//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// @file This file contains the declarations for the subclasses of Constant, /// which represent the different flavors of constant values that live in LLVM. /// Note that Constants are immutable (once created they never change) and are /// fully shared by structural equivalence. This means that two structurally /// equivalent constants will always have the same address. Constant's are /// created on demand as needed and never deleted: thus clients don't have to /// worry about the lifetime of the objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTS_H #define LLVM_CONSTANTS_H #include "llvm/Constant.h" #include "llvm/Type.h" #include "llvm/ADT/APInt.h" namespace llvm { class ArrayType; class StructType; class PointerType; class VectorType; template struct ConstantCreator; template struct ConvertConstantType; //===----------------------------------------------------------------------===// /// This is the shared class of boolean and integer constants. This class /// represents both boolean and integral constants. /// @brief Class for constant integers. class ConstantInt : public Constant { static ConstantInt *TheTrueVal, *TheFalseVal; ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT ConstantInt(const IntegerType *Ty, const APInt& V); APInt Val; public: /// Return the constant as an APInt value reference. This allows clients to /// obtain a copy of the value, with all its precision in tact. /// @brief Return the constant's value. inline const APInt& getValue() const { return Val; } /// Return the constant as a 64-bit unsigned integer value after it /// has been zero extended as appropriate for the type of this constant. Note /// that this method can assert if the value does not fit in 64 bits. /// @deprecated /// @brief Return the zero extended value. inline uint64_t getZExtValue() const { return Val.getZExtValue(); } /// Return the constant as a 64-bit integer value after it has been sign /// sign extended as appropriate for the type of this constant. Note that /// this method can assert if the value does not fit in 64 bits. /// @deprecated /// @brief Return the sign extended value. inline int64_t getSExtValue() const { return Val.getSExtValue(); } /// A helper method that can be used to determine if the constant contained /// within is equal to a constant. This only works for very small values, /// because this is all that can be represented with all types. /// @brief Determine if this constant's value is same as an unsigned char. bool equalsInt(uint64_t V) const { return Val == V; } /// getTrue/getFalse - Return the singleton true/false values. static inline ConstantInt *getTrue() { if (TheTrueVal) return TheTrueVal; return CreateTrueFalseVals(true); } static inline ConstantInt *getFalse() { if (TheFalseVal) return TheFalseVal; return CreateTrueFalseVals(false); } /// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a an unsigned APInt. Accessing it with /// either getSExtValue() or getZExtValue() will yield a correctly sized and /// signed value for the type Ty. /// @brief Get a ConstantInt for a specific value. static ConstantInt *get(const Type *Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified value and an implied Type. The /// type is the integer type that corresponds to the bit width of the value. static ConstantInt *get(const APInt &V); /// getType - Specialize the getType() method to always return an IntegerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const IntegerType *getType() const { return reinterpret_cast(Value::getType()); } /// This static method returns true if the type Ty is big enough to /// represent the value V. This can be used to avoid having the get method /// assert when V is larger than Ty can represent. Note that there are two /// versions of this method, one for unsigned and one for signed integers. /// Although ConstantInt canonicalizes everything to an unsigned integer, /// the signed version avoids callers having to convert a signed quantity /// to the appropriate unsigned type before calling the method. /// @returns true if V is a valid value for type Ty /// @brief Determine if the value is in range for the given type. static bool isValueValidForType(const Type *Ty, uint64_t V); static bool isValueValidForType(const Type *Ty, int64_t V); /// This function will return true iff this constant represents the "null" /// value that would be returned by the getNullValue method. /// @returns true if this is the null integer value. /// @brief Determine if the value is null. virtual bool isNullValue() const { return Val == 0; } /// This is just a convenience method to make client code smaller for a /// common code. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). bool isZero() const { return Val == 0; } /// This is just a convenience method to make client code smaller for a /// common case. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). /// @brief Determine if the value is one. bool isOne() const { return Val == 1; } /// This function will return true iff every bit in this constant is set /// to true. /// @returns true iff this constant's bits are all set to true. /// @brief Determine if the value is all ones. bool isAllOnesValue() const { return Val.isAllOnesValue(); } /// This function will return true iff this constant represents the largest /// value that may be represented by the constant's type. /// @returns true iff this is the largest value that may be represented /// by this type. /// @brief Determine if the value is maximal. bool isMaxValue(bool isSigned) const { if (isSigned) return Val.isMaxSignedValue(); else return Val.isMaxValue(); } /// This function will return true iff this constant represents the smallest /// value that may be represented by this constant's type. /// @returns true if this is the smallest value that may be represented by /// this type. /// @brief Determine if the value is minimal. bool isMinValue(bool isSigned) const { if (isSigned) return Val.isMinSignedValue(); else return Val.isMinValue(); } /// @returns the value for an integer constant of the given type that has all /// its bits set to true. /// @brief Get the all ones value static ConstantInt *getAllOnesValue(const Type *Ty); /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const ConstantInt *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantIntVal; } static void ResetTrueFalse() { TheTrueVal = TheFalseVal = 0; } private: static ConstantInt *CreateTrueFalseVals(bool WhichOne); }; //===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP : public Constant { double Val; ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT protected: ConstantFP(const Type *Ty, double V); public: /// get() - Static factory methods - Return objects of the specified value static ConstantFP *get(const Type *Ty, double V); /// isValueValidForType - return true if Ty is big enough to represent V. static bool isValueValidForType(const Type *Ty, double V); inline double getValue() const { return Val; } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. Don't depend on == for doubles to tell us it's zero, it /// considers -0.0 to be null as well as 0.0. :( virtual bool isNullValue() const; /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool isExactlyValue(double V) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantFP *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantFPVal; } }; //===----------------------------------------------------------------------===// /// ConstantAggregateZero - All zero aggregate value /// class ConstantAggregateZero : public Constant { friend struct ConstantCreator; ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT protected: ConstantAggregateZero(const Type *Ty) : Constant(Ty, ConstantAggregateZeroVal, 0, 0) {} public: /// get() - static factory method for creating a null aggregate. It is /// illegal to call this method with a non-aggregate type. static Constant *get(const Type *Ty); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantAggregateZero *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantAggregateZeroVal; } }; //===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray : public Constant { friend struct ConstantCreator >; ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT protected: ConstantArray(const ArrayType *T, const std::vector &Val); ~ConstantArray(); public: /// get() - Static factory methods - Return objects of the specified value static Constant *get(const ArrayType *T, const std::vector &); static Constant *get(const ArrayType *T, Constant*const*Vals, unsigned NumVals) { // FIXME: make this the primary ctor method. return get(T, std::vector(Vals, Vals+NumVals)); } /// This method constructs a ConstantArray and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array. This effectively increases the length /// of the array by one (you've been warned). However, in some situations /// this is not desired so if AddNull==false then the string is copied without /// null termination. static Constant *get(const std::string &Initializer, bool AddNull = true); /// getType - Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const ArrayType *getType() const { return reinterpret_cast(Value::getType()); } /// isString - This method returns true if the array is an array of sbyte or /// ubyte, and if the elements of the array are all ConstantInt's. bool isString() const; /// isCString - This method returns true if the array is a string (see /// isString) and it ends in a null byte \0 and does not contains any other /// null bytes except its terminator. bool isCString() const; /// getAsString - If this array is isString(), then this method converts the /// array to an std::string and returns it. Otherwise, it asserts out. /// std::string getAsString() const; /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantArray *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantArrayVal; } }; //===----------------------------------------------------------------------===// // ConstantStruct - Constant Struct Declarations // class ConstantStruct : public Constant { friend struct ConstantCreator >; ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT protected: ConstantStruct(const StructType *T, const std::vector &Val); ~ConstantStruct(); public: /// get() - Static factory methods - Return objects of the specified value /// static Constant *get(const StructType *T, const std::vector &V); static Constant *get(const std::vector &V, bool Packed = false); static Constant *get(Constant*const* Vals, unsigned NumVals, bool Packed = false) { // FIXME: make this the primary ctor method. return get(std::vector(Vals, Vals+NumVals), Packed); } /// getType() specialization - Reduce amount of casting... /// inline const StructType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero structs are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantStruct *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantStructVal; } }; //===----------------------------------------------------------------------===// /// ConstantVector - Constant Vector Declarations /// class ConstantVector : public Constant { friend struct ConstantCreator >; ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT protected: ConstantVector(const VectorType *T, const std::vector &Val); ~ConstantVector(); public: /// get() - Static factory methods - Return objects of the specified value static Constant *get(const VectorType *T, const std::vector &); static Constant *get(const std::vector &V); static Constant *get(Constant*const* Vals, unsigned NumVals) { // FIXME: make this the primary ctor method. return get(std::vector(Vals, Vals+NumVals)); } /// getType - Specialize the getType() method to always return an VectorType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const VectorType *getType() const { return reinterpret_cast(Value::getType()); } /// @returns the value for an packed integer constant of the given type that /// has all its bits set to true. /// @brief Get the all ones value static ConstantVector *getAllOnesValue(const VectorType *Ty); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } /// This function will return true iff every element in this packed constant /// is set to all ones. /// @returns true iff this constant's emements are all set to all ones. /// @brief Determine if the value is all ones. bool isAllOnesValue() const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantVector *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantVectorVal; } }; //===----------------------------------------------------------------------===// /// ConstantPointerNull - a constant pointer value that points to null /// class ConstantPointerNull : public Constant { friend struct ConstantCreator; ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT protected: ConstantPointerNull(const PointerType *T) : Constant(reinterpret_cast(T), Value::ConstantPointerNullVal, 0, 0) {} public: /// get() - Static factory methods - Return objects of the specified value static ConstantPointerNull *get(const PointerType *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// getType - Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPointerNull *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantPointerNullVal; } }; /// ConstantExpr - a constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantCreator > >; friend struct ConvertConstantType; protected: ConstantExpr(const Type *Ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(Ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. SubclassData = Opcode; } // These private methods are used by the type resolution code to create // ConstantExprs in intermediate forms. static Constant *getTy(const Type *Ty, unsigned Opcode, Constant *C1, Constant *C2); static Constant *getCompareTy(unsigned short pred, Constant *C1, Constant *C2); static Constant *getSelectTy(const Type *Ty, Constant *C1, Constant *C2, Constant *C3); static Constant *getGetElementPtrTy(const Type *Ty, Constant *C, Value* const *Idxs, unsigned NumIdxs); static Constant *getExtractElementTy(const Type *Ty, Constant *Val, Constant *Idx); static Constant *getInsertElementTy(const Type *Ty, Constant *Val, Constant *Elt, Constant *Idx); static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1, Constant *V2, Constant *Mask); public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible. /// Cast constant expr /// static Constant *getTrunc (Constant *C, const Type *Ty); static Constant *getSExt (Constant *C, const Type *Ty); static Constant *getZExt (Constant *C, const Type *Ty); static Constant *getFPTrunc (Constant *C, const Type *Ty); static Constant *getFPExtend(Constant *C, const Type *Ty); static Constant *getUIToFP (Constant *C, const Type *Ty); static Constant *getSIToFP (Constant *C, const Type *Ty); static Constant *getFPToUI (Constant *C, const Type *Ty); static Constant *getFPToSI (Constant *C, const Type *Ty); static Constant *getPtrToInt(Constant *C, const Type *Ty); static Constant *getIntToPtr(Constant *C, const Type *Ty); static Constant *getBitCast (Constant *C, const Type *Ty); // @brief Convenience function for getting one of the casting operations // using a CastOps opcode. static Constant *getCast( unsigned ops, ///< The opcode for the conversion Constant *C, ///< The constant to be converted const Type *Ty ///< The type to which the constant is converted ); // @brief Create a ZExt or BitCast cast constant expression static Constant *getZExtOrBitCast( Constant *C, ///< The constant to zext or bitcast const Type *Ty ///< The type to zext or bitcast C to ); // @brief Create a SExt or BitCast cast constant expression static Constant *getSExtOrBitCast( Constant *C, ///< The constant to sext or bitcast const Type *Ty ///< The type to sext or bitcast C to ); // @brief Create a Trunc or BitCast cast constant expression static Constant *getTruncOrBitCast( Constant *C, ///< The constant to trunc or bitcast const Type *Ty ///< The type to trunc or bitcast C to ); /// @brief Create a BitCast or a PtrToInt cast constant expression static Constant *getPointerCast( Constant *C, ///< The pointer value to be casted (operand 0) const Type *Ty ///< The type to which cast should be made ); /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts static Constant *getIntegerCast( Constant *C, ///< The integer constant to be casted const Type *Ty, ///< The integer type to cast to bool isSigned ///< Whether C should be treated as signed or not ); /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts static Constant *getFPCast( Constant *C, ///< The integer constant to be casted const Type *Ty ///< The integer type to cast to ); /// @brief Return true if this is a convert constant expression bool isCast() const; /// @brief Return true if this is a compare constant expression bool isCompare() const; /// Select constant expr /// static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) { return getSelectTy(V1->getType(), C, V1, V2); } /// getSizeOf constant expr - computes the size of a type in a target /// independent way (Note: the return type is a ULong). /// static Constant *getSizeOf(const Type *Ty); /// ConstantExpr::get - Return a binary or shift operator constant expression, /// folding if possible. /// static Constant *get(unsigned Opcode, Constant *C1, Constant *C2); /// @brief Return an ICmp or FCmp comparison operator constant expression. static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2); /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// static Constant *getNeg(Constant *C); static Constant *getNot(Constant *C); static Constant *getAdd(Constant *C1, Constant *C2); static Constant *getSub(Constant *C1, Constant *C2); static Constant *getMul(Constant *C1, Constant *C2); static Constant *getUDiv(Constant *C1, Constant *C2); static Constant *getSDiv(Constant *C1, Constant *C2); static Constant *getFDiv(Constant *C1, Constant *C2); static Constant *getURem(Constant *C1, Constant *C2); // unsigned rem static Constant *getSRem(Constant *C1, Constant *C2); // signed rem static Constant *getFRem(Constant *C1, Constant *C2); static Constant *getAnd(Constant *C1, Constant *C2); static Constant *getOr(Constant *C1, Constant *C2); static Constant *getXor(Constant *C1, Constant *C2); static Constant* getICmp(unsigned short pred, Constant* LHS, Constant* RHS); static Constant* getFCmp(unsigned short pred, Constant* LHS, Constant* RHS); static Constant *getShl(Constant *C1, Constant *C2); static Constant *getLShr(Constant *C1, Constant *C2); static Constant *getAShr(Constant *C1, Constant *C2); /// Getelementptr form. std::vector is only accepted for convenience: /// all elements must be Constant's. /// static Constant *getGetElementPtr(Constant *C, Constant* const *IdxList, unsigned NumIdx); static Constant *getGetElementPtr(Constant *C, Value* const *IdxList, unsigned NumIdx); static Constant *getExtractElement(Constant *Vec, Constant *Idx); static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); /// Floating point negation must be implemented with f(x) = -0.0 - x. This /// method returns the negative zero constant for floating point or packed /// floating point types; for all other types, it returns the null value. static Constant *getZeroValueForNegationExpr(const Type *Ty); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } /// getOpcode - Return the opcode at the root of this constant expression unsigned getOpcode() const { return SubclassData; } /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is /// not an ICMP or FCMP constant expression. unsigned getPredicate() const; /// getOpcodeName - Return a string representation for an opcode. const char *getOpcodeName() const; /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values. The specified operands must /// match count and type with the existing ones. Constant *getWithOperands(const std::vector &Ops) const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Override methods to provide more type information... inline Constant *getOperand(unsigned i) { return cast(User::getOperand(i)); } inline Constant *getOperand(unsigned i) const { return const_cast(cast(User::getOperand(i))); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return V->getValueType() == ConstantExprVal; } }; //===----------------------------------------------------------------------===// /// UndefValue - 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any type. /// class UndefValue : public Constant { friend struct ConstantCreator; UndefValue(const UndefValue &); // DO NOT IMPLEMENT protected: UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {} public: /// get() - Static factory methods - Return an 'undef' object of the specified /// type. /// static UndefValue *get(const Type *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UndefValue *) { return true; } static bool classof(const Value *V) { return V->getValueType() == UndefValueVal; } }; } // End llvm namespace #endif