//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass deletes dead arguments from internal functions. Dead argument // elimination removes arguments which are directly dead, as well as arguments // only passed into function calls as dead arguments of other functions. This // pass also deletes dead return values in a similar way. // // This pass is often useful as a cleanup pass to run after aggressive // interprocedural passes, which add possibly-dead arguments or return values. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "deadargelim" #include "llvm/Transforms/IPO.h" #include "llvm/CallingConv.h" #include "llvm/Constant.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include #include using namespace llvm; STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); namespace { /// DAE - The dead argument elimination pass. /// class DAE : public ModulePass { public: /// Struct that represents (part of) either a return value or a function /// argument. Used so that arguments and return values can be used /// interchangably. struct RetOrArg { RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), IsArg(IsArg) {} const Function *F; unsigned Idx; bool IsArg; /// Make RetOrArg comparable, so we can put it into a map. bool operator<(const RetOrArg &O) const { if (F != O.F) return F < O.F; else if (Idx != O.Idx) return Idx < O.Idx; else return IsArg < O.IsArg; } /// Make RetOrArg comparable, so we can easily iterate the multimap. bool operator==(const RetOrArg &O) const { return F == O.F && Idx == O.Idx && IsArg == O.IsArg; } std::string getDescription() const { return std::string((IsArg ? "Argument #" : "Return value #")) + utostr(Idx) + " of function " + F->getNameStr(); } }; /// Liveness enum - During our initial pass over the program, we determine /// that things are either alive or maybe alive. We don't mark anything /// explicitly dead (even if we know they are), since anything not alive /// with no registered uses (in Uses) will never be marked alive and will /// thus become dead in the end. enum Liveness { Live, MaybeLive }; /// Convenience wrapper RetOrArg CreateRet(const Function *F, unsigned Idx) { return RetOrArg(F, Idx, false); } /// Convenience wrapper RetOrArg CreateArg(const Function *F, unsigned Idx) { return RetOrArg(F, Idx, true); } typedef std::multimap UseMap; /// This maps a return value or argument to any MaybeLive return values or /// arguments it uses. This allows the MaybeLive values to be marked live /// when any of its users is marked live. /// For example (indices are left out for clarity): /// - Uses[ret F] = ret G /// This means that F calls G, and F returns the value returned by G. /// - Uses[arg F] = ret G /// This means that some function calls G and passes its result as an /// argument to F. /// - Uses[ret F] = arg F /// This means that F returns one of its own arguments. /// - Uses[arg F] = arg G /// This means that G calls F and passes one of its own (G's) arguments /// directly to F. UseMap Uses; typedef std::set LiveSet; typedef std::set LiveFuncSet; /// This set contains all values that have been determined to be live. LiveSet LiveValues; /// This set contains all values that are cannot be changed in any way. LiveFuncSet LiveFunctions; typedef SmallVector UseVector; protected: // DAH uses this to specify a different ID. explicit DAE(char &ID) : ModulePass(ID) {} public: static char ID; // Pass identification, replacement for typeid DAE() : ModulePass(ID) {} bool runOnModule(Module &M); virtual bool ShouldHackArguments() const { return false; } private: Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses); Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses, unsigned RetValNum = 0); Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses); void SurveyFunction(const Function &F); void MarkValue(const RetOrArg &RA, Liveness L, const UseVector &MaybeLiveUses); void MarkLive(const RetOrArg &RA); void MarkLive(const Function &F); void PropagateLiveness(const RetOrArg &RA); bool RemoveDeadStuffFromFunction(Function *F); bool DeleteDeadVarargs(Function &Fn); }; } char DAE::ID = 0; INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false); namespace { /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but /// deletes arguments to functions which are external. This is only for use /// by bugpoint. struct DAH : public DAE { static char ID; DAH() : DAE(ID) {} virtual bool ShouldHackArguments() const { return true; } }; } char DAH::ID = 0; INITIALIZE_PASS(DAH, "deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false, false); /// createDeadArgEliminationPass - This pass removes arguments from functions /// which are not used by the body of the function. /// ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } /// DeleteDeadVarargs - If this is an function that takes a ... list, and if /// llvm.vastart is never called, the varargs list is dead for the function. bool DAE::DeleteDeadVarargs(Function &Fn) { assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; // Ensure that the function is only directly called. if (Fn.hasAddressTaken()) return false; // Okay, we know we can transform this function if safe. Scan its body // looking for calls to llvm.vastart. for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (IntrinsicInst *II = dyn_cast(I)) { if (II->getIntrinsicID() == Intrinsic::vastart) return false; } } } // If we get here, there are no calls to llvm.vastart in the function body, // remove the "..." and adjust all the calls. // Start by computing a new prototype for the function, which is the same as // the old function, but doesn't have isVarArg set. const FunctionType *FTy = Fn.getFunctionType(); std::vector Params(FTy->param_begin(), FTy->param_end()); FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false); unsigned NumArgs = Params.size(); // Create the new function body and insert it into the module... Function *NF = Function::Create(NFTy, Fn.getLinkage()); NF->copyAttributesFrom(&Fn); Fn.getParent()->getFunctionList().insert(&Fn, NF); NF->takeName(&Fn); // Loop over all of the callers of the function, transforming the call sites // to pass in a smaller number of arguments into the new function. // std::vector Args; while (!Fn.use_empty()) { CallSite CS(Fn.use_back()); Instruction *Call = CS.getInstruction(); // Pass all the same arguments. Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); // Drop any attributes that were on the vararg arguments. AttrListPtr PAL = CS.getAttributes(); if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) { SmallVector AttributesVec; for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i) AttributesVec.push_back(PAL.getSlot(i)); if (Attributes FnAttrs = PAL.getFnAttributes()) AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()); } Instruction *New; if (InvokeInst *II = dyn_cast(Call)) { New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args.begin(), Args.end(), "", Call); cast(New)->setCallingConv(CS.getCallingConv()); cast(New)->setAttributes(PAL); } else { New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call); cast(New)->setCallingConv(CS.getCallingConv()); cast(New)->setAttributes(PAL); if (cast(Call)->isTailCall()) cast(New)->setTailCall(); } New->setDebugLoc(Call->getDebugLoc()); Args.clear(); if (!Call->use_empty()) Call->replaceAllUsesWith(New); New->takeName(Call); // Finally, remove the old call from the program, reducing the use-count of // F. Call->eraseFromParent(); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); // Loop over the argument list, transfering uses of the old arguments over to // the new arguments, also transfering over the names as well. While we're at // it, remove the dead arguments from the DeadArguments list. // for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), I2 = NF->arg_begin(); I != E; ++I, ++I2) { // Move the name and users over to the new version. I->replaceAllUsesWith(I2); I2->takeName(I); } // Finally, nuke the old function. Fn.eraseFromParent(); return true; } /// Convenience function that returns the number of return values. It returns 0 /// for void functions and 1 for functions not returning a struct. It returns /// the number of struct elements for functions returning a struct. static unsigned NumRetVals(const Function *F) { if (F->getReturnType()->isVoidTy()) return 0; else if (const StructType *STy = dyn_cast(F->getReturnType())) return STy->getNumElements(); else return 1; } /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not /// live, it adds Use to the MaybeLiveUses argument. Returns the determined /// liveness of Use. DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) { // We're live if our use or its Function is already marked as live. if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) return Live; // We're maybe live otherwise, but remember that we must become live if // Use becomes live. MaybeLiveUses.push_back(Use); return MaybeLive; } /// SurveyUse - This looks at a single use of an argument or return value /// and determines if it should be alive or not. Adds this use to MaybeLiveUses /// if it causes the used value to become MaybeLive. /// /// RetValNum is the return value number to use when this use is used in a /// return instruction. This is used in the recursion, you should always leave /// it at 0. DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses, unsigned RetValNum) { const User *V = *U; if (const ReturnInst *RI = dyn_cast(V)) { // The value is returned from a function. It's only live when the // function's return value is live. We use RetValNum here, for the case // that U is really a use of an insertvalue instruction that uses the // orginal Use. RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum); // We might be live, depending on the liveness of Use. return MarkIfNotLive(Use, MaybeLiveUses); } if (const InsertValueInst *IV = dyn_cast(V)) { if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex() && IV->hasIndices()) // The use we are examining is inserted into an aggregate. Our liveness // depends on all uses of that aggregate, but if it is used as a return // value, only index at which we were inserted counts. RetValNum = *IV->idx_begin(); // Note that if we are used as the aggregate operand to the insertvalue, // we don't change RetValNum, but do survey all our uses. Liveness Result = MaybeLive; for (Value::const_use_iterator I = IV->use_begin(), E = V->use_end(); I != E; ++I) { Result = SurveyUse(I, MaybeLiveUses, RetValNum); if (Result == Live) break; } return Result; } if (ImmutableCallSite CS = V) { const Function *F = CS.getCalledFunction(); if (F) { // Used in a direct call. // Find the argument number. We know for sure that this use is an // argument, since if it was the function argument this would be an // indirect call and the we know can't be looking at a value of the // label type (for the invoke instruction). unsigned ArgNo = CS.getArgumentNo(U); if (ArgNo >= F->getFunctionType()->getNumParams()) // The value is passed in through a vararg! Must be live. return Live; assert(CS.getArgument(ArgNo) == CS->getOperand(U.getOperandNo()) && "Argument is not where we expected it"); // Value passed to a normal call. It's only live when the corresponding // argument to the called function turns out live. RetOrArg Use = CreateArg(F, ArgNo); return MarkIfNotLive(Use, MaybeLiveUses); } } // Used in any other way? Value must be live. return Live; } /// SurveyUses - This looks at all the uses of the given value /// Returns the Liveness deduced from the uses of this value. /// /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If /// the result is Live, MaybeLiveUses might be modified but its content should /// be ignored (since it might not be complete). DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) { // Assume it's dead (which will only hold if there are no uses at all..). Liveness Result = MaybeLive; // Check each use. for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { Result = SurveyUse(I, MaybeLiveUses); if (Result == Live) break; } return Result; } // SurveyFunction - This performs the initial survey of the specified function, // checking out whether or not it uses any of its incoming arguments or whether // any callers use the return value. This fills in the LiveValues set and Uses // map. // // We consider arguments of non-internal functions to be intrinsically alive as // well as arguments to functions which have their "address taken". // void DAE::SurveyFunction(const Function &F) { unsigned RetCount = NumRetVals(&F); // Assume all return values are dead typedef SmallVector RetVals; RetVals RetValLiveness(RetCount, MaybeLive); typedef SmallVector RetUses; // These vectors map each return value to the uses that make it MaybeLive, so // we can add those to the Uses map if the return value really turns out to be // MaybeLive. Initialized to a list of RetCount empty lists. RetUses MaybeLiveRetUses(RetCount); for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (const ReturnInst *RI = dyn_cast(BB->getTerminator())) if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() != F.getFunctionType()->getReturnType()) { // We don't support old style multiple return values. MarkLive(F); return; } if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) { MarkLive(F); return; } DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n"); // Keep track of the number of live retvals, so we can skip checks once all // of them turn out to be live. unsigned NumLiveRetVals = 0; const Type *STy = dyn_cast(F.getReturnType()); // Loop all uses of the function. for (Value::const_use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) { // If the function is PASSED IN as an argument, its address has been // taken. ImmutableCallSite CS(*I); if (!CS || !CS.isCallee(I)) { MarkLive(F); return; } // If this use is anything other than a call site, the function is alive. const Instruction *TheCall = CS.getInstruction(); if (!TheCall) { // Not a direct call site? MarkLive(F); return; } // If we end up here, we are looking at a direct call to our function. // Now, check how our return value(s) is/are used in this caller. Don't // bother checking return values if all of them are live already. if (NumLiveRetVals != RetCount) { if (STy) { // Check all uses of the return value. for (Value::const_use_iterator I = TheCall->use_begin(), E = TheCall->use_end(); I != E; ++I) { const ExtractValueInst *Ext = dyn_cast(*I); if (Ext && Ext->hasIndices()) { // This use uses a part of our return value, survey the uses of // that part and store the results for this index only. unsigned Idx = *Ext->idx_begin(); if (RetValLiveness[Idx] != Live) { RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); if (RetValLiveness[Idx] == Live) NumLiveRetVals++; } } else { // Used by something else than extractvalue. Mark all return // values as live. for (unsigned i = 0; i != RetCount; ++i ) RetValLiveness[i] = Live; NumLiveRetVals = RetCount; break; } } } else { // Single return value RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]); if (RetValLiveness[0] == Live) NumLiveRetVals = RetCount; } } } // Now we've inspected all callers, record the liveness of our return values. for (unsigned i = 0; i != RetCount; ++i) MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n"); // Now, check all of our arguments. unsigned i = 0; UseVector MaybeLiveArgUses; for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI, ++i) { // See what the effect of this use is (recording any uses that cause // MaybeLive in MaybeLiveArgUses). Liveness Result = SurveyUses(AI, MaybeLiveArgUses); // Mark the result. MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); // Clear the vector again for the next iteration. MaybeLiveArgUses.clear(); } } /// MarkValue - This function marks the liveness of RA depending on L. If L is /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, /// such that RA will be marked live if any use in MaybeLiveUses gets marked /// live later on. void DAE::MarkValue(const RetOrArg &RA, Liveness L, const UseVector &MaybeLiveUses) { switch (L) { case Live: MarkLive(RA); break; case MaybeLive: { // Note any uses of this value, so this return value can be // marked live whenever one of the uses becomes live. for (UseVector::const_iterator UI = MaybeLiveUses.begin(), UE = MaybeLiveUses.end(); UI != UE; ++UI) Uses.insert(std::make_pair(*UI, RA)); break; } } } /// MarkLive - Mark the given Function as alive, meaning that it cannot be /// changed in any way. Additionally, /// mark any values that are used as this function's parameters or by its return /// values (according to Uses) live as well. void DAE::MarkLive(const Function &F) { DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n"); // Mark the function as live. LiveFunctions.insert(&F); // Mark all arguments as live. for (unsigned i = 0, e = F.arg_size(); i != e; ++i) PropagateLiveness(CreateArg(&F, i)); // Mark all return values as live. for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) PropagateLiveness(CreateRet(&F, i)); } /// MarkLive - Mark the given return value or argument as live. Additionally, /// mark any values that are used by this value (according to Uses) live as /// well. void DAE::MarkLive(const RetOrArg &RA) { if (LiveFunctions.count(RA.F)) return; // Function was already marked Live. if (!LiveValues.insert(RA).second) return; // We were already marked Live. DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n"); PropagateLiveness(RA); } /// PropagateLiveness - Given that RA is a live value, propagate it's liveness /// to any other values it uses (according to Uses). void DAE::PropagateLiveness(const RetOrArg &RA) { // We don't use upper_bound (or equal_range) here, because our recursive call // to ourselves is likely to cause the upper_bound (which is the first value // not belonging to RA) to become erased and the iterator invalidated. UseMap::iterator Begin = Uses.lower_bound(RA); UseMap::iterator E = Uses.end(); UseMap::iterator I; for (I = Begin; I != E && I->first == RA; ++I) MarkLive(I->second); // Erase RA from the Uses map (from the lower bound to wherever we ended up // after the loop). Uses.erase(Begin, I); } // RemoveDeadStuffFromFunction - Remove any arguments and return values from F // that are not in LiveValues. Transform the function and all of the callees of // the function to not have these arguments and return values. // bool DAE::RemoveDeadStuffFromFunction(Function *F) { // Don't modify fully live functions if (LiveFunctions.count(F)) return false; // Start by computing a new prototype for the function, which is the same as // the old function, but has fewer arguments and a different return type. const FunctionType *FTy = F->getFunctionType(); std::vector Params; // Set up to build a new list of parameter attributes. SmallVector AttributesVec; const AttrListPtr &PAL = F->getAttributes(); // The existing function return attributes. Attributes RAttrs = PAL.getRetAttributes(); Attributes FnAttrs = PAL.getFnAttributes(); // Find out the new return value. const Type *RetTy = FTy->getReturnType(); const Type *NRetTy = NULL; unsigned RetCount = NumRetVals(F); // -1 means unused, other numbers are the new index SmallVector NewRetIdxs(RetCount, -1); std::vector RetTypes; if (RetTy->isVoidTy()) { NRetTy = RetTy; } else { const StructType *STy = dyn_cast(RetTy); if (STy) // Look at each of the original return values individually. for (unsigned i = 0; i != RetCount; ++i) { RetOrArg Ret = CreateRet(F, i); if (LiveValues.erase(Ret)) { RetTypes.push_back(STy->getElementType(i)); NewRetIdxs[i] = RetTypes.size() - 1; } else { ++NumRetValsEliminated; DEBUG(dbgs() << "DAE - Removing return value " << i << " from " << F->getName() << "\n"); } } else // We used to return a single value. if (LiveValues.erase(CreateRet(F, 0))) { RetTypes.push_back(RetTy); NewRetIdxs[0] = 0; } else { DEBUG(dbgs() << "DAE - Removing return value from " << F->getName() << "\n"); ++NumRetValsEliminated; } if (RetTypes.size() > 1) // More than one return type? Return a struct with them. Also, if we used // to return a struct and didn't change the number of return values, // return a struct again. This prevents changing {something} into // something and {} into void. // Make the new struct packed if we used to return a packed struct // already. NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); else if (RetTypes.size() == 1) // One return type? Just a simple value then, but only if we didn't use to // return a struct with that simple value before. NRetTy = RetTypes.front(); else if (RetTypes.size() == 0) // No return types? Make it void, but only if we didn't use to return {}. NRetTy = Type::getVoidTy(F->getContext()); } assert(NRetTy && "No new return type found?"); // Remove any incompatible attributes, but only if we removed all return // values. Otherwise, ensure that we don't have any conflicting attributes // here. Currently, this should not be possible, but special handling might be // required when new return value attributes are added. if (NRetTy->isVoidTy()) RAttrs &= ~Attribute::typeIncompatible(NRetTy); else assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0 && "Return attributes no longer compatible?"); if (RAttrs) AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs)); // Remember which arguments are still alive. SmallVector ArgAlive(FTy->getNumParams(), false); // Construct the new parameter list from non-dead arguments. Also construct // a new set of parameter attributes to correspond. Skip the first parameter // attribute, since that belongs to the return value. unsigned i = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++i) { RetOrArg Arg = CreateArg(F, i); if (LiveValues.erase(Arg)) { Params.push_back(I->getType()); ArgAlive[i] = true; // Get the original parameter attributes (skipping the first one, that is // for the return value. if (Attributes Attrs = PAL.getParamAttributes(i + 1)) AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs)); } else { ++NumArgumentsEliminated; DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName() << ") from " << F->getName() << "\n"); } } if (FnAttrs != Attribute::None) AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); // Reconstruct the AttributesList based on the vector we constructed. AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()); // Create the new function type based on the recomputed parameters. FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); // No change? if (NFTy == FTy) return false; // Create the new function body and insert it into the module... Function *NF = Function::Create(NFTy, F->getLinkage()); NF->copyAttributesFrom(F); NF->setAttributes(NewPAL); // Insert the new function before the old function, so we won't be processing // it again. F->getParent()->getFunctionList().insert(F, NF); NF->takeName(F); // Loop over all of the callers of the function, transforming the call sites // to pass in a smaller number of arguments into the new function. // std::vector Args; while (!F->use_empty()) { CallSite CS(F->use_back()); Instruction *Call = CS.getInstruction(); AttributesVec.clear(); const AttrListPtr &CallPAL = CS.getAttributes(); // The call return attributes. Attributes RAttrs = CallPAL.getRetAttributes(); Attributes FnAttrs = CallPAL.getFnAttributes(); // Adjust in case the function was changed to return void. RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType()); if (RAttrs) AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs)); // Declare these outside of the loops, so we can reuse them for the second // loop, which loops the varargs. CallSite::arg_iterator I = CS.arg_begin(); unsigned i = 0; // Loop over those operands, corresponding to the normal arguments to the // original function, and add those that are still alive. for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) if (ArgAlive[i]) { Args.push_back(*I); // Get original parameter attributes, but skip return attributes. if (Attributes Attrs = CallPAL.getParamAttributes(i + 1)) AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); } // Push any varargs arguments on the list. Don't forget their attributes. for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { Args.push_back(*I); if (Attributes Attrs = CallPAL.getParamAttributes(i + 1)) AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs)); } if (FnAttrs != Attribute::None) AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); // Reconstruct the AttributesList based on the vector we constructed. AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()); Instruction *New; if (InvokeInst *II = dyn_cast(Call)) { New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args.begin(), Args.end(), "", Call); cast(New)->setCallingConv(CS.getCallingConv()); cast(New)->setAttributes(NewCallPAL); } else { New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call); cast(New)->setCallingConv(CS.getCallingConv()); cast(New)->setAttributes(NewCallPAL); if (cast(Call)->isTailCall()) cast(New)->setTailCall(); } New->setDebugLoc(Call->getDebugLoc()); Args.clear(); if (!Call->use_empty()) { if (New->getType() == Call->getType()) { // Return type not changed? Just replace users then. Call->replaceAllUsesWith(New); New->takeName(Call); } else if (New->getType()->isVoidTy()) { // Our return value has uses, but they will get removed later on. // Replace by null for now. if (!Call->getType()->isX86_MMXTy()) Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); } else { assert(RetTy->isStructTy() && "Return type changed, but not into a void. The old return type" " must have been a struct!"); Instruction *InsertPt = Call; if (InvokeInst *II = dyn_cast(Call)) { BasicBlock::iterator IP = II->getNormalDest()->begin(); while (isa(IP)) ++IP; InsertPt = IP; } // We used to return a struct. Instead of doing smart stuff with all the // uses of this struct, we will just rebuild it using // extract/insertvalue chaining and let instcombine clean that up. // // Start out building up our return value from undef Value *RetVal = UndefValue::get(RetTy); for (unsigned i = 0; i != RetCount; ++i) if (NewRetIdxs[i] != -1) { Value *V; if (RetTypes.size() > 1) // We are still returning a struct, so extract the value from our // return value V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", InsertPt); else // We are now returning a single element, so just insert that V = New; // Insert the value at the old position RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); } // Now, replace all uses of the old call instruction with the return // struct we built Call->replaceAllUsesWith(RetVal); New->takeName(Call); } } // Finally, remove the old call from the program, reducing the use-count of // F. Call->eraseFromParent(); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); // Loop over the argument list, transfering uses of the old arguments over to // the new arguments, also transfering over the names as well. i = 0; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin(); I != E; ++I, ++i) if (ArgAlive[i]) { // If this is a live argument, move the name and users over to the new // version. I->replaceAllUsesWith(I2); I2->takeName(I); ++I2; } else { // If this argument is dead, replace any uses of it with null constants // (these are guaranteed to become unused later on). if (!I->getType()->isX86_MMXTy()) I->replaceAllUsesWith(Constant::getNullValue(I->getType())); } // If we change the return value of the function we must rewrite any return // instructions. Check this now. if (F->getReturnType() != NF->getReturnType()) for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { Value *RetVal; if (NFTy->getReturnType()->isVoidTy()) { RetVal = 0; } else { assert (RetTy->isStructTy()); // The original return value was a struct, insert // extractvalue/insertvalue chains to extract only the values we need // to return and insert them into our new result. // This does generate messy code, but we'll let it to instcombine to // clean that up. Value *OldRet = RI->getOperand(0); // Start out building up our return value from undef RetVal = UndefValue::get(NRetTy); for (unsigned i = 0; i != RetCount; ++i) if (NewRetIdxs[i] != -1) { ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, "oldret", RI); if (RetTypes.size() > 1) { // We're still returning a struct, so reinsert the value into // our new return value at the new index RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], "newret", RI); } else { // We are now only returning a simple value, so just return the // extracted value. RetVal = EV; } } } // Replace the return instruction with one returning the new return // value (possibly 0 if we became void). ReturnInst::Create(F->getContext(), RetVal, RI); BB->getInstList().erase(RI); } // Now that the old function is dead, delete it. F->eraseFromParent(); return true; } bool DAE::runOnModule(Module &M) { bool Changed = false; // First pass: Do a simple check to see if any functions can have their "..." // removed. We can do this if they never call va_start. This loop cannot be // fused with the next loop, because deleting a function invalidates // information computed while surveying other functions. DEBUG(dbgs() << "DAE - Deleting dead varargs\n"); for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { Function &F = *I++; if (F.getFunctionType()->isVarArg()) Changed |= DeleteDeadVarargs(F); } // Second phase:loop through the module, determining which arguments are live. // We assume all arguments are dead unless proven otherwise (allowing us to // determine that dead arguments passed into recursive functions are dead). // DEBUG(dbgs() << "DAE - Determining liveness\n"); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) SurveyFunction(*I); // Now, remove all dead arguments and return values from each function in // turn. for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { // Increment now, because the function will probably get removed (ie. // replaced by a new one). Function *F = I++; Changed |= RemoveDeadStuffFromFunction(F); } return Changed; }