//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass deletes dead arguments from internal functions. Dead argument // elimination removes arguments which are directly dead, as well as arguments // only passed into function calls as dead arguments of other functions. This // pass also deletes dead arguments in a similar way. // // This pass is often useful as a cleanup pass to run after aggressive // interprocedural passes, which add possibly-dead arguments. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "deadargelim" #include "llvm/Transforms/IPO.h" #include "llvm/CallingConv.h" #include "llvm/Constant.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include using namespace llvm; STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); STATISTIC(NumRetValsEliminated , "Number of unused return values removed"); namespace { /// DAE - The dead argument elimination pass. /// class VISIBILITY_HIDDEN DAE : public ModulePass { /// Liveness enum - During our initial pass over the program, we determine /// that things are either definately alive, definately dead, or in need of /// interprocedural analysis (MaybeLive). /// enum Liveness { Live, MaybeLive, Dead }; /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain /// all of the arguments in the program. The Dead set contains arguments /// which are completely dead (never used in the function). The MaybeLive /// set contains arguments which are only passed into other function calls, /// thus may be live and may be dead. The Live set contains arguments which /// are known to be alive. /// std::set DeadArguments, MaybeLiveArguments, LiveArguments; /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the /// functions in the program. The Dead set contains functions whose return /// value is known to be dead. The MaybeLive set contains functions whose /// return values are only used by return instructions, and the Live set /// contains functions whose return values are used, functions that are /// external, and functions that already return void. /// std::set DeadRetVal, MaybeLiveRetVal, LiveRetVal; /// InstructionsToInspect - As we mark arguments and return values /// MaybeLive, we keep track of which instructions could make the values /// live here. Once the entire program has had the return value and /// arguments analyzed, this set is scanned to promote the MaybeLive objects /// to be Live if they really are used. std::vector InstructionsToInspect; /// CallSites - Keep track of the call sites of functions that have /// MaybeLive arguments or return values. std::multimap CallSites; public: bool runOnModule(Module &M); virtual bool ShouldHackArguments() const { return false; } private: Liveness getArgumentLiveness(const Argument &A); bool isMaybeLiveArgumentNowLive(Argument *Arg); bool DeleteDeadVarargs(Function &Fn); void SurveyFunction(Function &Fn); void MarkArgumentLive(Argument *Arg); void MarkRetValLive(Function *F); void MarkReturnInstArgumentLive(ReturnInst *RI); void RemoveDeadArgumentsFromFunction(Function *F); }; RegisterPass X("deadargelim", "Dead Argument Elimination"); /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but /// deletes arguments to functions which are external. This is only for use /// by bugpoint. struct DAH : public DAE { virtual bool ShouldHackArguments() const { return true; } }; RegisterPass Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)"); } /// createDeadArgEliminationPass - This pass removes arguments from functions /// which are not used by the body of the function. /// ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } /// DeleteDeadVarargs - If this is an function that takes a ... list, and if /// llvm.vastart is never called, the varargs list is dead for the function. bool DAE::DeleteDeadVarargs(Function &Fn) { assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false; // Ensure that the function is only directly called. for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) { // If this use is anything other than a call site, give up. CallSite CS = CallSite::get(*I); Instruction *TheCall = CS.getInstruction(); if (!TheCall) return false; // Not a direct call site? // The addr of this function is passed to the call. if (I.getOperandNo() != 0) return false; } // Okay, we know we can transform this function if safe. Scan its body // looking for calls to llvm.vastart. for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (IntrinsicInst *II = dyn_cast(I)) { if (II->getIntrinsicID() == Intrinsic::vastart) return false; } } } // If we get here, there are no calls to llvm.vastart in the function body, // remove the "..." and adjust all the calls. // Start by computing a new prototype for the function, which is the same as // the old function, but has fewer arguments. const FunctionType *FTy = Fn.getFunctionType(); std::vector Params(FTy->param_begin(), FTy->param_end()); FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false); unsigned NumArgs = Params.size(); // Create the new function body and insert it into the module... Function *NF = new Function(NFTy, Fn.getLinkage()); NF->setCallingConv(Fn.getCallingConv()); Fn.getParent()->getFunctionList().insert(&Fn, NF); NF->takeName(&Fn); // Loop over all of the callers of the function, transforming the call sites // to pass in a smaller number of arguments into the new function. // std::vector Args; while (!Fn.use_empty()) { CallSite CS = CallSite::get(Fn.use_back()); Instruction *Call = CS.getInstruction(); // Loop over the operands, dropping extraneous ones at the end of the list. Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs); Instruction *New; if (InvokeInst *II = dyn_cast(Call)) { New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(), Args, "", Call); cast(New)->setCallingConv(CS.getCallingConv()); } else { New = new CallInst(NF, Args, "", Call); cast(New)->setCallingConv(CS.getCallingConv()); if (cast(Call)->isTailCall()) cast(New)->setTailCall(); } Args.clear(); if (!Call->use_empty()) Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); New->takeName(Call); // Finally, remove the old call from the program, reducing the use-count of // F. Call->getParent()->getInstList().erase(Call); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); // Loop over the argument list, transfering uses of the old arguments over to // the new arguments, also transfering over the names as well. While we're at // it, remove the dead arguments from the DeadArguments list. // for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), I2 = NF->arg_begin(); I != E; ++I, ++I2) { // Move the name and users over to the new version. I->replaceAllUsesWith(I2); I2->takeName(I); } // Finally, nuke the old function. Fn.eraseFromParent(); return true; } static inline bool CallPassesValueThoughVararg(Instruction *Call, const Value *Arg) { CallSite CS = CallSite::get(Call); const Type *CalledValueTy = CS.getCalledValue()->getType(); const Type *FTy = cast(CalledValueTy)->getElementType(); unsigned NumFixedArgs = cast(FTy)->getNumParams(); for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs; AI != CS.arg_end(); ++AI) if (AI->get() == Arg) return true; return false; } // getArgumentLiveness - Inspect an argument, determining if is known Live // (used in a computation), MaybeLive (only passed as an argument to a call), or // Dead (not used). DAE::Liveness DAE::getArgumentLiveness(const Argument &A) { const FunctionType *FTy = A.getParent()->getFunctionType(); // If this is the return value of a struct function, it's not really dead. if (FTy->isStructReturn() && &*A.getParent()->arg_begin() == &A) return Live; if (A.use_empty()) // First check, directly dead? return Dead; // Scan through all of the uses, looking for non-argument passing uses. for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) { // Return instructions do not immediately effect liveness. if (isa(*I)) continue; CallSite CS = CallSite::get(const_cast(*I)); if (!CS.getInstruction()) { // If its used by something that is not a call or invoke, it's alive! return Live; } // If it's an indirect call, mark it alive... Function *Callee = CS.getCalledFunction(); if (!Callee) return Live; // Check to see if it's passed through a va_arg area: if so, we cannot // remove it. if (CallPassesValueThoughVararg(CS.getInstruction(), &A)) return Live; // If passed through va_arg area, we cannot remove it } return MaybeLive; // It must be used, but only as argument to a function } // SurveyFunction - This performs the initial survey of the specified function, // checking out whether or not it uses any of its incoming arguments or whether // any callers use the return value. This fills in the // (Dead|MaybeLive|Live)(Arguments|RetVal) sets. // // We consider arguments of non-internal functions to be intrinsically alive as // well as arguments to functions which have their "address taken". // void DAE::SurveyFunction(Function &F) { bool FunctionIntrinsicallyLive = false; Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead; if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.getIntrinsicID())) FunctionIntrinsicallyLive = true; else for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) { // If this use is anything other than a call site, the function is alive. CallSite CS = CallSite::get(*I); Instruction *TheCall = CS.getInstruction(); if (!TheCall) { // Not a direct call site? FunctionIntrinsicallyLive = true; break; } // Check to see if the return value is used... if (RetValLiveness != Live) for (Value::use_iterator I = TheCall->use_begin(), E = TheCall->use_end(); I != E; ++I) if (isa(cast(*I))) { RetValLiveness = MaybeLive; } else if (isa(cast(*I)) || isa(cast(*I))) { if (CallPassesValueThoughVararg(cast(*I), TheCall) || !CallSite::get(cast(*I)).getCalledFunction()) { RetValLiveness = Live; break; } else { RetValLiveness = MaybeLive; } } else { RetValLiveness = Live; break; } // If the function is PASSED IN as an argument, its address has been taken for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (AI->get() == &F) { FunctionIntrinsicallyLive = true; break; } if (FunctionIntrinsicallyLive) break; } if (FunctionIntrinsicallyLive) { DOUT << " Intrinsically live fn: " << F.getName() << "\n"; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) LiveArguments.insert(AI); LiveRetVal.insert(&F); return; } switch (RetValLiveness) { case Live: LiveRetVal.insert(&F); break; case MaybeLive: MaybeLiveRetVal.insert(&F); break; case Dead: DeadRetVal.insert(&F); break; } DOUT << " Inspecting args for fn: " << F.getName() << "\n"; // If it is not intrinsically alive, we know that all users of the // function are call sites. Mark all of the arguments live which are // directly used, and keep track of all of the call sites of this function // if there are any arguments we assume that are dead. // bool AnyMaybeLiveArgs = false; for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) switch (getArgumentLiveness(*AI)) { case Live: DOUT << " Arg live by use: " << AI->getName() << "\n"; LiveArguments.insert(AI); break; case Dead: DOUT << " Arg definitely dead: " << AI->getName() <<"\n"; DeadArguments.insert(AI); break; case MaybeLive: DOUT << " Arg only passed to calls: " << AI->getName() << "\n"; AnyMaybeLiveArgs = true; MaybeLiveArguments.insert(AI); break; } // If there are any "MaybeLive" arguments, we need to check callees of // this function when/if they become alive. Record which functions are // callees... if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive) for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) { if (AnyMaybeLiveArgs) CallSites.insert(std::make_pair(&F, CallSite::get(*I))); if (RetValLiveness == MaybeLive) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) InstructionsToInspect.push_back(cast(*UI)); } } // isMaybeLiveArgumentNowLive - Check to see if Arg is alive. At this point, we // know that the only uses of Arg are to be passed in as an argument to a // function call or return. Check to see if the formal argument passed in is in // the LiveArguments set. If so, return true. // bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) { for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){ if (isa(*I)) { if (LiveRetVal.count(Arg->getParent())) return true; continue; } CallSite CS = CallSite::get(*I); // We know that this can only be used for direct calls... Function *Callee = CS.getCalledFunction(); // Loop over all of the arguments (because Arg may be passed into the call // multiple times) and check to see if any are now alive... CallSite::arg_iterator CSAI = CS.arg_begin(); for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end(); AI != E; ++AI, ++CSAI) // If this is the argument we are looking for, check to see if it's alive if (*CSAI == Arg && LiveArguments.count(AI)) return true; } return false; } /// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive. /// Mark it live in the specified sets and recursively mark arguments in callers /// live that are needed to pass in a value. /// void DAE::MarkArgumentLive(Argument *Arg) { std::set::iterator It = MaybeLiveArguments.lower_bound(Arg); if (It == MaybeLiveArguments.end() || *It != Arg) return; DOUT << " MaybeLive argument now live: " << Arg->getName() <<"\n"; MaybeLiveArguments.erase(It); LiveArguments.insert(Arg); // Loop over all of the call sites of the function, making any arguments // passed in to provide a value for this argument live as necessary. // Function *Fn = Arg->getParent(); unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg)); std::multimap::iterator I = CallSites.lower_bound(Fn); for (; I != CallSites.end() && I->first == Fn; ++I) { CallSite CS = I->second; Value *ArgVal = *(CS.arg_begin()+ArgNo); if (Argument *ActualArg = dyn_cast(ArgVal)) { MarkArgumentLive(ActualArg); } else { // If the value passed in at this call site is a return value computed by // some other call site, make sure to mark the return value at the other // call site as being needed. CallSite ArgCS = CallSite::get(ArgVal); if (ArgCS.getInstruction()) if (Function *Fn = ArgCS.getCalledFunction()) MarkRetValLive(Fn); } } } /// MarkArgumentLive - The MaybeLive return value for the specified function is /// now known to be alive. Propagate this fact to the return instructions which /// produce it. void DAE::MarkRetValLive(Function *F) { assert(F && "Shame shame, we can't have null pointers here!"); // Check to see if we already knew it was live std::set::iterator I = MaybeLiveRetVal.lower_bound(F); if (I == MaybeLiveRetVal.end() || *I != F) return; // It's already alive! DOUT << " MaybeLive retval now live: " << F->getName() << "\n"; MaybeLiveRetVal.erase(I); LiveRetVal.insert(F); // It is now known to be live! // Loop over all of the functions, noticing that the return value is now live. for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) MarkReturnInstArgumentLive(RI); } void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) { Value *Op = RI->getOperand(0); if (Argument *A = dyn_cast(Op)) { MarkArgumentLive(A); } else if (CallInst *CI = dyn_cast(Op)) { if (Function *F = CI->getCalledFunction()) MarkRetValLive(F); } else if (InvokeInst *II = dyn_cast(Op)) { if (Function *F = II->getCalledFunction()) MarkRetValLive(F); } } // RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as // specified by the DeadArguments list. Transform the function and all of the // callees of the function to not have these arguments. // void DAE::RemoveDeadArgumentsFromFunction(Function *F) { // Start by computing a new prototype for the function, which is the same as // the old function, but has fewer arguments. const FunctionType *FTy = F->getFunctionType(); std::vector Params; for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (!DeadArguments.count(I)) Params.push_back(I->getType()); const Type *RetTy = FTy->getReturnType(); if (DeadRetVal.count(F)) { RetTy = Type::VoidTy; DeadRetVal.erase(F); } // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which // have zero fixed arguments. // bool ExtraArgHack = false; if (Params.empty() && FTy->isVarArg()) { ExtraArgHack = true; Params.push_back(Type::Int32Ty); } FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); // Create the new function body and insert it into the module... Function *NF = new Function(NFTy, F->getLinkage()); NF->setCallingConv(F->getCallingConv()); F->getParent()->getFunctionList().insert(F, NF); NF->takeName(F); // Loop over all of the callers of the function, transforming the call sites // to pass in a smaller number of arguments into the new function. // std::vector Args; while (!F->use_empty()) { CallSite CS = CallSite::get(F->use_back()); Instruction *Call = CS.getInstruction(); // Loop over the operands, deleting dead ones... CallSite::arg_iterator AI = CS.arg_begin(); for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++AI) if (!DeadArguments.count(I)) // Remove operands for dead arguments Args.push_back(*AI); if (ExtraArgHack) Args.push_back(UndefValue::get(Type::Int32Ty)); // Push any varargs arguments on the list for (; AI != CS.arg_end(); ++AI) Args.push_back(*AI); Instruction *New; if (InvokeInst *II = dyn_cast(Call)) { New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(), Args, "", Call); cast(New)->setCallingConv(CS.getCallingConv()); } else { New = new CallInst(NF, Args, "", Call); cast(New)->setCallingConv(CS.getCallingConv()); if (cast(Call)->isTailCall()) cast(New)->setTailCall(); } Args.clear(); if (!Call->use_empty()) { if (New->getType() == Type::VoidTy) Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); else { Call->replaceAllUsesWith(New); New->takeName(Call); } } // Finally, remove the old call from the program, reducing the use-count of // F. Call->getParent()->getInstList().erase(Call); } // Since we have now created the new function, splice the body of the old // function right into the new function, leaving the old rotting hulk of the // function empty. NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); // Loop over the argument list, transfering uses of the old arguments over to // the new arguments, also transfering over the names as well. While we're at // it, remove the dead arguments from the DeadArguments list. // for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin(); I != E; ++I) if (!DeadArguments.count(I)) { // If this is a live argument, move the name and users over to the new // version. I->replaceAllUsesWith(I2); I2->takeName(I); ++I2; } else { // If this argument is dead, replace any uses of it with null constants // (these are guaranteed to only be operands to call instructions which // will later be simplified). I->replaceAllUsesWith(Constant::getNullValue(I->getType())); DeadArguments.erase(I); } // If we change the return value of the function we must rewrite any return // instructions. Check this now. if (F->getReturnType() != NF->getReturnType()) for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { new ReturnInst(0, RI); BB->getInstList().erase(RI); } // Now that the old function is dead, delete it. F->getParent()->getFunctionList().erase(F); } bool DAE::runOnModule(Module &M) { // First phase: loop through the module, determining which arguments are live. // We assume all arguments are dead unless proven otherwise (allowing us to // determine that dead arguments passed into recursive functions are dead). // DOUT << "DAE - Determining liveness\n"; for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { Function &F = *I++; if (F.getFunctionType()->isVarArg()) if (DeleteDeadVarargs(F)) continue; SurveyFunction(F); } // Loop over the instructions to inspect, propagating liveness among arguments // and return values which are MaybeLive. while (!InstructionsToInspect.empty()) { Instruction *I = InstructionsToInspect.back(); InstructionsToInspect.pop_back(); if (ReturnInst *RI = dyn_cast(I)) { // For return instructions, we just have to check to see if the return // value for the current function is known now to be alive. If so, any // arguments used by it are now alive, and any call instruction return // value is alive as well. if (LiveRetVal.count(RI->getParent()->getParent())) MarkReturnInstArgumentLive(RI); } else { CallSite CS = CallSite::get(I); assert(CS.getInstruction() && "Unknown instruction for the I2I list!"); Function *Callee = CS.getCalledFunction(); // If we found a call or invoke instruction on this list, that means that // an argument of the function is a call instruction. If the argument is // live, then the return value of the called instruction is now live. // CallSite::arg_iterator AI = CS.arg_begin(); // ActualIterator for (Function::arg_iterator FI = Callee->arg_begin(), E = Callee->arg_end(); FI != E; ++AI, ++FI) { // If this argument is another call... CallSite ArgCS = CallSite::get(*AI); if (ArgCS.getInstruction() && LiveArguments.count(FI)) if (Function *Callee = ArgCS.getCalledFunction()) MarkRetValLive(Callee); } } } // Now we loop over all of the MaybeLive arguments, promoting them to be live // arguments if one of the calls that uses the arguments to the calls they are // passed into requires them to be live. Of course this could make other // arguments live, so process callers recursively. // // Because elements can be removed from the MaybeLiveArguments set, copy it to // a temporary vector. // std::vector TmpArgList(MaybeLiveArguments.begin(), MaybeLiveArguments.end()); for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) { Argument *MLA = TmpArgList[i]; if (MaybeLiveArguments.count(MLA) && isMaybeLiveArgumentNowLive(MLA)) MarkArgumentLive(MLA); } // Recover memory early... CallSites.clear(); // At this point, we know that all arguments in DeadArguments and // MaybeLiveArguments are dead. If the two sets are empty, there is nothing // to do. if (MaybeLiveArguments.empty() && DeadArguments.empty() && MaybeLiveRetVal.empty() && DeadRetVal.empty()) return false; // Otherwise, compact into one set, and start eliminating the arguments from // the functions. DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end()); MaybeLiveArguments.clear(); DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end()); MaybeLiveRetVal.clear(); LiveArguments.clear(); LiveRetVal.clear(); NumArgumentsEliminated += DeadArguments.size(); NumRetValsEliminated += DeadRetVal.size(); while (!DeadArguments.empty()) RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent()); while (!DeadRetVal.empty()) RemoveDeadArgumentsFromFunction(*DeadRetVal.begin()); return true; }