//===- llvm/Supporrt/YAMLTraits.h -------------------------------*- C++ -*-===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_YAMLTRAITS_H #define LLVM_SUPPORT_YAMLTRAITS_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/YAMLParser.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include "llvm/Support/type_traits.h" namespace llvm { namespace yaml { /// This class should be specialized by any type that needs to be converted /// to/from a YAML mapping. For example: /// /// struct ScalarBitSetTraits { /// static void mapping(IO &io, MyStruct &s) { /// io.mapRequired("name", s.name); /// io.mapRequired("size", s.size); /// io.mapOptional("age", s.age); /// } /// }; template struct MappingTraits { // Must provide: // static void mapping(IO &io, T &fields); }; /// This class should be specialized by any integral type that converts /// to/from a YAML scalar where there is a one-to-one mapping between /// in-memory values and a string in YAML. For example: /// /// struct ScalarEnumerationTraits { /// static void enumeration(IO &io, Colors &value) { /// io.enumCase(value, "red", cRed); /// io.enumCase(value, "blue", cBlue); /// io.enumCase(value, "green", cGreen); /// } /// }; template struct ScalarEnumerationTraits { // Must provide: // static void enumeration(IO &io, T &value); }; /// This class should be specialized by any integer type that is a union /// of bit values and the YAML representation is a flow sequence of /// strings. For example: /// /// struct ScalarBitSetTraits { /// static void bitset(IO &io, MyFlags &value) { /// io.bitSetCase(value, "big", flagBig); /// io.bitSetCase(value, "flat", flagFlat); /// io.bitSetCase(value, "round", flagRound); /// } /// }; template struct ScalarBitSetTraits { // Must provide: // static void bitset(IO &io, T &value); }; /// This class should be specialized by type that requires custom conversion /// to/from a yaml scalar. For example: /// /// template<> /// struct ScalarTraits { /// static void output(const MyType &val, void*, llvm::raw_ostream &out) { /// // stream out custom formatting /// out << llvm::format("%x", val); /// } /// static StringRef input(StringRef scalar, void*, MyType &value) { /// // parse scalar and set `value` /// // return empty string on success, or error string /// return StringRef(); /// } /// }; template struct ScalarTraits { // Must provide: // // Function to write the value as a string: //static void output(const T &value, void *ctxt, llvm::raw_ostream &out); // // Function to convert a string to a value. Returns the empty // StringRef on success or an error string if string is malformed: //static StringRef input(StringRef scalar, void *ctxt, T &value); }; /// This class should be specialized by any type that needs to be converted /// to/from a YAML sequence. For example: /// /// template<> /// struct SequenceTraits< std::vector > { /// static size_t size(IO &io, std::vector &seq) { /// return seq.size(); /// } /// static MyType& element(IO &, std::vector &seq, size_t index) { /// if ( index >= seq.size() ) /// seq.resize(index+1); /// return seq[index]; /// } /// }; template struct SequenceTraits { // Must provide: // static size_t size(IO &io, T &seq); // static T::value_type& element(IO &io, T &seq, size_t index); // // The following is option and will cause generated YAML to use // a flow sequence (e.g. [a,b,c]). // static const bool flow = true; }; /// This class should be specialized by any type that needs to be converted /// to/from a list of YAML documents. template struct DocumentListTraits { // Must provide: // static size_t size(IO &io, T &seq); // static T::value_type& element(IO &io, T &seq, size_t index); }; // Only used by compiler if both template types are the same template struct SameType; // Only used for better diagnostics of missing traits template struct MissingTrait; // Test if ScalarEnumerationTraits is defined on type T. template struct has_ScalarEnumerationTraits { typedef void (*Signature_enumeration)(class IO&, T&); template static char test(SameType*); template static double test(...); public: static bool const value = (sizeof(test >(0)) == 1); }; // Test if ScalarBitSetTraits is defined on type T. template struct has_ScalarBitSetTraits { typedef void (*Signature_bitset)(class IO&, T&); template static char test(SameType*); template static double test(...); public: static bool const value = (sizeof(test >(0)) == 1); }; // Test if ScalarTraits is defined on type T. template struct has_ScalarTraits { typedef StringRef (*Signature_input)(StringRef, void*, T&); typedef void (*Signature_output)(const T&, void*, llvm::raw_ostream&); template static char test(SameType*, SameType*); template static double test(...); public: static bool const value = (sizeof(test >(0,0)) == 1); }; // Test if MappingTraits is defined on type T. template struct has_MappingTraits { typedef void (*Signature_mapping)(class IO&, T&); template static char test(SameType*); template static double test(...); public: static bool const value = (sizeof(test >(0)) == 1); }; // Test if SequenceTraits is defined on type T. template struct has_SequenceMethodTraits { typedef size_t (*Signature_size)(class IO&, T&); template static char test(SameType*); template static double test(...); public: static bool const value = (sizeof(test >(0)) == 1); }; // has_FlowTraits will cause an error with some compilers because // it subclasses int. Using this wrapper only instantiates the // real has_FlowTraits only if the template type is a class. template ::value> class has_FlowTraits { public: static const bool value = false; }; // Some older gcc compilers don't support straight forward tests // for members, so test for ambiguity cause by the base and derived // classes both defining the member. template struct has_FlowTraits { struct Fallback { bool flow; }; struct Derived : T, Fallback { }; template static char (&f(SameType*))[1]; template static char (&f(...))[2]; public: static bool const value = sizeof(f(0)) == 2; }; // Test if SequenceTraits is defined on type T template struct has_SequenceTraits : public llvm::integral_constant::value > { }; // Test if DocumentListTraits is defined on type T template struct has_DocumentListTraits { typedef size_t (*Signature_size)(class IO&, T&); template static char test(SameType*); template static double test(...); public: static bool const value = (sizeof(test >(0)) == 1); }; template struct missingTraits : public llvm::integral_constant::value && !has_ScalarBitSetTraits::value && !has_ScalarTraits::value && !has_MappingTraits::value && !has_SequenceTraits::value && !has_DocumentListTraits::value > {}; // Base class for Input and Output. class IO { public: IO(void *Ctxt=NULL); virtual ~IO(); virtual bool outputting() = 0; virtual unsigned beginSequence() = 0; virtual bool preflightElement(unsigned, void *&) = 0; virtual void postflightElement(void*) = 0; virtual void endSequence() = 0; virtual unsigned beginFlowSequence() = 0; virtual bool preflightFlowElement(unsigned, void *&) = 0; virtual void postflightFlowElement(void*) = 0; virtual void endFlowSequence() = 0; virtual void beginMapping() = 0; virtual void endMapping() = 0; virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0; virtual void postflightKey(void*) = 0; virtual void beginEnumScalar() = 0; virtual bool matchEnumScalar(const char*, bool) = 0; virtual void endEnumScalar() = 0; virtual bool beginBitSetScalar(bool &) = 0; virtual bool bitSetMatch(const char*, bool) = 0; virtual void endBitSetScalar() = 0; virtual void scalarString(StringRef &) = 0; virtual void setError(const Twine &) = 0; template void enumCase(T &Val, const char* Str, const T ConstVal) { if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) { Val = ConstVal; } } // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF template void enumCase(T &Val, const char* Str, const uint32_t ConstVal) { if ( matchEnumScalar(Str, outputting() && Val == static_cast(ConstVal)) ) { Val = ConstVal; } } template void bitSetCase(T &Val, const char* Str, const T ConstVal) { if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) { Val = Val | ConstVal; } } // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF template void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) { if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) { Val = Val | ConstVal; } } void *getContext(); void setContext(void *); template void mapRequired(const char* Key, T& Val) { this->processKey(Key, Val, true); } template typename llvm::enable_if_c::value,void>::type mapOptional(const char* Key, T& Val) { // omit key/value instead of outputting empty sequence if ( this->outputting() && !(Val.begin() != Val.end()) ) return; this->processKey(Key, Val, false); } template typename llvm::enable_if_c::value,void>::type mapOptional(const char* Key, T& Val) { this->processKey(Key, Val, false); } template void mapOptional(const char* Key, T& Val, const T& Default) { this->processKeyWithDefault(Key, Val, Default, false); } private: template void processKeyWithDefault(const char *Key, T &Val, const T& DefaultValue, bool Required) { void *SaveInfo; bool UseDefault; const bool sameAsDefault = outputting() && Val == DefaultValue; if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo) ) { yamlize(*this, Val, Required); this->postflightKey(SaveInfo); } else { if ( UseDefault ) Val = DefaultValue; } } template void processKey(const char *Key, T &Val, bool Required) { void *SaveInfo; bool UseDefault; if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) { yamlize(*this, Val, Required); this->postflightKey(SaveInfo); } } private: void *Ctxt; }; template typename llvm::enable_if_c::value,void>::type yamlize(IO &io, T &Val, bool) { io.beginEnumScalar(); ScalarEnumerationTraits::enumeration(io, Val); io.endEnumScalar(); } template typename llvm::enable_if_c::value,void>::type yamlize(IO &io, T &Val, bool) { bool DoClear; if ( io.beginBitSetScalar(DoClear) ) { if ( DoClear ) Val = static_cast(0); ScalarBitSetTraits::bitset(io, Val); io.endBitSetScalar(); } } template typename llvm::enable_if_c::value,void>::type yamlize(IO &io, T &Val, bool) { if ( io.outputting() ) { std::string Storage; llvm::raw_string_ostream Buffer(Storage); ScalarTraits::output(Val, io.getContext(), Buffer); StringRef Str = Buffer.str(); io.scalarString(Str); } else { StringRef Str; io.scalarString(Str); StringRef Result = ScalarTraits::input(Str, io.getContext(), Val); if ( !Result.empty() ) { io.setError(llvm::Twine(Result)); } } } template typename llvm::enable_if_c::value, void>::type yamlize(IO &io, T &Val, bool) { io.beginMapping(); MappingTraits::mapping(io, Val); io.endMapping(); } template typename llvm::enable_if_c::value, void>::type yamlize(IO &io, T &Val, bool) { char missing_yaml_trait_for_type[sizeof(MissingTrait)]; } template typename llvm::enable_if_c::value,void>::type yamlize(IO &io, T &Seq, bool) { if ( has_FlowTraits< SequenceTraits >::value ) { unsigned incnt = io.beginFlowSequence(); unsigned count = io.outputting() ? SequenceTraits::size(io, Seq) : incnt; for(unsigned i=0; i < count; ++i) { void *SaveInfo; if ( io.preflightFlowElement(i, SaveInfo) ) { yamlize(io, SequenceTraits::element(io, Seq, i), true); io.postflightFlowElement(SaveInfo); } } io.endFlowSequence(); } else { unsigned incnt = io.beginSequence(); unsigned count = io.outputting() ? SequenceTraits::size(io, Seq) : incnt; for(unsigned i=0; i < count; ++i) { void *SaveInfo; if ( io.preflightElement(i, SaveInfo) ) { yamlize(io, SequenceTraits::element(io, Seq, i), true); io.postflightElement(SaveInfo); } } io.endSequence(); } } template<> struct ScalarTraits { static void output(const bool &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, bool &); }; template<> struct ScalarTraits { static void output(const StringRef &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, StringRef &); }; template<> struct ScalarTraits { static void output(const uint8_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint8_t &); }; template<> struct ScalarTraits { static void output(const uint16_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint16_t &); }; template<> struct ScalarTraits { static void output(const uint32_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint32_t &); }; template<> struct ScalarTraits { static void output(const uint64_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint64_t &); }; template<> struct ScalarTraits { static void output(const int8_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int8_t &); }; template<> struct ScalarTraits { static void output(const int16_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int16_t &); }; template<> struct ScalarTraits { static void output(const int32_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int32_t &); }; template<> struct ScalarTraits { static void output(const int64_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int64_t &); }; template<> struct ScalarTraits { static void output(const float &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, float &); }; template<> struct ScalarTraits { static void output(const double &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, double &); }; // Utility for use within MappingTraits<>::mapping() method // to [de]normalize an object for use with YAML conversion. template struct MappingNormalization { MappingNormalization(IO &i_o, TFinal &Obj) : io(i_o), BufPtr(NULL), Result(Obj) { if ( io.outputting() ) { BufPtr = new (&Buffer) TNorm(io, Obj); } else { BufPtr = new (&Buffer) TNorm(io); } } ~MappingNormalization() { if ( ! io.outputting() ) { Result = BufPtr->denormalize(io); } BufPtr->~TNorm(); } TNorm* operator->() { return BufPtr; } private: typedef llvm::AlignedCharArrayUnion Storage; Storage Buffer; IO &io; TNorm *BufPtr; TFinal &Result; }; // Utility for use within MappingTraits<>::mapping() method // to [de]normalize an object for use with YAML conversion. template struct MappingNormalizationHeap { MappingNormalizationHeap(IO &i_o, TFinal &Obj) : io(i_o), BufPtr(NULL), Result(Obj) { if ( io.outputting() ) { BufPtr = new (&Buffer) TNorm(io, Obj); } else { BufPtr = new TNorm(io); } } ~MappingNormalizationHeap() { if ( io.outputting() ) { BufPtr->~TNorm(); } else { Result = BufPtr->denormalize(io); } } TNorm* operator->() { return BufPtr; } private: typedef llvm::AlignedCharArrayUnion Storage; Storage Buffer; IO &io; TNorm *BufPtr; TFinal &Result; }; /// /// The Input class is used to parse a yaml document into in-memory structs /// and vectors. /// /// It works by using YAMLParser to do a syntax parse of the entire yaml /// document, then the Input class builds a graph of HNodes which wraps /// each yaml Node. The extra layer is buffering. The low level yaml /// parser only lets you look at each node once. The buffering layer lets /// you search and interate multiple times. This is necessary because /// the mapRequired() method calls may not be in the same order /// as the keys in the document. /// class Input : public IO { public: // Construct a yaml Input object from a StringRef and optional user-data. Input(StringRef InputContent, void *Ctxt=NULL); ~Input(); // Check if there was an syntax or semantic error during parsing. llvm::error_code error(); // To set alternate error reporting. void setDiagHandler(llvm::SourceMgr::DiagHandlerTy Handler, void *Ctxt = 0); private: virtual bool outputting(); virtual void beginMapping(); virtual void endMapping(); virtual bool preflightKey(const char *, bool, bool, bool &, void *&); virtual void postflightKey(void *); virtual unsigned beginSequence(); virtual void endSequence(); virtual bool preflightElement(unsigned index, void *&); virtual void postflightElement(void *); virtual unsigned beginFlowSequence(); virtual bool preflightFlowElement(unsigned , void *&); virtual void postflightFlowElement(void *); virtual void endFlowSequence(); virtual void beginEnumScalar(); virtual bool matchEnumScalar(const char*, bool); virtual void endEnumScalar(); virtual bool beginBitSetScalar(bool &); virtual bool bitSetMatch(const char *, bool ); virtual void endBitSetScalar(); virtual void scalarString(StringRef &); virtual void setError(const Twine &message); class HNode { public: HNode(Node *n) : _node(n) { } virtual ~HNode() { } static inline bool classof(const HNode *) { return true; } Node *_node; }; class EmptyHNode : public HNode { public: EmptyHNode(Node *n) : HNode(n) { } virtual ~EmptyHNode() {} static inline bool classof(const HNode *n) { return NullNode::classof(n->_node); } static inline bool classof(const EmptyHNode *) { return true; } }; class ScalarHNode : public HNode { public: ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { } virtual ~ScalarHNode() { } StringRef value() const { return _value; } static inline bool classof(const HNode *n) { return ScalarNode::classof(n->_node); } static inline bool classof(const ScalarHNode *) { return true; } protected: StringRef _value; }; class MapHNode : public HNode { public: MapHNode(Node *n) : HNode(n) { } virtual ~MapHNode(); static inline bool classof(const HNode *n) { return MappingNode::classof(n->_node); } static inline bool classof(const MapHNode *) { return true; } typedef llvm::StringMap NameToNode; bool isValidKey(StringRef key); NameToNode Mapping; llvm::SmallVector ValidKeys; }; class SequenceHNode : public HNode { public: SequenceHNode(Node *n) : HNode(n) { } virtual ~SequenceHNode(); static inline bool classof(const HNode *n) { return SequenceNode::classof(n->_node); } static inline bool classof(const SequenceHNode *) { return true; } std::vector Entries; }; Input::HNode *createHNodes(Node *node); void setError(HNode *hnode, const Twine &message); void setError(Node *node, const Twine &message); public: // These are only used by operator>>. They could be private // if those templated things could be made friends. bool setCurrentDocument(); void nextDocument(); private: llvm::SourceMgr SrcMgr; // must be before Strm OwningPtr Strm; OwningPtr TopNode; llvm::error_code EC; llvm::BumpPtrAllocator StringAllocator; llvm::yaml::document_iterator DocIterator; std::vector BitValuesUsed; HNode *CurrentNode; bool ScalarMatchFound; }; /// /// The Output class is used to generate a yaml document from in-memory structs /// and vectors. /// class Output : public IO { public: Output(llvm::raw_ostream &, void *Ctxt=NULL); virtual ~Output(); virtual bool outputting(); virtual void beginMapping(); virtual void endMapping(); virtual bool preflightKey(const char *key, bool, bool, bool &, void *&); virtual void postflightKey(void *); virtual unsigned beginSequence(); virtual void endSequence(); virtual bool preflightElement(unsigned, void *&); virtual void postflightElement(void *); virtual unsigned beginFlowSequence(); virtual bool preflightFlowElement(unsigned, void *&); virtual void postflightFlowElement(void *); virtual void endFlowSequence(); virtual void beginEnumScalar(); virtual bool matchEnumScalar(const char*, bool); virtual void endEnumScalar(); virtual bool beginBitSetScalar(bool &); virtual bool bitSetMatch(const char *, bool ); virtual void endBitSetScalar(); virtual void scalarString(StringRef &); virtual void setError(const Twine &message); public: // These are only used by operator<<. They could be private // if that templated operator could be made a friend. void beginDocuments(); bool preflightDocument(unsigned); void postflightDocument(); void endDocuments(); private: void output(StringRef s); void outputUpToEndOfLine(StringRef s); void newLineCheck(); void outputNewLine(); void paddedKey(StringRef key); enum InState { inSeq, inFlowSeq, inMapFirstKey, inMapOtherKey }; llvm::raw_ostream &Out; SmallVector StateStack; int Column; int ColumnAtFlowStart; bool NeedBitValueComma; bool NeedFlowSequenceComma; bool EnumerationMatchFound; bool NeedsNewLine; }; /// YAML I/O does conversion based on types. But often native data types /// are just a typedef of built in intergral types (e.g. int). But the C++ /// type matching system sees through the typedef and all the typedefed types /// look like a built in type. This will cause the generic YAML I/O conversion /// to be used. To provide better control over the YAML conversion, you can /// use this macro instead of typedef. It will create a class with one field /// and automatic conversion operators to and from the base type. /// Based on BOOST_STRONG_TYPEDEF #define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \ struct _type { \ _type() { } \ _type(const _base v) : value(v) { } \ _type(const _type &v) : value(v.value) {} \ _type &operator=(const _type &rhs) { value = rhs.value; return *this; }\ _type &operator=(const _base &rhs) { value = rhs; return *this; } \ operator const _base & () const { return value; } \ bool operator==(const _type &rhs) const { return value == rhs.value; } \ bool operator==(const _base &rhs) const { return value == rhs; } \ bool operator<(const _type &rhs) const { return value < rhs.value; } \ _base value; \ }; /// /// Use these types instead of uintXX_t in any mapping to have /// its yaml output formatted as hexadecimal. /// LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8) LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16) LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32) LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64) template<> struct ScalarTraits { static void output(const Hex8 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex8 &); }; template<> struct ScalarTraits { static void output(const Hex16 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex16 &); }; template<> struct ScalarTraits { static void output(const Hex32 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex32 &); }; template<> struct ScalarTraits { static void output(const Hex64 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex64 &); }; // Define non-member operator>> so that Input can stream in a document list. template inline typename llvm::enable_if_c::value,Input &>::type operator>>(Input &yin, T &docList) { int i = 0; while ( yin.setCurrentDocument() ) { yamlize(yin, DocumentListTraits::element(yin, docList, i), true); if ( yin.error() ) return yin; yin.nextDocument(); ++i; } return yin; } // Define non-member operator>> so that Input can stream in a map as a document. template inline typename llvm::enable_if_c::value,Input &>::type operator>>(Input &yin, T &docMap) { yin.setCurrentDocument(); yamlize(yin, docMap, true); return yin; } // Define non-member operator>> so that Input can stream in a sequence as // a document. template inline typename llvm::enable_if_c::value,Input &>::type operator>>(Input &yin, T &docSeq) { yin.setCurrentDocument(); yamlize(yin, docSeq, true); return yin; } // Provide better error message about types missing a trait specialization template inline typename llvm::enable_if_c::value,Input &>::type operator>>(Input &yin, T &docSeq) { char missing_yaml_trait_for_type[sizeof(MissingTrait)]; return yin; } // Define non-member operator<< so that Output can stream out document list. template inline typename llvm::enable_if_c::value,Output &>::type operator<<(Output &yout, T &docList) { yout.beginDocuments(); const size_t count = DocumentListTraits::size(yout, docList); for(size_t i=0; i < count; ++i) { if ( yout.preflightDocument(i) ) { yamlize(yout, DocumentListTraits::element(yout, docList, i), true); yout.postflightDocument(); } } yout.endDocuments(); return yout; } // Define non-member operator<< so that Output can stream out a map. template inline typename llvm::enable_if_c::value,Output &>::type operator<<(Output &yout, T &map) { yout.beginDocuments(); if ( yout.preflightDocument(0) ) { yamlize(yout, map, true); yout.postflightDocument(); } yout.endDocuments(); return yout; } // Define non-member operator<< so that Output can stream out a sequence. template inline typename llvm::enable_if_c::value,Output &>::type operator<<(Output &yout, T &seq) { yout.beginDocuments(); if ( yout.preflightDocument(0) ) { yamlize(yout, seq, true); yout.postflightDocument(); } yout.endDocuments(); return yout; } // Provide better error message about types missing a trait specialization template inline typename llvm::enable_if_c::value,Output &>::type operator<<(Output &yout, T &seq) { char missing_yaml_trait_for_type[sizeof(MissingTrait)]; return yout; } } // namespace yaml } // namespace llvm /// Utility for declaring that a std::vector of a particular type /// should be considered a YAML sequence. #define LLVM_YAML_IS_SEQUENCE_VECTOR(_type) \ namespace llvm { \ namespace yaml { \ template<> \ struct SequenceTraits< std::vector<_type> > { \ static size_t size(IO &io, std::vector<_type> &seq) { \ return seq.size(); \ } \ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\ if ( index >= seq.size() ) \ seq.resize(index+1); \ return seq[index]; \ } \ }; \ } \ } /// Utility for declaring that a std::vector of a particular type /// should be considered a YAML flow sequence. #define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(_type) \ namespace llvm { \ namespace yaml { \ template<> \ struct SequenceTraits< std::vector<_type> > { \ static size_t size(IO &io, std::vector<_type> &seq) { \ return seq.size(); \ } \ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\ if ( index >= seq.size() ) \ seq.resize(index+1); \ return seq[index]; \ } \ static const bool flow = true; \ }; \ } \ } /// Utility for declaring that a std::vector of a particular type /// should be considered a YAML document list. #define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \ namespace llvm { \ namespace yaml { \ template<> \ struct DocumentListTraits< std::vector<_type> > { \ static size_t size(IO &io, std::vector<_type> &seq) { \ return seq.size(); \ } \ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\ if ( index >= seq.size() ) \ seq.resize(index+1); \ return seq[index]; \ } \ }; \ } \ } #endif // LLVM_SUPPORT_YAMLTRAITS_H