//===-- Module.cpp - Implement the Module class ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Module class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/InstrTypes.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/GVMaterializer.h" #include "llvm/LLVMContext.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/LeakDetector.h" #include "SymbolTableListTraitsImpl.h" #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Methods to implement the globals and functions lists. // // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file. template class llvm::SymbolTableListTraits; template class llvm::SymbolTableListTraits; template class llvm::SymbolTableListTraits; //===----------------------------------------------------------------------===// // Primitive Module methods. // Module::Module(StringRef MID, LLVMContext& C) : Context(C), Materializer(NULL), ModuleID(MID) { ValSymTab = new ValueSymbolTable(); NamedMDSymTab = new StringMap(); Context.addModule(this); } Module::~Module() { Context.removeModule(this); dropAllReferences(); GlobalList.clear(); FunctionList.clear(); AliasList.clear(); LibraryList.clear(); NamedMDList.clear(); delete ValSymTab; delete static_cast *>(NamedMDSymTab); } /// Target endian information. Module::Endianness Module::getEndianness() const { StringRef temp = DataLayout; Module::Endianness ret = AnyEndianness; while (!temp.empty()) { std::pair P = getToken(temp, "-"); StringRef token = P.first; temp = P.second; if (token[0] == 'e') { ret = LittleEndian; } else if (token[0] == 'E') { ret = BigEndian; } } return ret; } /// Target Pointer Size information. Module::PointerSize Module::getPointerSize() const { StringRef temp = DataLayout; Module::PointerSize ret = AnyPointerSize; while (!temp.empty()) { std::pair TmpP = getToken(temp, "-"); temp = TmpP.second; TmpP = getToken(TmpP.first, ":"); StringRef token = TmpP.second, signalToken = TmpP.first; if (signalToken[0] == 'p') { int size = 0; getToken(token, ":").first.getAsInteger(10, size); if (size == 32) ret = Pointer32; else if (size == 64) ret = Pointer64; } } return ret; } /// getNamedValue - Return the first global value in the module with /// the specified name, of arbitrary type. This method returns null /// if a global with the specified name is not found. GlobalValue *Module::getNamedValue(StringRef Name) const { return cast_or_null(getValueSymbolTable().lookup(Name)); } /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. /// This ID is uniqued across modules in the current LLVMContext. unsigned Module::getMDKindID(StringRef Name) const { return Context.getMDKindID(Name); } /// getMDKindNames - Populate client supplied SmallVector with the name for /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, /// so it is filled in as an empty string. void Module::getMDKindNames(SmallVectorImpl &Result) const { return Context.getMDKindNames(Result); } //===----------------------------------------------------------------------===// // Methods for easy access to the functions in the module. // // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. This is nice because it allows most passes to get away with not handling // the symbol table directly for this common task. // Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, AttrListPtr AttributeList) { // See if we have a definition for the specified function already. GlobalValue *F = getNamedValue(Name); if (F == 0) { // Nope, add it Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); if (!New->isIntrinsic()) // Intrinsics get attrs set on construction New->setAttributes(AttributeList); FunctionList.push_back(New); return New; // Return the new prototype. } // Okay, the function exists. Does it have externally visible linkage? if (F->hasLocalLinkage()) { // Clear the function's name. F->setName(""); // Retry, now there won't be a conflict. Constant *NewF = getOrInsertFunction(Name, Ty); F->setName(Name); return NewF; } // If the function exists but has the wrong type, return a bitcast to the // right type. if (F->getType() != PointerType::getUnqual(Ty)) return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty)); // Otherwise, we just found the existing function or a prototype. return F; } Constant *Module::getOrInsertTargetIntrinsic(StringRef Name, FunctionType *Ty, AttrListPtr AttributeList) { // See if we have a definition for the specified function already. GlobalValue *F = getNamedValue(Name); if (F == 0) { // Nope, add it Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); New->setAttributes(AttributeList); FunctionList.push_back(New); return New; // Return the new prototype. } // Otherwise, we just found the existing function or a prototype. return F; } Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { AttrListPtr AttributeList = AttrListPtr::get((AttributeWithIndex *)0, 0); return getOrInsertFunction(Name, Ty, AttributeList); } // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return it. // This version of the method takes a null terminated list of function // arguments, which makes it easier for clients to use. // Constant *Module::getOrInsertFunction(StringRef Name, AttrListPtr AttributeList, Type *RetTy, ...) { va_list Args; va_start(Args, RetTy); // Build the list of argument types... std::vector ArgTys; while (Type *ArgTy = va_arg(Args, Type*)) ArgTys.push_back(ArgTy); va_end(Args); // Build the function type and chain to the other getOrInsertFunction... return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false), AttributeList); } Constant *Module::getOrInsertFunction(StringRef Name, Type *RetTy, ...) { va_list Args; va_start(Args, RetTy); // Build the list of argument types... std::vector ArgTys; while (Type *ArgTy = va_arg(Args, Type*)) ArgTys.push_back(ArgTy); va_end(Args); // Build the function type and chain to the other getOrInsertFunction... return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false), AttrListPtr::get((AttributeWithIndex *)0, 0)); } // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *Module::getFunction(StringRef Name) const { return dyn_cast_or_null(getNamedValue(Name)); } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // /// getGlobalVariable - Look up the specified global variable in the module /// symbol table. If it does not exist, return null. The type argument /// should be the underlying type of the global, i.e., it should not have /// the top-level PointerType, which represents the address of the global. /// If AllowLocal is set to true, this function will return types that /// have an local. By default, these types are not returned. /// GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) const { if (GlobalVariable *Result = dyn_cast_or_null(getNamedValue(Name))) if (AllowLocal || !Result->hasLocalLinkage()) return Result; return 0; } /// getOrInsertGlobal - Look up the specified global in the module symbol table. /// 1. If it does not exist, add a declaration of the global and return it. /// 2. Else, the global exists but has the wrong type: return the function /// with a constantexpr cast to the right type. /// 3. Finally, if the existing global is the correct delclaration, return the /// existing global. Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { // See if we have a definition for the specified global already. GlobalVariable *GV = dyn_cast_or_null(getNamedValue(Name)); if (GV == 0) { // Nope, add it GlobalVariable *New = new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 0, Name); return New; // Return the new declaration. } // If the variable exists but has the wrong type, return a bitcast to the // right type. if (GV->getType() != PointerType::getUnqual(Ty)) return ConstantExpr::getBitCast(GV, PointerType::getUnqual(Ty)); // Otherwise, we just found the existing function or a prototype. return GV; } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // // getNamedAlias - Look up the specified global in the module symbol table. // If it does not exist, return null. // GlobalAlias *Module::getNamedAlias(StringRef Name) const { return dyn_cast_or_null(getNamedValue(Name)); } /// getNamedMetadata - Return the first NamedMDNode in the module with the /// specified name. This method returns null if a NamedMDNode with the /// specified name is not found. NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { SmallString<256> NameData; StringRef NameRef = Name.toStringRef(NameData); return static_cast *>(NamedMDSymTab)->lookup(NameRef); } /// getOrInsertNamedMetadata - Return the first named MDNode in the module /// with the specified name. This method returns a new NamedMDNode if a /// NamedMDNode with the specified name is not found. NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { NamedMDNode *&NMD = (*static_cast *>(NamedMDSymTab))[Name]; if (!NMD) { NMD = new NamedMDNode(Name); NMD->setParent(this); NamedMDList.push_back(NMD); } return NMD; } /// eraseNamedMetadata - Remove the given NamedMDNode from this module and /// delete it. void Module::eraseNamedMetadata(NamedMDNode *NMD) { static_cast *>(NamedMDSymTab)->erase(NMD->getName()); NamedMDList.erase(NMD); } /// getModuleFlagsMetadata - Returns the module flags in the provided vector. void Module:: getModuleFlagsMetadata(SmallVectorImpl &Flags) const { const NamedMDNode *ModFlags = getModuleFlagsMetadata(); if (!ModFlags) return; for (unsigned i = 0, e = ModFlags->getNumOperands(); i != e; ++i) { MDNode *Flag = ModFlags->getOperand(i); ConstantInt *Behavior = cast(Flag->getOperand(0)); MDString *Key = cast(Flag->getOperand(1)); Value *Val = Flag->getOperand(2); Flags.push_back(ModuleFlagEntry(ModFlagBehavior(Behavior->getZExtValue()), Key, Val)); } } /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. This method returns null if there are no /// module-level flags. NamedMDNode *Module::getModuleFlagsMetadata() const { return getNamedMetadata("llvm.module.flags"); } /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. If module-level flags aren't found, it /// creates the named metadata that contains them. NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { return getOrInsertNamedMetadata("llvm.module.flags"); } /// addModuleFlag - Add a module-level flag to the module-level flags /// metadata. It will create the module-level flags named metadata if it doesn't /// already exist. void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Value *Val) { Type *Int32Ty = Type::getInt32Ty(Context); Value *Ops[3] = { ConstantInt::get(Int32Ty, Behavior), MDString::get(Context, Key), Val }; getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); } void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val) { Type *Int32Ty = Type::getInt32Ty(Context); addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); } void Module::addModuleFlag(MDNode *Node) { assert(Node->getNumOperands() == 3 && "Invalid number of operands for module flag!"); assert(isa(Node->getOperand(0)) && isa(Node->getOperand(1)) && "Invalid operand types for module flag!"); getOrInsertModuleFlagsMetadata()->addOperand(Node); } //===----------------------------------------------------------------------===// // Methods to control the materialization of GlobalValues in the Module. // void Module::setMaterializer(GVMaterializer *GVM) { assert(!Materializer && "Module already has a GVMaterializer. Call MaterializeAllPermanently" " to clear it out before setting another one."); Materializer.reset(GVM); } bool Module::isMaterializable(const GlobalValue *GV) const { if (Materializer) return Materializer->isMaterializable(GV); return false; } bool Module::isDematerializable(const GlobalValue *GV) const { if (Materializer) return Materializer->isDematerializable(GV); return false; } bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) { if (Materializer) return Materializer->Materialize(GV, ErrInfo); return false; } void Module::Dematerialize(GlobalValue *GV) { if (Materializer) return Materializer->Dematerialize(GV); } bool Module::MaterializeAll(std::string *ErrInfo) { if (!Materializer) return false; return Materializer->MaterializeModule(this, ErrInfo); } bool Module::MaterializeAllPermanently(std::string *ErrInfo) { if (MaterializeAll(ErrInfo)) return true; Materializer.reset(); return false; } //===----------------------------------------------------------------------===// // Other module related stuff. // // dropAllReferences() - This function causes all the subelements to "let go" // of all references that they are maintaining. This allows one to 'delete' a // whole module at a time, even though there may be circular references... first // all references are dropped, and all use counts go to zero. Then everything // is deleted for real. Note that no operations are valid on an object that // has "dropped all references", except operator delete. // void Module::dropAllReferences() { for(Module::iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); for(Module::global_iterator I = global_begin(), E = global_end(); I != E; ++I) I->dropAllReferences(); for(Module::alias_iterator I = alias_begin(), E = alias_end(); I != E; ++I) I->dropAllReferences(); } void Module::addLibrary(StringRef Lib) { for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I) if (*I == Lib) return; LibraryList.push_back(Lib); } void Module::removeLibrary(StringRef Lib) { LibraryListType::iterator I = LibraryList.begin(); LibraryListType::iterator E = LibraryList.end(); for (;I != E; ++I) if (*I == Lib) { LibraryList.erase(I); return; } } //===----------------------------------------------------------------------===// // Type finding functionality. //===----------------------------------------------------------------------===// namespace { /// TypeFinder - Walk over a module, identifying all of the types that are /// used by the module. class TypeFinder { // To avoid walking constant expressions multiple times and other IR // objects, we keep several helper maps. DenseSet VisitedConstants; DenseSet VisitedTypes; std::vector &StructTypes; bool OnlyNamed; public: TypeFinder(std::vector &structTypes, bool onlyNamed) : StructTypes(structTypes), OnlyNamed(onlyNamed) {} void run(const Module &M) { // Get types from global variables. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { incorporateType(I->getType()); if (I->hasInitializer()) incorporateValue(I->getInitializer()); } // Get types from aliases. for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) { incorporateType(I->getType()); if (const Value *Aliasee = I->getAliasee()) incorporateValue(Aliasee); } // Get types from functions. SmallVector, 4> MDForInst; for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { incorporateType(FI->getType()); // First incorporate the arguments. for (Function::const_arg_iterator AI = FI->arg_begin(), AE = FI->arg_end(); AI != AE; ++AI) incorporateValue(AI); for (Function::const_iterator BB = FI->begin(), E = FI->end(); BB != E;++BB) for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); II != E; ++II) { const Instruction &I = *II; // Incorporate the type of the instruction. incorporateType(I.getType()); // Incorporate non-instruction operand types. (We are incorporating // all instructions with this loop.) for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) if (!isa(OI)) incorporateValue(*OI); // Incorporate types hiding in metadata. I.getAllMetadataOtherThanDebugLoc(MDForInst); for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) incorporateMDNode(MDForInst[i].second); MDForInst.clear(); } } for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), E = M.named_metadata_end(); I != E; ++I) { const NamedMDNode *NMD = I; for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) incorporateMDNode(NMD->getOperand(i)); } } private: void incorporateType(Type *Ty) { // Check to see if we're already visited this type. if (!VisitedTypes.insert(Ty).second) return; // If this is a structure or opaque type, add a name for the type. if (StructType *STy = dyn_cast(Ty)) if (!OnlyNamed || STy->hasName()) StructTypes.push_back(STy); // Recursively walk all contained types. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) incorporateType(*I); } /// incorporateValue - This method is used to walk operand lists finding /// types hiding in constant expressions and other operands that won't be /// walked in other ways. GlobalValues, basic blocks, instructions, and /// inst operands are all explicitly enumerated. void incorporateValue(const Value *V) { if (const MDNode *M = dyn_cast(V)) return incorporateMDNode(M); if (!isa(V) || isa(V)) return; // Already visited? if (!VisitedConstants.insert(V).second) return; // Check this type. incorporateType(V->getType()); // If this is an instruction, we incorporate it separately. if (isa(V)) return; // Look in operands for types. const User *U = cast(V); for (Constant::const_op_iterator I = U->op_begin(), E = U->op_end(); I != E;++I) incorporateValue(*I); } void incorporateMDNode(const MDNode *V) { // Already visited? if (!VisitedConstants.insert(V).second) return; // Look in operands for types. for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i) if (Value *Op = V->getOperand(i)) incorporateValue(Op); } }; } // end anonymous namespace void Module::findUsedStructTypes(std::vector &StructTypes, bool OnlyNamed) const { TypeFinder(StructTypes, OnlyNamed).run(*this); }