//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass. Given some numbering of // each the machine instructions (in this implemention depth-first order) an // interval [i, j) is said to be a live interval for register v if there is no // instruction with number j' > j such that v is live at j' and there is no // instruction with number i' < i such that v is live at i'. In this // implementation intervals can have holes, i.e. an interval might look like // [1,20), [50,65), [1000,1001). // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" #include namespace llvm { class AliasAnalysis; class LiveVariables; class MachineLoopInfo; class TargetRegisterInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterClass; class VirtRegMap; typedef std::pair IdxMBBPair; inline bool operator<(LiveIndex V, const IdxMBBPair &IM) { return V < IM.first; } inline bool operator<(const IdxMBBPair &IM, LiveIndex V) { return IM.first < V; } struct Idx2MBBCompare { bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const { return LHS.first < RHS.first; } }; class LiveIntervals : public MachineFunctionPass { MachineFunction* mf_; MachineRegisterInfo* mri_; const TargetMachine* tm_; const TargetRegisterInfo* tri_; const TargetInstrInfo* tii_; AliasAnalysis *aa_; LiveVariables* lv_; /// Special pool allocator for VNInfo's (LiveInterval val#). /// BumpPtrAllocator VNInfoAllocator; /// MBB2IdxMap - The indexes of the first and last instructions in the /// specified basic block. std::vector > MBB2IdxMap; /// Idx2MBBMap - Sorted list of pairs of index of first instruction /// and MBB id. std::vector Idx2MBBMap; /// FunctionSize - The number of instructions present in the function uint64_t FunctionSize; typedef DenseMap Mi2IndexMap; Mi2IndexMap mi2iMap_; typedef std::vector Index2MiMap; Index2MiMap i2miMap_; typedef DenseMap Reg2IntervalMap; Reg2IntervalMap r2iMap_; DenseMap terminatorGaps; /// phiJoinCopies - Copy instructions which are PHI joins. SmallVector phiJoinCopies; /// allocatableRegs_ - A bit vector of allocatable registers. BitVector allocatableRegs_; /// CloneMIs - A list of clones as result of re-materialization. std::vector CloneMIs; typedef LiveInterval::InstrSlots InstrSlots; public: static char ID; // Pass identification, replacement for typeid LiveIntervals() : MachineFunctionPass(&ID) {} LiveIndex getBaseIndex(LiveIndex index) { return LiveIndex(index, LiveIndex::LOAD); } LiveIndex getBoundaryIndex(LiveIndex index) { return LiveIndex(index, (LiveIndex::Slot)(LiveIndex::NUM - 1)); } LiveIndex getLoadIndex(LiveIndex index) { return LiveIndex(index, LiveIndex::LOAD); } LiveIndex getUseIndex(LiveIndex index) { return LiveIndex(index, LiveIndex::USE); } LiveIndex getDefIndex(LiveIndex index) { return LiveIndex(index, LiveIndex::DEF); } LiveIndex getStoreIndex(LiveIndex index) { return LiveIndex(index, LiveIndex::STORE); } LiveIndex getNextSlot(LiveIndex m) const { return m.nextSlot_(); } LiveIndex getNextIndex(LiveIndex m) const { return m.nextIndex_(); } LiveIndex getPrevSlot(LiveIndex m) const { return m.prevSlot_(); } LiveIndex getPrevIndex(LiveIndex m) const { return m.prevIndex_(); } static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { return (isDef + isUse) * powf(10.0F, (float)loopDepth); } typedef Reg2IntervalMap::iterator iterator; typedef Reg2IntervalMap::const_iterator const_iterator; const_iterator begin() const { return r2iMap_.begin(); } const_iterator end() const { return r2iMap_.end(); } iterator begin() { return r2iMap_.begin(); } iterator end() { return r2iMap_.end(); } unsigned getNumIntervals() const { return (unsigned)r2iMap_.size(); } LiveInterval &getInterval(unsigned reg) { Reg2IntervalMap::iterator I = r2iMap_.find(reg); assert(I != r2iMap_.end() && "Interval does not exist for register"); return *I->second; } const LiveInterval &getInterval(unsigned reg) const { Reg2IntervalMap::const_iterator I = r2iMap_.find(reg); assert(I != r2iMap_.end() && "Interval does not exist for register"); return *I->second; } bool hasInterval(unsigned reg) const { return r2iMap_.count(reg); } /// getMBBStartIdx - Return the base index of the first instruction in the /// specified MachineBasicBlock. LiveIndex getMBBStartIdx(MachineBasicBlock *MBB) const { return getMBBStartIdx(MBB->getNumber()); } LiveIndex getMBBStartIdx(unsigned MBBNo) const { assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!"); return MBB2IdxMap[MBBNo].first; } /// getMBBEndIdx - Return the store index of the last instruction in the /// specified MachineBasicBlock. LiveIndex getMBBEndIdx(MachineBasicBlock *MBB) const { return getMBBEndIdx(MBB->getNumber()); } LiveIndex getMBBEndIdx(unsigned MBBNo) const { assert(MBBNo < MBB2IdxMap.size() && "Invalid MBB number!"); return MBB2IdxMap[MBBNo].second; } /// getScaledIntervalSize - get the size of an interval in "units," /// where every function is composed of one thousand units. This /// measure scales properly with empty index slots in the function. double getScaledIntervalSize(LiveInterval& I) { return (1000.0 / InstrSlots::NUM * I.getSize()) / i2miMap_.size(); } /// getApproximateInstructionCount - computes an estimate of the number /// of instructions in a given LiveInterval. unsigned getApproximateInstructionCount(LiveInterval& I) { double IntervalPercentage = getScaledIntervalSize(I) / 1000.0; return (unsigned)(IntervalPercentage * FunctionSize); } /// getMBBFromIndex - given an index in any instruction of an /// MBB return a pointer the MBB MachineBasicBlock* getMBBFromIndex(LiveIndex index) const { std::vector::const_iterator I = std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), index); // Take the pair containing the index std::vector::const_iterator J = ((I != Idx2MBBMap.end() && I->first > index) || (I == Idx2MBBMap.end() && Idx2MBBMap.size()>0)) ? (I-1): I; assert(J != Idx2MBBMap.end() && J->first <= index && index <= getMBBEndIdx(J->second) && "index does not correspond to an MBB"); return J->second; } /// getInstructionIndex - returns the base index of instr LiveIndex getInstructionIndex(const MachineInstr* instr) const { Mi2IndexMap::const_iterator it = mi2iMap_.find(instr); assert(it != mi2iMap_.end() && "Invalid instruction!"); return it->second; } /// getInstructionFromIndex - given an index in any slot of an /// instruction return a pointer the instruction MachineInstr* getInstructionFromIndex(LiveIndex index) const { // convert index to vector index unsigned i = index.getVecIndex(); assert(i < i2miMap_.size() && "index does not correspond to an instruction"); return i2miMap_[i]; } /// hasGapBeforeInstr - Return true if the previous instruction slot, /// i.e. Index - InstrSlots::NUM, is not occupied. bool hasGapBeforeInstr(LiveIndex Index) { Index = getBaseIndex(getPrevIndex(Index)); return getInstructionFromIndex(Index) == 0; } /// hasGapAfterInstr - Return true if the successive instruction slot, /// i.e. Index + InstrSlots::Num, is not occupied. bool hasGapAfterInstr(LiveIndex Index) { Index = getBaseIndex(getNextIndex(Index)); return getInstructionFromIndex(Index) == 0; } /// findGapBeforeInstr - Find an empty instruction slot before the /// specified index. If "Furthest" is true, find one that's furthest /// away from the index (but before any index that's occupied). LiveIndex findGapBeforeInstr(LiveIndex Index, bool Furthest = false) { Index = getBaseIndex(getPrevIndex(Index)); if (getInstructionFromIndex(Index)) return LiveIndex(); // No gap! if (!Furthest) return Index; LiveIndex PrevIndex = getBaseIndex(getPrevIndex(Index)); while (getInstructionFromIndex(Index)) { Index = PrevIndex; PrevIndex = getBaseIndex(getPrevIndex(Index)); } return Index; } /// InsertMachineInstrInMaps - Insert the specified machine instruction /// into the instruction index map at the given index. void InsertMachineInstrInMaps(MachineInstr *MI, LiveIndex Index) { i2miMap_[Index.getVecIndex()] = MI; Mi2IndexMap::iterator it = mi2iMap_.find(MI); assert(it == mi2iMap_.end() && "Already in map!"); mi2iMap_[MI] = Index; } /// conflictsWithPhysRegDef - Returns true if the specified register /// is defined during the duration of the specified interval. bool conflictsWithPhysRegDef(const LiveInterval &li, VirtRegMap &vrm, unsigned reg); /// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except /// it can check use as well. bool conflictsWithPhysRegRef(LiveInterval &li, unsigned Reg, bool CheckUse, SmallPtrSet &JoinedCopies); /// findLiveInMBBs - Given a live range, if the value of the range /// is live in any MBB returns true as well as the list of basic blocks /// in which the value is live. bool findLiveInMBBs(LiveIndex Start, LiveIndex End, SmallVectorImpl &MBBs) const; /// findReachableMBBs - Return a list MBB that can be reached via any /// branch or fallthroughs. Return true if the list is not empty. bool findReachableMBBs(LiveIndex Start, LiveIndex End, SmallVectorImpl &MBBs) const; // Interval creation LiveInterval &getOrCreateInterval(unsigned reg) { Reg2IntervalMap::iterator I = r2iMap_.find(reg); if (I == r2iMap_.end()) I = r2iMap_.insert(std::make_pair(reg, createInterval(reg))).first; return *I->second; } /// dupInterval - Duplicate a live interval. The caller is responsible for /// managing the allocated memory. LiveInterval *dupInterval(LiveInterval *li); /// addLiveRangeToEndOfBlock - Given a register and an instruction, /// adds a live range from that instruction to the end of its MBB. LiveRange addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst); // Interval removal void removeInterval(unsigned Reg) { DenseMap::iterator I = r2iMap_.find(Reg); delete I->second; r2iMap_.erase(I); } /// isNotInMIMap - returns true if the specified machine instr has been /// removed or was never entered in the map. bool isNotInMIMap(MachineInstr* instr) const { return !mi2iMap_.count(instr); } /// RemoveMachineInstrFromMaps - This marks the specified machine instr as /// deleted. void RemoveMachineInstrFromMaps(MachineInstr *MI) { // remove index -> MachineInstr and // MachineInstr -> index mappings Mi2IndexMap::iterator mi2i = mi2iMap_.find(MI); if (mi2i != mi2iMap_.end()) { i2miMap_[mi2i->second.index/InstrSlots::NUM] = 0; mi2iMap_.erase(mi2i); } } /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in /// maps used by register allocator. void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) { Mi2IndexMap::iterator mi2i = mi2iMap_.find(MI); if (mi2i == mi2iMap_.end()) return; i2miMap_[mi2i->second.index/InstrSlots::NUM] = NewMI; Mi2IndexMap::iterator it = mi2iMap_.find(MI); assert(it != mi2iMap_.end() && "Invalid instruction!"); LiveIndex Index = it->second; mi2iMap_.erase(it); mi2iMap_[NewMI] = Index; } BumpPtrAllocator& getVNInfoAllocator() { return VNInfoAllocator; } /// getVNInfoSourceReg - Helper function that parses the specified VNInfo /// copy field and returns the source register that defines it. unsigned getVNInfoSourceReg(const VNInfo *VNI) const; virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); /// runOnMachineFunction - pass entry point virtual bool runOnMachineFunction(MachineFunction&); /// print - Implement the dump method. virtual void print(raw_ostream &O, const Module* = 0) const; /// addIntervalsForSpills - Create new intervals for spilled defs / uses of /// the given interval. FIXME: It also returns the weight of the spill slot /// (if any is created) by reference. This is temporary. std::vector addIntervalsForSpills(const LiveInterval& i, SmallVectorImpl &SpillIs, const MachineLoopInfo *loopInfo, VirtRegMap& vrm); /// addIntervalsForSpillsFast - Quickly create new intervals for spilled /// defs / uses without remat or splitting. std::vector addIntervalsForSpillsFast(const LiveInterval &li, const MachineLoopInfo *loopInfo, VirtRegMap &vrm); /// spillPhysRegAroundRegDefsUses - Spill the specified physical register /// around all defs and uses of the specified interval. Return true if it /// was able to cut its interval. bool spillPhysRegAroundRegDefsUses(const LiveInterval &li, unsigned PhysReg, VirtRegMap &vrm); /// isReMaterializable - Returns true if every definition of MI of every /// val# of the specified interval is re-materializable. Also returns true /// by reference if all of the defs are load instructions. bool isReMaterializable(const LiveInterval &li, SmallVectorImpl &SpillIs, bool &isLoad); /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI); /// getRepresentativeReg - Find the largest super register of the specified /// physical register. unsigned getRepresentativeReg(unsigned Reg) const; /// getNumConflictsWithPhysReg - Return the number of uses and defs of the /// specified interval that conflicts with the specified physical register. unsigned getNumConflictsWithPhysReg(const LiveInterval &li, unsigned PhysReg) const; /// processImplicitDefs - Process IMPLICIT_DEF instructions. Add isUndef /// marker to implicit_def defs and their uses. void processImplicitDefs(); /// computeNumbering - Compute the index numbering. void computeNumbering(); /// scaleNumbering - Rescale interval numbers to introduce gaps for new /// instructions void scaleNumbering(int factor); /// intervalIsInOneMBB - Returns true if the specified interval is entirely /// within a single basic block. bool intervalIsInOneMBB(const LiveInterval &li) const; private: /// computeIntervals - Compute live intervals. void computeIntervals(); bool isProfitableToCoalesce(LiveInterval &DstInt, LiveInterval &SrcInt, SmallVector &IdentCopies, SmallVector &OtherCopies); void performEarlyCoalescing(); /// handleRegisterDef - update intervals for a register def /// (calls handlePhysicalRegisterDef and /// handleVirtualRegisterDef) void handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, LiveIndex MIIdx, MachineOperand& MO, unsigned MOIdx); /// handleVirtualRegisterDef - update intervals for a virtual /// register def void handleVirtualRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, LiveIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval& interval); /// handlePhysicalRegisterDef - update intervals for a physical register /// def. void handlePhysicalRegisterDef(MachineBasicBlock* mbb, MachineBasicBlock::iterator mi, LiveIndex MIIdx, MachineOperand& MO, LiveInterval &interval, MachineInstr *CopyMI); /// handleLiveInRegister - Create interval for a livein register. void handleLiveInRegister(MachineBasicBlock* mbb, LiveIndex MIIdx, LiveInterval &interval, bool isAlias = false); /// getReMatImplicitUse - If the remat definition MI has one (for now, we /// only allow one) virtual register operand, then its uses are implicitly /// using the register. Returns the virtual register. unsigned getReMatImplicitUse(const LiveInterval &li, MachineInstr *MI) const; /// isValNoAvailableAt - Return true if the val# of the specified interval /// which reaches the given instruction also reaches the specified use /// index. bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI, LiveIndex UseIdx) const; /// isReMaterializable - Returns true if the definition MI of the specified /// val# of the specified interval is re-materializable. Also returns true /// by reference if the def is a load. bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo, MachineInstr *MI, SmallVectorImpl &SpillIs, bool &isLoad); /// tryFoldMemoryOperand - Attempts to fold either a spill / restore from /// slot / to reg or any rematerialized load into ith operand of specified /// MI. If it is successul, MI is updated with the newly created MI and /// returns true. bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm, MachineInstr *DefMI, LiveIndex InstrIdx, SmallVector &Ops, bool isSS, int FrameIndex, unsigned Reg); /// canFoldMemoryOperand - Return true if the specified load / store /// folding is possible. bool canFoldMemoryOperand(MachineInstr *MI, SmallVector &Ops, bool ReMatLoadSS) const; /// anyKillInMBBAfterIdx - Returns true if there is a kill of the specified /// VNInfo that's after the specified index but is within the basic block. bool anyKillInMBBAfterIdx(const LiveInterval &li, const VNInfo *VNI, MachineBasicBlock *MBB, LiveIndex Idx) const; /// hasAllocatableSuperReg - Return true if the specified physical register /// has any super register that's allocatable. bool hasAllocatableSuperReg(unsigned Reg) const; /// SRInfo - Spill / restore info. struct SRInfo { LiveIndex index; unsigned vreg; bool canFold; SRInfo(LiveIndex i, unsigned vr, bool f) : index(i), vreg(vr), canFold(f) {} }; bool alsoFoldARestore(int Id, LiveIndex index, unsigned vr, BitVector &RestoreMBBs, DenseMap >&RestoreIdxes); void eraseRestoreInfo(int Id, LiveIndex index, unsigned vr, BitVector &RestoreMBBs, DenseMap >&RestoreIdxes); /// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being /// spilled and create empty intervals for their uses. void handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm, const TargetRegisterClass* rc, std::vector &NewLIs); /// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of /// interval on to-be re-materialized operands of MI) with new register. void rewriteImplicitOps(const LiveInterval &li, MachineInstr *MI, unsigned NewVReg, VirtRegMap &vrm); /// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper /// functions for addIntervalsForSpills to rewrite uses / defs for the given /// live range. bool rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI, bool TrySplit, LiveIndex index, LiveIndex end, MachineInstr *MI, MachineInstr *OrigDefMI, MachineInstr *DefMI, unsigned Slot, int LdSlot, bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, VirtRegMap &vrm, const TargetRegisterClass* rc, SmallVector &ReMatIds, const MachineLoopInfo *loopInfo, unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse, DenseMap &MBBVRegsMap, std::vector &NewLIs); void rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit, LiveInterval::Ranges::const_iterator &I, MachineInstr *OrigDefMI, MachineInstr *DefMI, unsigned Slot, int LdSlot, bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete, VirtRegMap &vrm, const TargetRegisterClass* rc, SmallVector &ReMatIds, const MachineLoopInfo *loopInfo, BitVector &SpillMBBs, DenseMap > &SpillIdxes, BitVector &RestoreMBBs, DenseMap > &RestoreIdxes, DenseMap &MBBVRegsMap, std::vector &NewLIs); static LiveInterval* createInterval(unsigned Reg); void printInstrs(raw_ostream &O) const; void dumpInstrs() const; }; } // End llvm namespace #endif