//===-- InstLoops.cpp ---------------------------------------- ---*- C++ -*--=// // Pass to instrument loops // // At every backedge, insert a counter for that backedge and a call function //===----------------------------------------------------------------------===// #include "llvm/Reoptimizer/InstLoops.h" #include "llvm/Support/CFG.h" #include "llvm/Constants.h" #include "llvm/iMemory.h" #include "llvm/GlobalVariable.h" #include "llvm/DerivedTypes.h" #include "llvm/iOther.h" #include "llvm/iOperators.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/Pass.h" //this is used to color vertices //during DFS enum Color{ WHITE, GREY, BLACK }; struct InstLoops : public FunctionPass { bool runOnFunction(Function &F); }; static RegisterOpt X("instloops", "Instrument backedges for profiling"); // createInstLoopsPass - Create a new pass to add path profiling // Pass *createInstLoopsPass() { return new InstLoops(); } //helper function to get back edges: it is called by //the "getBackEdges" function below void getBackEdgesVisit(BasicBlock *u, std::map &color, std::map &d, int &time, Value *threshold) { color[u]=GREY; time++; d[u]=time; for(BasicBlock::succ_iterator vl = succ_begin(u), ve = succ_end(u); vl != ve; ++vl){ BasicBlock *BB = *vl; if(color[BB]!=GREY && color[BB]!=BLACK){ getBackEdgesVisit(BB, color, d, time, threshold); } //now checking for d and f vals if(color[BB]==GREY){ //so v is ancestor of u if time of u > time of v if(d[u] >= d[BB]){ //insert a new basic block: modify terminator accordingly! BasicBlock *newBB = new BasicBlock("", u->getParent()); BranchInst *ti = cast(u->getTerminator()); unsigned char index = 1; if(ti->getSuccessor(0) == BB){ index = 0; } assert(ti->getNumSuccessors() > index && "Not enough successors!"); ti->setSuccessor(index, newBB); //insert global variable of type int Constant *initializer = Constant::getNullValue(Type::IntTy); GlobalVariable *countVar = new GlobalVariable(Type::IntTy, false, true, initializer, "loopCounter", u->getParent()->getParent()); //load the variable Instruction *ldInst = new LoadInst(countVar,""); //increment Instruction *addIn = BinaryOperator::create(Instruction::Add, ldInst, ConstantSInt::get(Type::IntTy,1), ""); //store Instruction *stInst = new StoreInst(addIn, countVar); Instruction *etr = new LoadInst(threshold, "threshold"); Instruction *cmpInst = new SetCondInst(Instruction::SetLE, etr, addIn, ""); BasicBlock *callTrigger = new BasicBlock("", u->getParent()); //branch to calltrigger, or *vl Instruction *newBr = new BranchInst(callTrigger, BB, cmpInst); BasicBlock::InstListType < = newBB->getInstList(); lt.push_back(ldInst); lt.push_back(addIn); lt.push_back(stInst); lt.push_back(etr); lt.push_back(cmpInst); lt.push_back(newBr); //Now add instructions to the triggerCall BB //now create a call function //call llvm_first_trigger(int *x); std::vector inCountArgs; inCountArgs.push_back(PointerType::get(Type::IntTy)); const FunctionType *cFty = FunctionType::get(Type::VoidTy, inCountArgs, false); Function *inCountMth = u->getParent()->getParent()->getOrInsertFunction("llvm_first_trigger", cFty); assert(inCountMth && "Initialize method could not be inserted!"); std::vector iniArgs; iniArgs.push_back(countVar); Instruction *call = new CallInst(inCountMth, iniArgs, ""); callTrigger->getInstList().push_back(call); callTrigger->getInstList().push_back(new BranchInst(BB)); //now iterate over *vl, and set its Phi nodes right for(BasicBlock::iterator BB2Inst = BB->begin(), BBend = BB->end(); BB2Inst != BBend; ++BB2Inst){ if (PHINode *phiInst = dyn_cast(BB2Inst)){ int bbIndex = phiInst->getBasicBlockIndex(u); if(bbIndex>=0){ phiInst->setIncomingBlock(bbIndex, newBB); Value *val = phiInst->getIncomingValue((unsigned int)bbIndex); phiInst->addIncoming(val, callTrigger); } } } } } } color[u]=BLACK;//done with visiting the node and its neighbors } //getting the backedges in a graph //Its a variation of DFS to get the backedges in the graph //We get back edges by associating a time //and a color with each vertex. //The time of a vertex is the time when it was first visited //The color of a vertex is initially WHITE, //Changes to GREY when it is first visited, //and changes to BLACK when ALL its neighbors //have been visited //So we have a back edge when we meet a successor of //a node with smaller time, and GREY color void getBackEdges(Function &F, Value *threshold){ std::map color; std::map d; int time=0; getBackEdgesVisit(F.begin(), color, d, time, threshold); } //Per function pass for inserting counters and call function bool InstLoops::runOnFunction(Function &F){ static GlobalVariable *threshold = NULL; static bool insertedThreshold = false; if(!insertedThreshold){ threshold = new GlobalVariable(Type::IntTy, false, false, 0, "reopt_threshold"); F.getParent()->getGlobalList().push_back(threshold); insertedThreshold = true; } if(F.getName() == "main"){ //intialize threshold std::vector initialize_args; initialize_args.push_back(PointerType::get(Type::IntTy)); const FunctionType *Fty = FunctionType::get(Type::VoidTy, initialize_args, false); Function *initialMeth = F.getParent()->getOrInsertFunction("reoptimizerInitialize", Fty); assert(initialMeth && "Initialize method could not be inserted!"); std::vector trargs; trargs.push_back(threshold); new CallInst(initialMeth, trargs, "", F.begin()->begin()); } assert(threshold && "GlobalVariable threshold not defined!"); if(F.isExternal()) { return false; } getBackEdges(F, threshold); return true; }