and return /// the resulting token chain value. virtual SDValue LowerCall(CallLoweringInfo &/*CLI*/, SmallVectorImpl &/*InVals*/) const { llvm_unreachable("Not Implemented"); } /// HandleByVal - Target-specific cleanup for formal ByVal parameters. virtual void HandleByVal(CCState *, unsigned &) const {} /// CanLowerReturn - This hook should be implemented to check whether the /// return values described by the Outs array can fit into the return /// registers. If false is returned, an sret-demotion is performed. /// virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, MachineFunction &/*MF*/, bool /*isVarArg*/, const SmallVectorImpl &/*Outs*/, LLVMContext &/*Context*/) const { // Return true by default to get preexisting behavior. return true; } /// LowerReturn - This hook must be implemented to lower outgoing /// return values, described by the Outs array, into the specified /// DAG. The implementation should return the resulting token chain /// value. /// virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl &/*Outs*/, const SmallVectorImpl &/*OutVals*/, DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("Not Implemented"); } /// isUsedByReturnOnly - Return true if result of the specified node is used /// by a return node only. It also compute and return the input chain for the /// tail call. /// This is used to determine whether it is possible /// to codegen a libcall as tail call at legalization time. virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const { return false; } /// mayBeEmittedAsTailCall - Return true if the target may be able emit the /// call instruction as a tail call. This is used by optimization passes to /// determine if it's profitable to duplicate return instructions to enable /// tailcall optimization. virtual bool mayBeEmittedAsTailCall(CallInst *) const { return false; } /// getTypeForExtArgOrReturn - Return the type that should be used to zero or /// sign extend a zeroext/signext integer argument or return value. /// FIXME: Most C calling convention requires the return type to be promoted, /// but this is not true all the time, e.g. i1 on x86-64. It is also not /// necessary for non-C calling conventions. The frontend should handle this /// and include all of the necessary information. virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, ISD::NodeType /*ExtendKind*/) const { EVT MinVT = getRegisterType(Context, MVT::i32); return VT.bitsLT(MinVT) ? MinVT : VT; } /// LowerOperationWrapper - This callback is invoked by the type legalizer /// to legalize nodes with an illegal operand type but legal result types. /// It replaces the LowerOperation callback in the type Legalizer. /// The reason we can not do away with LowerOperation entirely is that /// LegalizeDAG isn't yet ready to use this callback. /// TODO: Consider merging with ReplaceNodeResults. /// The target places new result values for the node in Results (their number /// and types must exactly match those of the original return values of /// the node), or leaves Results empty, which indicates that the node is not /// to be custom lowered after all. /// The default implementation calls LowerOperation. virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const; /// LowerOperation - This callback is invoked for operations that are /// unsupported by the target, which are registered to use 'custom' lowering, /// and whose defined values are all legal. /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation of this aborts. virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; /// ReplaceNodeResults - This callback is invoked when a node result type is /// illegal for the target, and the operation was registered to use 'custom' /// lowering for that result type. The target places new result values for /// the node in Results (their number and types must exactly match those of /// the original return values of the node), or leaves Results empty, which /// indicates that the node is not to be custom lowered after all. /// /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation aborts. virtual void ReplaceNodeResults(SDNode * /*N*/, SmallVectorImpl &/*Results*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("ReplaceNodeResults not implemented for this target!"); } /// getTargetNodeName() - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. virtual FastISel *createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const { return 0; } //===--------------------------------------------------------------------===// // Inline Asm Support hooks // /// ExpandInlineAsm - This hook allows the target to expand an inline asm /// call to be explicit llvm code if it wants to. This is useful for /// turning simple inline asms into LLVM intrinsics, which gives the /// compiler more information about the behavior of the code. virtual bool ExpandInlineAsm(CallInst *) const { return false; } enum ConstraintType { C_Register, // Constraint represents specific register(s). C_RegisterClass, // Constraint represents any of register(s) in class. C_Memory, // Memory constraint. C_Other, // Something else. C_Unknown // Unsupported constraint. }; enum ConstraintWeight { // Generic weights. CW_Invalid = -1, // No match. CW_Okay = 0, // Acceptable. CW_Good = 1, // Good weight. CW_Better = 2, // Better weight. CW_Best = 3, // Best weight. // Well-known weights. CW_SpecificReg = CW_Okay, // Specific register operands. CW_Register = CW_Good, // Register operands. CW_Memory = CW_Better, // Memory operands. CW_Constant = CW_Best, // Constant operand. CW_Default = CW_Okay // Default or don't know type. }; /// AsmOperandInfo - This contains information for each constraint that we are /// lowering. struct AsmOperandInfo : public InlineAsm::ConstraintInfo { /// ConstraintCode - This contains the actual string for the code, like "m". /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that /// most closely matches the operand. std::string ConstraintCode; /// ConstraintType - Information about the constraint code, e.g. Register, /// RegisterClass, Memory, Other, Unknown. TargetLowering::ConstraintType ConstraintType; /// CallOperandval - If this is the result output operand or a /// clobber, this is null, otherwise it is the incoming operand to the /// CallInst. This gets modified as the asm is processed. Value *CallOperandVal; /// ConstraintVT - The ValueType for the operand value. EVT ConstraintVT; /// isMatchingInputConstraint - Return true of this is an input operand that /// is a matching constraint like "4". bool isMatchingInputConstraint() const; /// getMatchedOperand - If this is an input matching constraint, this method /// returns the output operand it matches. unsigned getMatchedOperand() const; /// Copy constructor for copying from an AsmOperandInfo. AsmOperandInfo(const AsmOperandInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintCode(info.ConstraintCode), ConstraintType(info.ConstraintType), CallOperandVal(info.CallOperandVal), ConstraintVT(info.ConstraintVT) { } /// Copy constructor for copying from a ConstraintInfo. AsmOperandInfo(const InlineAsm::ConstraintInfo &info) : InlineAsm::ConstraintInfo(info), ConstraintType(TargetLowering::C_Unknown), CallOperandVal(0), ConstraintVT(MVT::Other) { } }; typedef std::vector AsmOperandInfoVector; /// ParseConstraints - Split up the constraint string from the inline /// assembly value into the specific constraints and their prefixes, /// and also tie in the associated operand values. /// If this returns an empty vector, and if the constraint string itself /// isn't empty, there was an error parsing. virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const; /// Examine constraint type and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getMultipleConstraintMatchWeight( AsmOperandInfo &info, int maIndex) const; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const; /// ComputeConstraintToUse - Determines the constraint code and constraint /// type to use for the specific AsmOperandInfo, setting /// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand /// being passed in is available, it can be passed in as Op, otherwise an /// empty SDValue can be passed. virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG = 0) const; /// getConstraintType - Given a constraint, return the type of constraint it /// is for this target. virtual ConstraintType getConstraintType(const std::string &Constraint) const; /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g. /// {edx}), return the register number and the register class for the /// register. /// /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. /// /// This should only be used for C_Register constraints. On error, /// this returns a register number of 0 and a null register class pointer.. virtual std::pair getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const; /// LowerXConstraint - try to replace an X constraint, which matches anything, /// with another that has more specific requirements based on the type of the /// corresponding operand. This returns null if there is no replacement to /// make. virtual const char *LowerXConstraint(EVT ConstraintVT) const; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const; //===--------------------------------------------------------------------===// // Instruction Emitting Hooks // // EmitInstrWithCustomInserter - This method should be implemented by targets // that mark instructions with the 'usesCustomInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and this method is called to expand it into a sequence of // instructions, potentially also creating new basic blocks and control flow. virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; /// AdjustInstrPostInstrSelection - This method should be implemented by /// targets that mark instructions with the 'hasPostISelHook' flag. These /// instructions must be adjusted after instruction selection by target hooks. /// e.g. To fill in optional defs for ARM 's' setting instructions. virtual void AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const; //===--------------------------------------------------------------------===// // Addressing mode description hooks (used by LSR etc). // /// AddrMode - This represents an addressing mode of: /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg /// If BaseGV is null, there is no BaseGV. /// If BaseOffs is zero, there is no base offset. /// If HasBaseReg is false, there is no base register. /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with /// no scale. /// struct AddrMode { GlobalValue *BaseGV; int64_t BaseOffs; bool HasBaseReg; int64_t Scale; AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {} }; /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the /// same BB as Load/Store instructions reading the address. This allows as /// much computation as possible to be done in the address mode for that /// operand. This hook lets targets also pass back when this should be done /// on intrinsics which load/store. virtual bool GetAddrModeArguments(IntrinsicInst *I, SmallVectorImpl &Ops, Type *&AccessTy) const { return false; } /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. /// TODO: Handle pre/postinc as well. virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. virtual bool isLegalICmpImmediate(int64_t) const { return true; } /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can add /// a register with the immediate without having to materialize the /// immediate into a register. virtual bool isLegalAddImmediate(int64_t) const { return true; } /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; } virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const { return false; } /// isZExtFree - Return true if any actual instruction that defines a /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result /// register. This does not necessarily include registers defined in /// unknown ways, such as incoming arguments, or copies from unknown /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this /// does not necessarily apply to truncate instructions. e.g. on x86-64, /// all instructions that define 32-bit values implicit zero-extend the /// result out to 64 bits. virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const { return false; } virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const { return false; } /// isFNegFree - Return true if an fneg operation is free to the point where /// it is never worthwhile to replace it with a bitwise operation. virtual bool isFNegFree(EVT) const { return false; } /// isFAbsFree - Return true if an fneg operation is free to the point where /// it is never worthwhile to replace it with a bitwise operation. virtual bool isFAbsFree(EVT) const { return false; } /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd /// is expanded to mul + add. virtual bool isFMAFasterThanMulAndAdd(EVT) const { return false; } /// isNarrowingProfitable - Return true if it's profitable to narrow /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow /// from i32 to i8 but not from i32 to i16. virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { return false; } //===--------------------------------------------------------------------===// // Div utility functions // SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, SelectionDAG &DAG) const; SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, std::vector* Created) const; SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, std::vector* Created) const; //===--------------------------------------------------------------------===// // Runtime Library hooks // /// setLibcallName - Rename the default libcall routine name for the specified /// libcall. void setLibcallName(RTLIB::Libcall Call, const char *Name) { LibcallRoutineNames[Call] = Name; } /// getLibcallName - Get the libcall routine name for the specified libcall. /// const char *getLibcallName(RTLIB::Libcall Call) const { return LibcallRoutineNames[Call]; } /// setCmpLibcallCC - Override the default CondCode to be used to test the /// result of the comparison libcall against zero. void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { CmpLibcallCCs[Call] = CC; } /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of /// the comparison libcall against zero. ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { return CmpLibcallCCs[Call]; } /// setLibcallCallingConv - Set the CallingConv that should be used for the /// specified libcall. void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { LibcallCallingConvs[Call] = CC; } /// getLibcallCallingConv - Get the CallingConv that should be used for the /// specified libcall. CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { return LibcallCallingConvs[Call]; } private: const TargetMachine &TM; const TargetData *TD; const TargetLoweringObjectFile &TLOF; /// PointerTy - The type to use for pointers, usually i32 or i64. /// MVT PointerTy; /// IsLittleEndian - True if this is a little endian target. /// bool IsLittleEndian; /// SelectIsExpensive - Tells the code generator not to expand operations /// into sequences that use the select operations if possible. bool SelectIsExpensive; /// IntDivIsCheap - Tells the code generator not to expand integer divides by /// constants into a sequence of muls, adds, and shifts. This is a hack until /// a real cost model is in place. If we ever optimize for size, this will be /// set to true unconditionally. bool IntDivIsCheap; /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate /// srl/add/sra for a signed divide by power of two, and let the target handle /// it. bool Pow2DivIsCheap; /// JumpIsExpensive - Tells the code generator that it shouldn't generate /// extra flow control instructions and should attempt to combine flow /// control instructions via predication. bool JumpIsExpensive; /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement /// llvm.setjmp. Defaults to false. bool UseUnderscoreSetJmp; /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement /// llvm.longjmp. Defaults to false. bool UseUnderscoreLongJmp; /// SupportJumpTables - Whether the target can generate code for jumptables. /// If it's not true, then each jumptable must be lowered into if-then-else's. bool SupportJumpTables; /// BooleanContents - Information about the contents of the high-bits in /// boolean values held in a type wider than i1. See getBooleanContents. BooleanContent BooleanContents; /// BooleanVectorContents - Information about the contents of the high-bits /// in boolean vector values when the element type is wider than i1. See /// getBooleanContents. BooleanContent BooleanVectorContents; /// SchedPreferenceInfo - The target scheduling preference: shortest possible /// total cycles or lowest register usage. Sched::Preference SchedPreferenceInfo; /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers unsigned JumpBufSize; /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf /// buffers unsigned JumpBufAlignment; /// MinStackArgumentAlignment - The minimum alignment that any argument /// on the stack needs to have. /// unsigned MinStackArgumentAlignment; /// MinFunctionAlignment - The minimum function alignment (used when /// optimizing for size, and to prevent explicitly provided alignment /// from leading to incorrect code). /// unsigned MinFunctionAlignment; /// PrefFunctionAlignment - The preferred function alignment (used when /// alignment unspecified and optimizing for speed). /// unsigned PrefFunctionAlignment; /// PrefLoopAlignment - The preferred loop alignment. /// unsigned PrefLoopAlignment; /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should /// be folded into the enclosed atomic intrinsic instruction by the /// combiner. bool ShouldFoldAtomicFences; /// InsertFencesForAtomic - Whether the DAG builder should automatically /// insert fences and reduce ordering for atomics. (This will be set for /// for most architectures with weak memory ordering.) bool InsertFencesForAtomic; /// StackPointerRegisterToSaveRestore - If set to a physical register, this /// specifies the register that llvm.savestack/llvm.restorestack should save /// and restore. unsigned StackPointerRegisterToSaveRestore; /// ExceptionPointerRegister - If set to a physical register, this specifies /// the register that receives the exception address on entry to a landing /// pad. unsigned ExceptionPointerRegister; /// ExceptionSelectorRegister - If set to a physical register, this specifies /// the register that receives the exception typeid on entry to a landing /// pad. unsigned ExceptionSelectorRegister; /// RegClassForVT - This indicates the default register class to use for /// each ValueType the target supports natively. const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; EVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; /// RepRegClassForVT - This indicates the "representative" register class to /// use for each ValueType the target supports natively. This information is /// used by the scheduler to track register pressure. By default, the /// representative register class is the largest legal super-reg register /// class of the register class of the specified type. e.g. On x86, i8, i16, /// and i32's representative class would be GR32. const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; /// RepRegClassCostForVT - This indicates the "cost" of the "representative" /// register class for each ValueType. The cost is used by the scheduler to /// approximate register pressure. uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; /// TransformToType - For any value types we are promoting or expanding, this /// contains the value type that we are changing to. For Expanded types, this /// contains one step of the expand (e.g. i64 -> i32), even if there are /// multiple steps required (e.g. i64 -> i16). For types natively supported /// by the system, this holds the same type (e.g. i32 -> i32). EVT TransformToType[MVT::LAST_VALUETYPE]; /// OpActions - For each operation and each value type, keep a LegalizeAction /// that indicates how instruction selection should deal with the operation. /// Most operations are Legal (aka, supported natively by the target), but /// operations that are not should be described. Note that operations on /// non-legal value types are not described here. uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; /// LoadExtActions - For each load extension type and each value type, /// keep a LegalizeAction that indicates how instruction selection should deal /// with a load of a specific value type and extension type. uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE]; /// TruncStoreActions - For each value type pair keep a LegalizeAction that /// indicates whether a truncating store of a specific value type and /// truncating type is legal. uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; /// IndexedModeActions - For each indexed mode and each value type, /// keep a pair of LegalizeAction that indicates how instruction /// selection should deal with the load / store. The first dimension is the /// value_type for the reference. The second dimension represents the various /// modes for load store. uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; /// CondCodeActions - For each condition code (ISD::CondCode) keep a /// LegalizeAction that indicates how instruction selection should /// deal with the condition code. uint64_t CondCodeActions[ISD::SETCC_INVALID]; ValueTypeActionImpl ValueTypeActions; typedef std::pair LegalizeKind; LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const { // If this is a simple type, use the ComputeRegisterProp mechanism. if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(TransformToType)); EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy]; LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT()); assert( (!(NVT.isSimple() && LA != TypeLegal) || ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger) && "Promote may not follow Expand or Promote"); return LegalizeKind(LA, NVT); } // Handle Extended Scalar Types. if (!VT.isVector()) { assert(VT.isInteger() && "Float types must be simple"); unsigned BitSize = VT.getSizeInBits(); // First promote to a power-of-two size, then expand if necessary. if (BitSize < 8 || !isPowerOf2_32(BitSize)) { EVT NVT = VT.getRoundIntegerType(Context); assert(NVT != VT && "Unable to round integer VT"); LegalizeKind NextStep = getTypeConversion(Context, NVT); // Avoid multi-step promotion. if (NextStep.first == TypePromoteInteger) return NextStep; // Return rounded integer type. return LegalizeKind(TypePromoteInteger, NVT); } return LegalizeKind(TypeExpandInteger, EVT::getIntegerVT(Context, VT.getSizeInBits()/2)); } // Handle vector types. unsigned NumElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); // Vectors with only one element are always scalarized. if (NumElts == 1) return LegalizeKind(TypeScalarizeVector, EltVT); // Try to widen vector elements until a legal type is found. if (EltVT.isInteger()) { // Vectors with a number of elements that is not a power of two are always // widened, for example <3 x float> -> <4 x float>. if (!VT.isPow2VectorType()) { NumElts = (unsigned)NextPowerOf2(NumElts); EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); return LegalizeKind(TypeWidenVector, NVT); } // Examine the element type. LegalizeKind LK = getTypeConversion(Context, EltVT); // If type is to be expanded, split the vector. // <4 x i140> -> <2 x i140> if (LK.first == TypeExpandInteger) return LegalizeKind(TypeSplitVector, EVT::getVectorVT(Context, EltVT, NumElts / 2)); // Promote the integer element types until a legal vector type is found // or until the element integer type is too big. If a legal type was not // found, fallback to the usual mechanism of widening/splitting the // vector. while (1) { // Increase the bitwidth of the element to the next pow-of-two // (which is greater than 8 bits). EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits() ).getRoundIntegerType(Context); // Stop trying when getting a non-simple element type. // Note that vector elements may be greater than legal vector element // types. Example: X86 XMM registers hold 64bit element on 32bit systems. if (!EltVT.isSimple()) break; // Build a new vector type and check if it is legal. MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); // Found a legal promoted vector type. if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) return LegalizeKind(TypePromoteInteger, EVT::getVectorVT(Context, EltVT, NumElts)); } } // Try to widen the vector until a legal type is found. // If there is no wider legal type, split the vector. while (1) { // Round up to the next power of 2. NumElts = (unsigned)NextPowerOf2(NumElts); // If there is no simple vector type with this many elements then there // cannot be a larger legal vector type. Note that this assumes that // there are no skipped intermediate vector types in the simple types. if (!EltVT.isSimple()) break; MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); if (LargerVector == MVT()) break; // If this type is legal then widen the vector. if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) return LegalizeKind(TypeWidenVector, LargerVector); } // Widen odd vectors to next power of two. if (!VT.isPow2VectorType()) { EVT NVT = VT.getPow2VectorType(Context); return LegalizeKind(TypeWidenVector, NVT); } // Vectors with illegal element types are expanded. EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); return LegalizeKind(TypeSplitVector, NVT); } std::vector > AvailableRegClasses; /// TargetDAGCombineArray - Targets can specify ISD nodes that they would /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(), /// which sets a bit in this array. unsigned char TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; /// PromoteToType - For operations that must be promoted to a specific type, /// this holds the destination type. This map should be sparse, so don't hold /// it as an array. /// /// Targets add entries to this map with AddPromotedToType(..), clients access /// this with getTypeToPromoteTo(..). std::map, MVT::SimpleValueType> PromoteToType; /// LibcallRoutineNames - Stores the name each libcall. /// const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result /// of each of the comparison libcall against zero. ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; /// LibcallCallingConvs - Stores the CallingConv that should be used for each /// libcall. CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; protected: /// When lowering \@llvm.memset this field specifies the maximum number of /// store operations that may be substituted for the call to memset. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memset will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine /// with 16-bit alignment would result in four 2-byte stores and one 1-byte /// store. This only applies to setting a constant array of a constant size. /// @brief Specify maximum number of store instructions per memset call. unsigned maxStoresPerMemset; /// Maximum number of stores operations that may be substituted for the call /// to memset, used for functions with OptSize attribute. unsigned maxStoresPerMemsetOptSize; /// When lowering \@llvm.memcpy this field specifies the maximum number of /// store operations that may be substituted for a call to memcpy. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memcpy will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store /// and one 1-byte store. This only applies to copying a constant array of /// constant size. /// @brief Specify maximum bytes of store instructions per memcpy call. unsigned maxStoresPerMemcpy; /// Maximum number of store operations that may be substituted for a call /// to memcpy, used for functions with OptSize attribute. unsigned maxStoresPerMemcpyOptSize; /// When lowering \@llvm.memmove this field specifies the maximum number of /// store instructions that may be substituted for a call to memmove. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memmove will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine /// with 8-bit alignment would result in nine 1-byte stores. This only /// applies to copying a constant array of constant size. /// @brief Specify maximum bytes of store instructions per memmove call. unsigned maxStoresPerMemmove; /// Maximum number of store instructions that may be substituted for a call /// to memmove, used for functions with OpSize attribute. unsigned maxStoresPerMemmoveOptSize; /// This field specifies whether the target can benefit from code placement /// optimization. bool benefitFromCodePlacementOpt; /// predictableSelectIsExpensive - Tells the code generator that select is /// more expensive than a branch if the branch is usually predicted right. bool predictableSelectIsExpensive; private: /// isLegalRC - Return true if the value types that can be represented by the /// specified register class are all legal. bool isLegalRC(const TargetRegisterClass *RC) const; }; /// GetReturnInfo - Given an LLVM IR type and return type attributes, /// compute the return value EVTs and flags, and optionally also /// the offsets, if the return value is being lowered to memory. void GetReturnInfo(Type* ReturnType, Attributes attr, SmallVectorImpl &Outs, const TargetLowering &TLI); } // end llvm namespace #endif