//===- Thumb2InstrInfo.cpp - Thumb-2 Instruction Information --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Thumb-2 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "ARMInstrInfo.h" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMGenInstrInfo.inc" #include "ARMMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/ADT/SmallVector.h" #include "Thumb2InstrInfo.h" using namespace llvm; Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI) : RI(*this, STI) { } unsigned Thumb2InstrInfo::getUnindexedOpcode(unsigned Opc) const { // FIXME return 0; } bool Thumb2InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { if (MBB.empty()) return false; switch (MBB.back().getOpcode()) { case ARM::t2LDM_RET: case ARM::t2B: // Uncond branch. case ARM::t2BR_JT: // Jumptable branch. case ARM::t2TBB: // Table branch byte. case ARM::t2TBH: // Table branch halfword. case ARM::tBR_JTr: // Jumptable branch (16-bit version). case ARM::tBX_RET: case ARM::tBX_RET_vararg: case ARM::tPOP_RET: case ARM::tB: return true; default: break; } return false; } bool Thumb2InstrInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (DestRC == ARM::GPRRegisterClass && SrcRC == ARM::GPRRegisterClass) { AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2MOVr), DestReg).addReg(SrcReg))); return true; } else if (DestRC == ARM::GPRRegisterClass && SrcRC == ARM::tGPRRegisterClass) { BuildMI(MBB, I, DL, get(ARM::tMOVtgpr2gpr), DestReg).addReg(SrcReg); return true; } else if (DestRC == ARM::tGPRRegisterClass && SrcRC == ARM::GPRRegisterClass) { BuildMI(MBB, I, DL, get(ARM::tMOVgpr2tgpr), DestReg).addReg(SrcReg); return true; } // Handle SPR, DPR, and QPR copies. return ARMBaseInstrInfo::copyRegToReg(MBB, I, DestReg, SrcReg, DestRC, SrcRC); } void Thumb2InstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == ARM::GPRRegisterClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2STRi12)) .addReg(SrcReg, getKillRegState(isKill)) .addFrameIndex(FI).addImm(0)); return; } ARMBaseInstrInfo::storeRegToStackSlot(MBB, I, SrcReg, isKill, FI, RC); } void Thumb2InstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (I != MBB.end()) DL = I->getDebugLoc(); if (RC == ARM::GPRRegisterClass) { AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2LDRi12), DestReg) .addFrameIndex(FI).addImm(0)); return; } ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC); } void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, DebugLoc dl, unsigned DestReg, unsigned BaseReg, int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg, const ARMBaseInstrInfo &TII) { bool isSub = NumBytes < 0; if (isSub) NumBytes = -NumBytes; // If profitable, use a movw or movt to materialize the offset. // FIXME: Use the scavenger to grab a scratch register. if (DestReg != ARM::SP && DestReg != BaseReg && NumBytes >= 4096 && ARM_AM::getT2SOImmVal(NumBytes) == -1) { bool Fits = false; if (NumBytes < 65536) { // Use a movw to materialize the 16-bit constant. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), DestReg) .addImm(NumBytes) .addImm((unsigned)Pred).addReg(PredReg).addReg(0); Fits = true; } else if ((NumBytes & 0xffff) == 0) { // Use a movt to materialize the 32-bit constant. BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), DestReg) .addReg(DestReg) .addImm(NumBytes >> 16) .addImm((unsigned)Pred).addReg(PredReg).addReg(0); Fits = true; } if (Fits) { if (isSub) { BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), DestReg) .addReg(BaseReg, RegState::Kill) .addReg(DestReg, RegState::Kill) .addImm((unsigned)Pred).addReg(PredReg).addReg(0); } else { BuildMI(MBB, MBBI, dl, TII.get(ARM::t2ADDrr), DestReg) .addReg(DestReg, RegState::Kill) .addReg(BaseReg, RegState::Kill) .addImm((unsigned)Pred).addReg(PredReg).addReg(0); } return; } } while (NumBytes) { unsigned Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri; unsigned ThisVal = NumBytes; if (ARM_AM::getT2SOImmVal(NumBytes) != -1) { NumBytes = 0; } else if (ThisVal < 4096) { Opc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12; NumBytes = 0; } else { // FIXME: Move this to ARMAddressingModes.h? unsigned RotAmt = CountLeadingZeros_32(ThisVal); ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt); NumBytes &= ~ThisVal; assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); } // Build the new ADD / SUB. BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) .addReg(BaseReg, RegState::Kill).addImm(ThisVal) .addImm((unsigned)Pred).addReg(PredReg).addReg(0); BaseReg = DestReg; } } static unsigned negativeOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRi12: return ARM::t2LDRi8; case ARM::t2LDRHi12: return ARM::t2LDRHi8; case ARM::t2LDRBi12: return ARM::t2LDRBi8; case ARM::t2LDRSHi12: return ARM::t2LDRSHi8; case ARM::t2LDRSBi12: return ARM::t2LDRSBi8; case ARM::t2STRi12: return ARM::t2STRi8; case ARM::t2STRBi12: return ARM::t2STRBi8; case ARM::t2STRHi12: return ARM::t2STRHi8; case ARM::t2LDRi8: case ARM::t2LDRHi8: case ARM::t2LDRBi8: case ARM::t2LDRSHi8: case ARM::t2LDRSBi8: case ARM::t2STRi8: case ARM::t2STRBi8: case ARM::t2STRHi8: return opcode; default: break; } return 0; } static unsigned positiveOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRi8: return ARM::t2LDRi12; case ARM::t2LDRHi8: return ARM::t2LDRHi12; case ARM::t2LDRBi8: return ARM::t2LDRBi12; case ARM::t2LDRSHi8: return ARM::t2LDRSHi12; case ARM::t2LDRSBi8: return ARM::t2LDRSBi12; case ARM::t2STRi8: return ARM::t2STRi12; case ARM::t2STRBi8: return ARM::t2STRBi12; case ARM::t2STRHi8: return ARM::t2STRHi12; case ARM::t2LDRi12: case ARM::t2LDRHi12: case ARM::t2LDRBi12: case ARM::t2LDRSHi12: case ARM::t2LDRSBi12: case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: return opcode; default: break; } return 0; } static unsigned immediateOffsetOpcode(unsigned opcode) { switch (opcode) { case ARM::t2LDRs: return ARM::t2LDRi12; case ARM::t2LDRHs: return ARM::t2LDRHi12; case ARM::t2LDRBs: return ARM::t2LDRBi12; case ARM::t2LDRSHs: return ARM::t2LDRSHi12; case ARM::t2LDRSBs: return ARM::t2LDRSBi12; case ARM::t2STRs: return ARM::t2STRi12; case ARM::t2STRBs: return ARM::t2STRBi12; case ARM::t2STRHs: return ARM::t2STRHi12; case ARM::t2LDRi12: case ARM::t2LDRHi12: case ARM::t2LDRBi12: case ARM::t2LDRSHi12: case ARM::t2LDRSBi12: case ARM::t2STRi12: case ARM::t2STRBi12: case ARM::t2STRHi12: case ARM::t2LDRi8: case ARM::t2LDRHi8: case ARM::t2LDRBi8: case ARM::t2LDRSHi8: case ARM::t2LDRSBi8: case ARM::t2STRi8: case ARM::t2STRBi8: case ARM::t2STRHi8: return opcode; default: break; } return 0; } int llvm::rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, int Offset, const ARMBaseInstrInfo &TII) { unsigned Opcode = MI.getOpcode(); unsigned NewOpc = Opcode; const TargetInstrDesc &Desc = MI.getDesc(); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); bool isSub = false; // Memory operands in inline assembly always use AddrModeT2_i12. if (Opcode == ARM::INLINEASM) AddrMode = ARMII::AddrModeT2_i12; // FIXME. mode for thumb2? if (Opcode == ARM::t2ADDri || Opcode == ARM::t2ADDri12) { Offset += MI.getOperand(FrameRegIdx+1).getImm(); if (Offset == 0) { // Turn it into a move. MI.setDesc(TII.get(ARM::t2MOVr)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.RemoveOperand(FrameRegIdx+1); return 0; } if (Offset < 0) { Offset = -Offset; isSub = true; MI.setDesc(TII.get(ARM::t2SUBri)); } // Common case: small offset, fits into instruction. if (ARM_AM::getT2SOImmVal(Offset) != -1) { NewOpc = isSub ? ARM::t2SUBri : ARM::t2ADDri; if (NewOpc != Opcode) MI.setDesc(TII.get(NewOpc)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); return 0; } // Another common case: imm12. if (Offset < 4096) { NewOpc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12; if (NewOpc != Opcode) MI.setDesc(TII.get(NewOpc)); MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); return 0; } // Otherwise, extract 8 adjacent bits from the immediate into this // t2ADDri/t2SUBri. unsigned RotAmt = CountLeadingZeros_32(Offset); unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xff000000U, RotAmt); // We will handle these bits from offset, clear them. Offset &= ~ThisImmVal; assert(ARM_AM::getT2SOImmVal(ThisImmVal) != -1 && "Bit extraction didn't work?"); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); } else { // AddrModeT2_so cannot handle any offset. If there is no offset // register then we change to an immediate version. NewOpc = Opcode; if (AddrMode == ARMII::AddrModeT2_so) { unsigned OffsetReg = MI.getOperand(FrameRegIdx+1).getReg(); if (OffsetReg != 0) { MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); return Offset; } MI.RemoveOperand(FrameRegIdx+1); MI.getOperand(FrameRegIdx+1).ChangeToImmediate(0); NewOpc = immediateOffsetOpcode(Opcode); AddrMode = ARMII::AddrModeT2_i12; } unsigned NumBits = 0; unsigned Scale = 1; if (AddrMode == ARMII::AddrModeT2_i8 || AddrMode == ARMII::AddrModeT2_i12) { // i8 supports only negative, and i12 supports only positive, so // based on Offset sign convert Opcode to the appropriate // instruction Offset += MI.getOperand(FrameRegIdx+1).getImm(); if (Offset < 0) { NewOpc = negativeOffsetOpcode(Opcode); NumBits = 8; isSub = true; Offset = -Offset; } else { NewOpc = positiveOffsetOpcode(Opcode); NumBits = 12; } } else { // VFP address modes. assert(AddrMode == ARMII::AddrMode5); int InstrOffs=ARM_AM::getAM5Offset(MI.getOperand(FrameRegIdx+1).getImm()); if (ARM_AM::getAM5Op(MI.getOperand(FrameRegIdx+1).getImm()) ==ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 4; Offset += InstrOffs * 4; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0) { Offset = -Offset; isSub = true; } } if (NewOpc != Opcode) MI.setDesc(TII.get(NewOpc)); MachineOperand &ImmOp = MI.getOperand(FrameRegIdx+1); // Attempt to fold address computation // Common case: small offset, fits into instruction. int ImmedOffset = Offset / Scale; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale) { // Replace the FrameIndex with fp/sp MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); if (isSub) { if (AddrMode == ARMII::AddrMode5) // FIXME: Not consistent. ImmedOffset |= 1 << NumBits; else ImmedOffset = -ImmedOffset; } ImmOp.ChangeToImmediate(ImmedOffset); return 0; } // Otherwise, offset doesn't fit. Pull in what we can to simplify ImmedOffset = ImmedOffset & Mask; if (isSub) { if (AddrMode == ARMII::AddrMode5) // FIXME: Not consistent. ImmedOffset |= 1 << NumBits; else { ImmedOffset = -ImmedOffset; if (ImmedOffset == 0) // Change the opcode back if the encoded offset is zero. MI.setDesc(TII.get(positiveOffsetOpcode(NewOpc))); } } ImmOp.ChangeToImmediate(ImmedOffset); Offset &= ~(Mask*Scale); } return (isSub) ? -Offset : Offset; }