//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::LegalizeTypes method. It transforms // an arbitrary well-formed SelectionDAG to only consist of legal types. This // is common code shared among the LegalizeTypes*.cpp files. // //===----------------------------------------------------------------------===// #include "LegalizeTypes.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Support/MathExtras.h" using namespace llvm; /// run - This is the main entry point for the type legalizer. This does a /// top-down traversal of the dag, legalizing types as it goes. void DAGTypeLegalizer::run() { // Create a dummy node (which is not added to allnodes), that adds a reference // to the root node, preventing it from being deleted, and tracking any // changes of the root. HandleSDNode Dummy(DAG.getRoot()); // The root of the dag may dangle to deleted nodes until the type legalizer is // done. Set it to null to avoid confusion. DAG.setRoot(SDOperand()); // Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess' // (and remembering them) if they are leaves and assigning 'NewNode' if // non-leaves. for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) { if (I->getNumOperands() == 0) { I->setNodeId(ReadyToProcess); Worklist.push_back(I); } else { I->setNodeId(NewNode); } } // Now that we have a set of nodes to process, handle them all. while (!Worklist.empty()) { SDNode *N = Worklist.back(); Worklist.pop_back(); assert(N->getNodeId() == ReadyToProcess && "Node should be ready if on worklist!"); // Scan the values produced by the node, checking to see if any result // types are illegal. unsigned i = 0; unsigned NumResults = N->getNumValues(); do { MVT::ValueType ResultVT = N->getValueType(i); LegalizeAction Action = getTypeAction(ResultVT); if (Action == Promote) { PromoteResult(N, i); goto NodeDone; } else if (Action == Expand) { // Expand can mean 1) split integer in half 2) scalarize single-element // vector 3) split vector in half. if (!MVT::isVector(ResultVT)) ExpandResult(N, i); else if (MVT::getVectorNumElements(ResultVT) == 1) ScalarizeResult(N, i); // Scalarize the single-element vector. else SplitResult(N, i); // Split the vector in half. goto NodeDone; } else { assert(Action == Legal && "Unknown action!"); } } while (++i < NumResults); // Scan the operand list for the node, handling any nodes with operands that // are illegal. { unsigned NumOperands = N->getNumOperands(); bool NeedsRevisit = false; for (i = 0; i != NumOperands; ++i) { MVT::ValueType OpVT = N->getOperand(i).getValueType(); LegalizeAction Action = getTypeAction(OpVT); if (Action == Promote) { NeedsRevisit = PromoteOperand(N, i); break; } else if (Action == Expand) { // Expand can mean 1) split integer in half 2) scalarize single-element // vector 3) split vector in half. if (!MVT::isVector(OpVT)) { NeedsRevisit = ExpandOperand(N, i); } else if (MVT::getVectorNumElements(OpVT) == 1) { // Scalarize the single-element vector. NeedsRevisit = ScalarizeOperand(N, i); } else { NeedsRevisit = SplitOperand(N, i); // Split the vector in half. } break; } else { assert(Action == Legal && "Unknown action!"); } } // If the node needs revisiting, don't add all users to the worklist etc. if (NeedsRevisit) continue; if (i == NumOperands) DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n"); } NodeDone: // If we reach here, the node was processed, potentially creating new nodes. // Mark it as processed and add its users to the worklist as appropriate. N->setNodeId(Processed); for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) { SDNode *User = *UI; int NodeID = User->getNodeId(); assert(NodeID != ReadyToProcess && NodeID != Processed && "Invalid node id for user of unprocessed node!"); // This node has two options: it can either be a new node or its Node ID // may be a count of the number of operands it has that are not ready. if (NodeID > 0) { User->setNodeId(NodeID-1); // If this was the last use it was waiting on, add it to the ready list. if (NodeID-1 == ReadyToProcess) Worklist.push_back(User); continue; } // Otherwise, this node is new: this is the first operand of it that // became ready. Its new NodeID is the number of operands it has minus 1 // (as this node is now processed). assert(NodeID == NewNode && "Unknown node ID!"); User->setNodeId(User->getNumOperands()-1); // If the node only has a single operand, it is now ready. if (User->getNumOperands() == 1) Worklist.push_back(User); } } // If the root changed (e.g. it was a dead load, update the root). DAG.setRoot(Dummy.getValue()); //DAG.viewGraph(); // Remove dead nodes. This is important to do for cleanliness but also before // the checking loop below. Implicit folding by the DAG.getNode operators can // cause unreachable nodes to be around with their flags set to new. DAG.RemoveDeadNodes(); // In a debug build, scan all the nodes to make sure we found them all. This // ensures that there are no cycles and that everything got processed. #ifndef NDEBUG for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I) { if (I->getNodeId() == Processed) continue; cerr << "Unprocessed node: "; I->dump(&DAG); cerr << "\n"; if (I->getNodeId() == NewNode) cerr << "New node not 'noticed'?\n"; else if (I->getNodeId() > 0) cerr << "Operand not processed?\n"; else if (I->getNodeId() == ReadyToProcess) cerr << "Not added to worklist?\n"; abort(); } #endif } /// MarkNewNodes - The specified node is the root of a subtree of potentially /// new nodes. Add the correct NodeId to mark it. void DAGTypeLegalizer::MarkNewNodes(SDNode *N) { // If this was an existing node that is already done, we're done. if (N->getNodeId() != NewNode) return; // Okay, we know that this node is new. Recursively walk all of its operands // to see if they are new also. The depth of this walk is bounded by the size // of the new tree that was constructed (usually 2-3 nodes), so we don't worry // about revisiting of nodes. // // As we walk the operands, keep track of the number of nodes that are // processed. If non-zero, this will become the new nodeid of this node. unsigned NumProcessed = 0; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { int OpId = N->getOperand(i).Val->getNodeId(); if (OpId == NewNode) MarkNewNodes(N->getOperand(i).Val); else if (OpId == Processed) ++NumProcessed; } N->setNodeId(N->getNumOperands()-NumProcessed); if (N->getNodeId() == ReadyToProcess) Worklist.push_back(N); } /// ReplaceValueWith - The specified value was legalized to the specified other /// value. If they are different, update the DAG and NodeIDs replacing any uses /// of From to use To instead. void DAGTypeLegalizer::ReplaceValueWith(SDOperand From, SDOperand To) { if (From == To) return; // If expansion produced new nodes, make sure they are properly marked. if (To.Val->getNodeId() == NewNode) MarkNewNodes(To.Val); // Anything that used the old node should now use the new one. Note that this // can potentially cause recursive merging. DAG.ReplaceAllUsesOfValueWith(From, To); // The old node may still be present in ExpandedNodes or PromotedNodes. // Inform them about the replacement. ReplacedNodes[From] = To; // Since we just made an unstructured update to the DAG, which could wreak // general havoc on anything that once used From and now uses To, walk all // users of the result, updating their flags. for (SDNode::use_iterator I = To.Val->use_begin(), E = To.Val->use_end(); I != E; ++I) { SDNode *User = *I; // If the node isn't already processed or in the worklist, mark it as new, // then use MarkNewNodes to recompute its ID. int NodeId = User->getNodeId(); if (NodeId != ReadyToProcess && NodeId != Processed) { User->setNodeId(NewNode); MarkNewNodes(User); } } } /// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to' /// node's results. The from and to node must define identical result types. void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) { if (From == To) return; assert(From->getNumValues() == To->getNumValues() && "Node results don't match"); // If expansion produced new nodes, make sure they are properly marked. if (To->getNodeId() == NewNode) MarkNewNodes(To); // Anything that used the old node should now use the new one. Note that this // can potentially cause recursive merging. DAG.ReplaceAllUsesWith(From, To); // The old node may still be present in ExpandedNodes or PromotedNodes. // Inform them about the replacement. for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) { assert(From->getValueType(i) == To->getValueType(i) && "Node results don't match"); ReplacedNodes[SDOperand(From, i)] = SDOperand(To, i); } // Since we just made an unstructured update to the DAG, which could wreak // general havoc on anything that once used From and now uses To, walk all // users of the result, updating their flags. for (SDNode::use_iterator I = To->use_begin(), E = To->use_end();I != E; ++I){ SDNode *User = *I; // If the node isn't already processed or in the worklist, mark it as new, // then use MarkNewNodes to recompute its ID. int NodeId = User->getNodeId(); if (NodeId != ReadyToProcess && NodeId != Processed) { User->setNodeId(NewNode); MarkNewNodes(User); } } } /// RemapNode - If the specified value was already legalized to another value, /// replace it by that value. void DAGTypeLegalizer::RemapNode(SDOperand &N) { DenseMap::iterator I = ReplacedNodes.find(N); if (I != ReplacedNodes.end()) { // Use path compression to speed up future lookups if values get multiply // replaced with other values. RemapNode(I->second); N = I->second; } } void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) { if (Result.Val->getNodeId() == NewNode) MarkNewNodes(Result.Val); SDOperand &OpEntry = PromotedNodes[Op]; assert(OpEntry.Val == 0 && "Node is already promoted!"); OpEntry = Result; } void DAGTypeLegalizer::SetScalarizedOp(SDOperand Op, SDOperand Result) { if (Result.Val->getNodeId() == NewNode) MarkNewNodes(Result.Val); SDOperand &OpEntry = ScalarizedNodes[Op]; assert(OpEntry.Val == 0 && "Node is already scalarized!"); OpEntry = Result; } void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { std::pair &Entry = ExpandedNodes[Op]; RemapNode(Entry.first); RemapNode(Entry.second); assert(Entry.first.Val && "Operand isn't expanded"); Lo = Entry.first; Hi = Entry.second; } void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi) { // Remember that this is the result of the node. std::pair &Entry = ExpandedNodes[Op]; assert(Entry.first.Val == 0 && "Node already expanded"); Entry.first = Lo; Entry.second = Hi; // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. if (Lo.Val->getNodeId() == NewNode) MarkNewNodes(Lo.Val); if (Hi.Val->getNodeId() == NewNode) MarkNewNodes(Hi.Val); } void DAGTypeLegalizer::GetSplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { std::pair &Entry = SplitNodes[Op]; RemapNode(Entry.first); RemapNode(Entry.second); assert(Entry.first.Val && "Operand isn't split"); Lo = Entry.first; Hi = Entry.second; } void DAGTypeLegalizer::SetSplitOp(SDOperand Op, SDOperand Lo, SDOperand Hi) { // Remember that this is the result of the node. std::pair &Entry = SplitNodes[Op]; assert(Entry.first.Val == 0 && "Node already split"); Entry.first = Lo; Entry.second = Hi; // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant. if (Lo.Val->getNodeId() == NewNode) MarkNewNodes(Lo.Val); if (Hi.Val->getNodeId() == NewNode) MarkNewNodes(Hi.Val); } SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op, MVT::ValueType DestVT) { // Create the stack frame object. SDOperand FIPtr = DAG.CreateStackTemporary(DestVT); // Emit a store to the stack slot. SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0); // Result is a load from the stack slot. return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0); } /// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid /// operands. This promotes or expands the operands as required. SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) { // The chain and pointer [operands #0 and #1] are always valid types. SDOperand Chain = N->getOperand(0); SDOperand Ptr = N->getOperand(1); SDOperand Op2 = N->getOperand(2); // Op #2 is either a value (memset) or a pointer. Promote it if required. switch (getTypeAction(Op2.getValueType())) { default: assert(0 && "Unknown action for pointer/value operand"); case Legal: break; case Promote: Op2 = GetPromotedOp(Op2); break; } // The length could have any action required. SDOperand Length = N->getOperand(3); switch (getTypeAction(Length.getValueType())) { default: assert(0 && "Unknown action for memop operand"); case Legal: break; case Promote: Length = GetPromotedZExtOp(Length); break; case Expand: SDOperand Dummy; // discard the high part. GetExpandedOp(Length, Length, Dummy); break; } SDOperand Align = N->getOperand(4); switch (getTypeAction(Align.getValueType())) { default: assert(0 && "Unknown action for memop operand"); case Legal: break; case Promote: Align = GetPromotedZExtOp(Align); break; } SDOperand AlwaysInline = N->getOperand(5); switch (getTypeAction(AlwaysInline.getValueType())) { default: assert(0 && "Unknown action for memop operand"); case Legal: break; case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break; } SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline }; return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6); } /// SplitOp - Return the lower and upper halves of Op's bits in a value type /// half the size of Op's. void DAGTypeLegalizer::SplitOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi) { unsigned NVTBits = MVT::getSizeInBits(Op.getValueType())/2; assert(MVT::getSizeInBits(Op.getValueType()) == 2*NVTBits && "Cannot split odd sized integer type"); MVT::ValueType NVT = MVT::getIntegerType(NVTBits); Lo = DAG.getNode(ISD::TRUNCATE, NVT, Op); Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op, DAG.getConstant(NVTBits, TLI.getShiftAmountTy())); Hi = DAG.getNode(ISD::TRUNCATE, NVT, Hi); } //===----------------------------------------------------------------------===// // Entry Point //===----------------------------------------------------------------------===// /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that /// only uses types natively supported by the target. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. void SelectionDAG::LegalizeTypes() { DAGTypeLegalizer(*this).run(); }