//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SSAUpdater class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ssaupdater" #include "llvm/Instructions.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" using namespace llvm; typedef DenseMap AvailableValsTy; static AvailableValsTy &getAvailableVals(void *AV) { return *static_cast(AV); } SSAUpdater::SSAUpdater(SmallVectorImpl *NewPHI) : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {} SSAUpdater::~SSAUpdater() { delete &getAvailableVals(AV); } /// Initialize - Reset this object to get ready for a new set of SSA /// updates with type 'Ty'. PHI nodes get a name based on 'Name'. void SSAUpdater::Initialize(const Type *Ty, StringRef Name) { if (AV == 0) AV = new AvailableValsTy(); else getAvailableVals(AV).clear(); ProtoType = Ty; ProtoName = Name; } /// HasValueForBlock - Return true if the SSAUpdater already has a value for /// the specified block. bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { return getAvailableVals(AV).count(BB); } /// AddAvailableValue - Indicate that a rewritten value is available in the /// specified block with the specified value. void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { assert(ProtoType != 0 && "Need to initialize SSAUpdater"); assert(ProtoType == V->getType() && "All rewritten values must have the same type"); getAvailableVals(AV)[BB] = V; } /// IsEquivalentPHI - Check if PHI has the same incoming value as specified /// in ValueMapping for each predecessor block. static bool IsEquivalentPHI(PHINode *PHI, DenseMap &ValueMapping) { unsigned PHINumValues = PHI->getNumIncomingValues(); if (PHINumValues != ValueMapping.size()) return false; // Scan the phi to see if it matches. for (unsigned i = 0, e = PHINumValues; i != e; ++i) if (ValueMapping[PHI->getIncomingBlock(i)] != PHI->getIncomingValue(i)) { return false; } return true; } /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is /// live at the end of the specified block. Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { Value *Res = GetValueAtEndOfBlockInternal(BB); return Res; } /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that /// is live in the middle of the specified block. /// /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one /// important case: if there is a definition of the rewritten value after the /// 'use' in BB. Consider code like this: /// /// X1 = ... /// SomeBB: /// use(X) /// X2 = ... /// br Cond, SomeBB, OutBB /// /// In this case, there are two values (X1 and X2) added to the AvailableVals /// set by the client of the rewriter, and those values are both live out of /// their respective blocks. However, the use of X happens in the *middle* of /// a block. Because of this, we need to insert a new PHI node in SomeBB to /// merge the appropriate values, and this value isn't live out of the block. /// Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { // If there is no definition of the renamed variable in this block, just use // GetValueAtEndOfBlock to do our work. if (!HasValueForBlock(BB)) return GetValueAtEndOfBlock(BB); // Otherwise, we have the hard case. Get the live-in values for each // predecessor. SmallVector, 8> PredValues; Value *SingularValue = 0; // We can get our predecessor info by walking the pred_iterator list, but it // is relatively slow. If we already have PHI nodes in this block, walk one // of them to get the predecessor list instead. if (PHINode *SomePhi = dyn_cast(BB->begin())) { for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { BasicBlock *PredBB = SomePhi->getIncomingBlock(i); Value *PredVal = GetValueAtEndOfBlock(PredBB); PredValues.push_back(std::make_pair(PredBB, PredVal)); // Compute SingularValue. if (i == 0) SingularValue = PredVal; else if (PredVal != SingularValue) SingularValue = 0; } } else { bool isFirstPred = true; for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *PredBB = *PI; Value *PredVal = GetValueAtEndOfBlock(PredBB); PredValues.push_back(std::make_pair(PredBB, PredVal)); // Compute SingularValue. if (isFirstPred) { SingularValue = PredVal; isFirstPred = false; } else if (PredVal != SingularValue) SingularValue = 0; } } // If there are no predecessors, just return undef. if (PredValues.empty()) return UndefValue::get(ProtoType); // Otherwise, if all the merged values are the same, just use it. if (SingularValue != 0) return SingularValue; // Otherwise, we do need a PHI: check to see if we already have one available // in this block that produces the right value. if (isa(BB->begin())) { DenseMap ValueMapping(PredValues.begin(), PredValues.end()); PHINode *SomePHI; for (BasicBlock::iterator It = BB->begin(); (SomePHI = dyn_cast(It)); ++It) { if (IsEquivalentPHI(SomePHI, ValueMapping)) return SomePHI; } } // Ok, we have no way out, insert a new one now. PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), ProtoName, &BB->front()); // Fill in all the predecessors of the PHI. for (unsigned i = 0, e = PredValues.size(); i != e; ++i) InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); // See if the PHI node can be merged to a single value. This can happen in // loop cases when we get a PHI of itself and one other value. if (Value *V = SimplifyInstruction(InsertedPHI)) { InsertedPHI->eraseFromParent(); return V; } // If the client wants to know about all new instructions, tell it. if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); return InsertedPHI; } /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, /// which use their value in the corresponding predecessor. void SSAUpdater::RewriteUse(Use &U) { Instruction *User = cast(U.getUser()); Value *V; if (PHINode *UserPN = dyn_cast(User)) V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); else V = GetValueInMiddleOfBlock(User->getParent()); U.set(V); } /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However, /// this version of the method can rewrite uses in the same block as a /// definition, because it assumes that all uses of a value are below any /// inserted values. void SSAUpdater::RewriteUseAfterInsertions(Use &U) { Instruction *User = cast(U.getUser()); Value *V; if (PHINode *UserPN = dyn_cast(User)) V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); else V = GetValueAtEndOfBlock(User->getParent()); U.set(V); } /// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator /// in the SSAUpdaterImpl template. namespace { class PHIiter { private: PHINode *PHI; unsigned idx; public: explicit PHIiter(PHINode *P) // begin iterator : PHI(P), idx(0) {} PHIiter(PHINode *P, bool) // end iterator : PHI(P), idx(PHI->getNumIncomingValues()) {} PHIiter &operator++() { ++idx; return *this; } bool operator==(const PHIiter& x) const { return idx == x.idx; } bool operator!=(const PHIiter& x) const { return !operator==(x); } Value *getIncomingValue() { return PHI->getIncomingValue(idx); } BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } }; } /// SSAUpdaterTraits - Traits for the SSAUpdaterImpl template, /// specialized for SSAUpdater. namespace llvm { template<> class SSAUpdaterTraits { public: typedef BasicBlock BlkT; typedef Value *ValT; typedef PHINode PhiT; typedef succ_iterator BlkSucc_iterator; static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } typedef PHIiter PHI_iterator; static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } static inline PHI_iterator PHI_end(PhiT *PHI) { return PHI_iterator(PHI, true); } /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds /// vector, set Info->NumPreds, and allocate space in Info->Preds. static void FindPredecessorBlocks(BasicBlock *BB, SmallVectorImpl *Preds) { // We can get our predecessor info by walking the pred_iterator list, // but it is relatively slow. If we already have PHI nodes in this // block, walk one of them to get the predecessor list instead. if (PHINode *SomePhi = dyn_cast(BB->begin())) { for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) Preds->push_back(SomePhi->getIncomingBlock(PI)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) Preds->push_back(*PI); } } /// GetUndefVal - Get an undefined value of the same type as the value /// being handled. static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { return UndefValue::get(Updater->ProtoType); } /// CreateEmptyPHI - Create a new PHI instruction in the specified block. /// Reserve space for the operands but do not fill them in yet. static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, SSAUpdater *Updater) { PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, Updater->ProtoName, &BB->front()); return PHI; } /// AddPHIOperand - Add the specified value as an operand of the PHI for /// the specified predecessor block. static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { PHI->addIncoming(Val, Pred); } /// InstrIsPHI - Check if an instruction is a PHI. /// static PHINode *InstrIsPHI(Instruction *I) { return dyn_cast(I); } /// ValueIsPHI - Check if a value is a PHI. /// static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { return dyn_cast(Val); } /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source /// operands, i.e., it was just added. static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { PHINode *PHI = ValueIsPHI(Val, Updater); if (PHI && PHI->getNumIncomingValues() == 0) return PHI; return 0; } /// GetPHIValue - For the specified PHI instruction, return the value /// that it defines. static Value *GetPHIValue(PHINode *PHI) { return PHI; } }; } // End llvm namespace /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry /// for the specified BB and if so, return it. If not, construct SSA form by /// first calculating the required placement of PHIs and then inserting new /// PHIs where needed. Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { AvailableValsTy &AvailableVals = getAvailableVals(AV); if (Value *V = AvailableVals[BB]) return V; SSAUpdaterImpl Impl(this, &AvailableVals, InsertedPHIs); return Impl.GetValue(BB); } //===----------------------------------------------------------------------===// // LoadAndStorePromoter Implementation //===----------------------------------------------------------------------===// LoadAndStorePromoter:: LoadAndStorePromoter(const SmallVectorImpl &Insts, SSAUpdater &S, StringRef BaseName) : SSA(S) { if (Insts.empty()) return; Value *SomeVal; if (LoadInst *LI = dyn_cast(Insts[0])) SomeVal = LI; else SomeVal = cast(Insts[0])->getOperand(0); if (BaseName.empty()) BaseName = SomeVal->getName(); SSA.Initialize(SomeVal->getType(), BaseName); } void LoadAndStorePromoter:: run(const SmallVectorImpl &Insts) const { // First step: bucket up uses of the alloca by the block they occur in. // This is important because we have to handle multiple defs/uses in a block // ourselves: SSAUpdater is purely for cross-block references. // FIXME: Want a TinyVector since there is often 0/1 element. DenseMap > UsesByBlock; for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Instruction *User = Insts[i]; UsesByBlock[User->getParent()].push_back(User); } // Okay, now we can iterate over all the blocks in the function with uses, // processing them. Keep track of which loads are loading a live-in value. // Walk the uses in the use-list order to be determinstic. SmallVector LiveInLoads; DenseMap ReplacedLoads; for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Instruction *User = Insts[i]; BasicBlock *BB = User->getParent(); std::vector &BlockUses = UsesByBlock[BB]; // If this block has already been processed, ignore this repeat use. if (BlockUses.empty()) continue; // Okay, this is the first use in the block. If this block just has a // single user in it, we can rewrite it trivially. if (BlockUses.size() == 1) { // If it is a store, it is a trivial def of the value in the block. if (StoreInst *SI = dyn_cast(User)) SSA.AddAvailableValue(BB, SI->getOperand(0)); else // Otherwise it is a load, queue it to rewrite as a live-in load. LiveInLoads.push_back(cast(User)); BlockUses.clear(); continue; } // Otherwise, check to see if this block is all loads. bool HasStore = false; for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { if (isa(BlockUses[i])) { HasStore = true; break; } } // If so, we can queue them all as live in loads. We don't have an // efficient way to tell which on is first in the block and don't want to // scan large blocks, so just add all loads as live ins. if (!HasStore) { for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) LiveInLoads.push_back(cast(BlockUses[i])); BlockUses.clear(); continue; } // Otherwise, we have mixed loads and stores (or just a bunch of stores). // Since SSAUpdater is purely for cross-block values, we need to determine // the order of these instructions in the block. If the first use in the // block is a load, then it uses the live in value. The last store defines // the live out value. We handle this by doing a linear scan of the block. Value *StoredValue = 0; for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { if (LoadInst *L = dyn_cast(II)) { // If this is a load from an unrelated pointer, ignore it. if (!isInstInList(L, Insts)) continue; // If we haven't seen a store yet, this is a live in use, otherwise // use the stored value. if (StoredValue) { replaceLoadWithValue(L, StoredValue); L->replaceAllUsesWith(StoredValue); ReplacedLoads[L] = StoredValue; } else { LiveInLoads.push_back(L); } continue; } if (StoreInst *S = dyn_cast(II)) { // If this is a store to an unrelated pointer, ignore it. if (!isInstInList(S, Insts)) continue; // Remember that this is the active value in the block. StoredValue = S->getOperand(0); } } // The last stored value that happened is the live-out for the block. assert(StoredValue && "Already checked that there is a store in block"); SSA.AddAvailableValue(BB, StoredValue); BlockUses.clear(); } // Okay, now we rewrite all loads that use live-in values in the loop, // inserting PHI nodes as necessary. for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { LoadInst *ALoad = LiveInLoads[i]; Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); replaceLoadWithValue(ALoad, NewVal); // Avoid assertions in unreachable code. if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); ALoad->replaceAllUsesWith(NewVal); ReplacedLoads[ALoad] = NewVal; } // Allow the client to do stuff before we start nuking things. doExtraRewritesBeforeFinalDeletion(); // Now that everything is rewritten, delete the old instructions from the // function. They should all be dead now. for (unsigned i = 0, e = Insts.size(); i != e; ++i) { Instruction *User = Insts[i]; // If this is a load that still has uses, then the load must have been added // as a live value in the SSAUpdate data structure for a block (e.g. because // the loaded value was stored later). In this case, we need to recursively // propagate the updates until we get to the real value. if (!User->use_empty()) { Value *NewVal = ReplacedLoads[User]; assert(NewVal && "not a replaced load?"); // Propagate down to the ultimate replacee. The intermediately loads // could theoretically already have been deleted, so we don't want to // dereference the Value*'s. DenseMap::iterator RLI = ReplacedLoads.find(NewVal); while (RLI != ReplacedLoads.end()) { NewVal = RLI->second; RLI = ReplacedLoads.find(NewVal); } replaceLoadWithValue(cast(User), NewVal); User->replaceAllUsesWith(NewVal); } instructionDeleted(User); User->eraseFromParent(); } }