//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops that contain branches on loop-invariant conditions // to have multiple loops. For example, it turns the left into the right code: // // for (...) if (lic) // A for (...) // if (lic) A; B; C // B else // C for (...) // A; C // // This can increase the size of the code exponentially (doubling it every time // a loop is unswitched) so we only unswitch if the resultant code will be // smaller than a threshold. // // This pass expects LICM to be run before it to hoist invariant conditions out // of the loop, to make the unswitching opportunity obvious. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-unswitch" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; STATISTIC(NumBranches, "Number of branches unswitched"); STATISTIC(NumSwitches, "Number of switches unswitched"); STATISTIC(NumSelects , "Number of selects unswitched"); STATISTIC(NumTrivial , "Number of unswitches that are trivial"); STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); namespace { cl::opt Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), cl::init(10), cl::Hidden); class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass { LoopInfo *LI; // Loop information LPPassManager *LPM; // LoopProcessWorklist - Used to check if second loop needs processing // after RewriteLoopBodyWithConditionConstant rewrites first loop. std::vector LoopProcessWorklist; SmallPtrSet UnswitchedVals; public: static char ID; // Pass ID, replacement for typeid LoopUnswitch() : LoopPass((intptr_t)&ID) {} bool runOnLoop(Loop *L, LPPassManager &LPM); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); } private: /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist, /// remove it. void RemoveLoopFromWorklist(Loop *L) { std::vector::iterator I = std::find(LoopProcessWorklist.begin(), LoopProcessWorklist.end(), L); if (I != LoopProcessWorklist.end()) LoopProcessWorklist.erase(I); } bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L); unsigned getLoopUnswitchCost(Loop *L, Value *LIC); void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, BasicBlock *ExitBlock); void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L); BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To); BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt); void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, Constant *Val, bool isEqual); void SimplifyCode(std::vector &Worklist); void RemoveBlockIfDead(BasicBlock *BB, std::vector &Worklist); void RemoveLoopFromHierarchy(Loop *L); }; char LoopUnswitch::ID = 0; RegisterPass X("loop-unswitch", "Unswitch loops"); } LoopPass *llvm::createLoopUnswitchPass() { return new LoopUnswitch(); } /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is /// invariant in the loop, or has an invariant piece, return the invariant. /// Otherwise, return null. static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { // Constants should be folded, not unswitched on! if (isa(Cond)) return false; // TODO: Handle: br (VARIANT|INVARIANT). // TODO: Hoist simple expressions out of loops. if (L->isLoopInvariant(Cond)) return Cond; if (BinaryOperator *BO = dyn_cast(Cond)) if (BO->getOpcode() == Instruction::And || BO->getOpcode() == Instruction::Or) { // If either the left or right side is invariant, we can unswitch on this, // which will cause the branch to go away in one loop and the condition to // simplify in the other one. if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) return LHS; if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) return RHS; } return 0; } bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { assert(L->isLCSSAForm()); LI = &getAnalysis(); LPM = &LPM_Ref; bool Changed = false; // Loop over all of the basic blocks in the loop. If we find an interior // block that is branching on a loop-invariant condition, we can unswitch this // loop. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { TerminatorInst *TI = (*I)->getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { // If this isn't branching on an invariant condition, we can't unswitch // it. if (BI->isConditional()) { // See if this, or some part of it, is loop invariant. If so, we can // unswitch on it if we desire. Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), L, Changed); if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(), L)) { ++NumBranches; return true; } } } else if (SwitchInst *SI = dyn_cast(TI)) { Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed); if (LoopCond && SI->getNumCases() > 1) { // Find a value to unswitch on: // FIXME: this should chose the most expensive case! Constant *UnswitchVal = SI->getCaseValue(1); // Do not process same value again and again. if (!UnswitchedVals.insert(UnswitchVal)) continue; if (UnswitchIfProfitable(LoopCond, UnswitchVal, L)) { ++NumSwitches; return true; } } } // Scan the instructions to check for unswitchable values. for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); BBI != E; ++BBI) if (SelectInst *SI = dyn_cast(BBI)) { Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), L, Changed); if (LoopCond && UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(), L)) { ++NumSelects; return true; } } } assert(L->isLCSSAForm()); return Changed; } /// isTrivialLoopExitBlock - Check to see if all paths from BB either: /// 1. Exit the loop with no side effects. /// 2. Branch to the latch block with no side-effects. /// /// If these conditions are true, we return true and set ExitBB to the block we /// exit through. /// static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, BasicBlock *&ExitBB, std::set &Visited) { if (!Visited.insert(BB).second) { // Already visited and Ok, end of recursion. return true; } else if (!L->contains(BB)) { // Otherwise, this is a loop exit, this is fine so long as this is the // first exit. if (ExitBB != 0) return false; ExitBB = BB; return true; } // Otherwise, this is an unvisited intra-loop node. Check all successors. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { // Check to see if the successor is a trivial loop exit. if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) return false; } // Okay, everything after this looks good, check to make sure that this block // doesn't include any side effects. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (I->mayWriteToMemory()) return false; return true; } /// isTrivialLoopExitBlock - Return true if the specified block unconditionally /// leads to an exit from the specified loop, and has no side-effects in the /// process. If so, return the block that is exited to, otherwise return null. static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { std::set Visited; Visited.insert(L->getHeader()); // Branches to header are ok. BasicBlock *ExitBB = 0; if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) return ExitBB; return 0; } /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is /// trivial: that is, that the condition controls whether or not the loop does /// anything at all. If this is a trivial condition, unswitching produces no /// code duplications (equivalently, it produces a simpler loop and a new empty /// loop, which gets deleted). /// /// If this is a trivial condition, return true, otherwise return false. When /// returning true, this sets Cond and Val to the condition that controls the /// trivial condition: when Cond dynamically equals Val, the loop is known to /// exit. Finally, this sets LoopExit to the BB that the loop exits to when /// Cond == Val. /// static bool IsTrivialUnswitchCondition(Loop *L, Value *Cond, Constant **Val = 0, BasicBlock **LoopExit = 0) { BasicBlock *Header = L->getHeader(); TerminatorInst *HeaderTerm = Header->getTerminator(); BasicBlock *LoopExitBB = 0; if (BranchInst *BI = dyn_cast(HeaderTerm)) { // If the header block doesn't end with a conditional branch on Cond, we // can't handle it. if (!BI->isConditional() || BI->getCondition() != Cond) return false; // Check to see if a successor of the branch is guaranteed to go to the // latch block or exit through a one exit block without having any // side-effects. If so, determine the value of Cond that causes it to do // this. if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(0)))) { if (Val) *Val = ConstantInt::getTrue(); } else if ((LoopExitBB = isTrivialLoopExitBlock(L, BI->getSuccessor(1)))) { if (Val) *Val = ConstantInt::getFalse(); } } else if (SwitchInst *SI = dyn_cast(HeaderTerm)) { // If this isn't a switch on Cond, we can't handle it. if (SI->getCondition() != Cond) return false; // Check to see if a successor of the switch is guaranteed to go to the // latch block or exit through a one exit block without having any // side-effects. If so, determine the value of Cond that causes it to do // this. Note that we can't trivially unswitch on the default case. for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) if ((LoopExitBB = isTrivialLoopExitBlock(L, SI->getSuccessor(i)))) { // Okay, we found a trivial case, remember the value that is trivial. if (Val) *Val = SI->getCaseValue(i); break; } } // If we didn't find a single unique LoopExit block, or if the loop exit block // contains phi nodes, this isn't trivial. if (!LoopExitBB || isa(LoopExitBB->begin())) return false; // Can't handle this. if (LoopExit) *LoopExit = LoopExitBB; // We already know that nothing uses any scalar values defined inside of this // loop. As such, we just have to check to see if this loop will execute any // side-effecting instructions (e.g. stores, calls, volatile loads) in the // part of the loop that the code *would* execute. We already checked the // tail, check the header now. for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) if (I->mayWriteToMemory()) return false; return true; } /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if /// we choose to unswitch the specified loop on the specified value. /// unsigned LoopUnswitch::getLoopUnswitchCost(Loop *L, Value *LIC) { // If the condition is trivial, always unswitch. There is no code growth for // this case. if (IsTrivialUnswitchCondition(L, LIC)) return 0; // FIXME: This is really overly conservative. However, more liberal // estimations have thus far resulted in excessive unswitching, which is bad // both in compile time and in code size. This should be replaced once // someone figures out how a good estimation. return L->getBlocks().size(); unsigned Cost = 0; // FIXME: this is brain dead. It should take into consideration code // shrinkage. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; // Do not include empty blocks in the cost calculation. This happen due to // loop canonicalization and will be removed. if (BB->begin() == BasicBlock::iterator(BB->getTerminator())) continue; // Count basic blocks. ++Cost; } return Cost; } /// UnswitchIfProfitable - We have found that we can unswitch L when /// LoopCond == Val to simplify the loop. If we decide that this is profitable, /// unswitch the loop, reprocess the pieces, then return true. bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,Loop *L){ // Check to see if it would be profitable to unswitch this loop. unsigned Cost = getLoopUnswitchCost(L, LoopCond); if (Cost > Threshold) { // FIXME: this should estimate growth by the amount of code shared by the // resultant unswitched loops. // DOUT << "NOT unswitching loop %" << L->getHeader()->getName() << ", cost too high: " << L->getBlocks().size() << "\n"; return false; } // If this is a trivial condition to unswitch (which results in no code // duplication), do it now. Constant *CondVal; BasicBlock *ExitBlock; if (IsTrivialUnswitchCondition(L, LoopCond, &CondVal, &ExitBlock)) { UnswitchTrivialCondition(L, LoopCond, CondVal, ExitBlock); } else { UnswitchNontrivialCondition(LoopCond, Val, L); } return true; } /// SplitBlock - Split the specified block at the specified instruction - every /// thing before SplitPt stays in Old and everything starting with SplitPt moves /// to a new block. The two blocks are joined by an unconditional branch and /// the loop info is updated. /// BasicBlock *LoopUnswitch::SplitBlock(BasicBlock *Old, Instruction *SplitPt) { BasicBlock::iterator SplitIt = SplitPt; while (isa(SplitIt)) ++SplitIt; BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); // The new block lives in whichever loop the old one did. if (Loop *L = LI->getLoopFor(Old)) L->addBasicBlockToLoop(New, *LI); return New; } BasicBlock *LoopUnswitch::SplitEdge(BasicBlock *BB, BasicBlock *Succ) { TerminatorInst *LatchTerm = BB->getTerminator(); unsigned SuccNum = 0; for (unsigned i = 0, e = LatchTerm->getNumSuccessors(); ; ++i) { assert(i != e && "Didn't find edge?"); if (LatchTerm->getSuccessor(i) == Succ) { SuccNum = i; break; } } // If this is a critical edge, let SplitCriticalEdge do it. if (SplitCriticalEdge(BB->getTerminator(), SuccNum, this)) return LatchTerm->getSuccessor(SuccNum); // If the edge isn't critical, then BB has a single successor or Succ has a // single pred. Split the block. BasicBlock::iterator SplitPoint; if (BasicBlock *SP = Succ->getSinglePredecessor()) { // If the successor only has a single pred, split the top of the successor // block. assert(SP == BB && "CFG broken"); return SplitBlock(Succ, Succ->begin()); } else { // Otherwise, if BB has a single successor, split it at the bottom of the // block. assert(BB->getTerminator()->getNumSuccessors() == 1 && "Should have a single succ!"); return SplitBlock(BB, BB->getTerminator()); } } // RemapInstruction - Convert the instruction operands from referencing the // current values into those specified by ValueMap. // static inline void RemapInstruction(Instruction *I, DenseMap &ValueMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { Value *Op = I->getOperand(op); DenseMap::iterator It = ValueMap.find(Op); if (It != ValueMap.end()) Op = It->second; I->setOperand(op, Op); } } /// CloneLoop - Recursively clone the specified loop and all of its children, /// mapping the blocks with the specified map. static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap &VM, LoopInfo *LI, LPPassManager *LPM) { Loop *New = new Loop(); LPM->insertLoop(New, PL); // Add all of the blocks in L to the new loop. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) if (LI->getLoopFor(*I) == L) New->addBasicBlockToLoop(cast(VM[*I]), *LI); // Add all of the subloops to the new loop. for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) CloneLoop(*I, New, VM, LI, LPM); return New; } /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the /// code immediately before InsertPt. static void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, BasicBlock *TrueDest, BasicBlock *FalseDest, Instruction *InsertPt) { // Insert a conditional branch on LIC to the two preheaders. The original // code is the true version and the new code is the false version. Value *BranchVal = LIC; if (!isa(Val) || Val->getType() != Type::Int1Ty) BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt); else if (Val != ConstantInt::getTrue()) // We want to enter the new loop when the condition is true. std::swap(TrueDest, FalseDest); // Insert the new branch. new BranchInst(TrueDest, FalseDest, BranchVal, InsertPt); } /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable /// condition in it (a cond branch from its header block to its latch block, /// where the path through the loop that doesn't execute its body has no /// side-effects), unswitch it. This doesn't involve any code duplication, just /// moving the conditional branch outside of the loop and updating loop info. void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, BasicBlock *ExitBlock) { DOUT << "loop-unswitch: Trivial-Unswitch loop %" << L->getHeader()->getName() << " [" << L->getBlocks().size() << " blocks] in Function " << L->getHeader()->getParent()->getName() << " on cond: " << *Val << " == " << *Cond << "\n"; // First step, split the preheader, so that we know that there is a safe place // to insert the conditional branch. We will change 'OrigPH' to have a // conditional branch on Cond. BasicBlock *OrigPH = L->getLoopPreheader(); BasicBlock *NewPH = SplitEdge(OrigPH, L->getHeader()); // Now that we have a place to insert the conditional branch, create a place // to branch to: this is the exit block out of the loop that we should // short-circuit to. // Split this block now, so that the loop maintains its exit block, and so // that the jump from the preheader can execute the contents of the exit block // without actually branching to it (the exit block should be dominated by the // loop header, not the preheader). assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin()); // Okay, now we have a position to branch from and a position to branch to, // insert the new conditional branch. EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OrigPH->getTerminator()); OrigPH->getTerminator()->eraseFromParent(); // We need to reprocess this loop, it could be unswitched again. LPM->redoLoop(L); // Now that we know that the loop is never entered when this condition is a // particular value, rewrite the loop with this info. We know that this will // at least eliminate the old branch. RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); ++NumTrivial; } /// VersionLoop - We determined that the loop is profitable to unswitch when LIC /// equal Val. Split it into loop versions and test the condition outside of /// either loop. Return the loops created as Out1/Out2. void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, Loop *L) { Function *F = L->getHeader()->getParent(); DOUT << "loop-unswitch: Unswitching loop %" << L->getHeader()->getName() << " [" << L->getBlocks().size() << " blocks] in Function " << F->getName() << " when '" << *Val << "' == " << *LIC << "\n"; // LoopBlocks contains all of the basic blocks of the loop, including the // preheader of the loop, the body of the loop, and the exit blocks of the // loop, in that order. std::vector LoopBlocks; // First step, split the preheader and exit blocks, and add these blocks to // the LoopBlocks list. BasicBlock *OrigPreheader = L->getLoopPreheader(); LoopBlocks.push_back(SplitEdge(OrigPreheader, L->getHeader())); // We want the loop to come after the preheader, but before the exit blocks. LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); std::vector ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); // Split all of the edges from inside the loop to their exit blocks. Update // the appropriate Phi nodes as we do so. for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *ExitBlock = ExitBlocks[i]; std::vector Preds(pred_begin(ExitBlock), pred_end(ExitBlock)); for (unsigned j = 0, e = Preds.size(); j != e; ++j) { assert(L->contains(Preds[j]) && "All preds of loop exit blocks must be the same loop!"); BasicBlock* MiddleBlock = SplitEdge(Preds[j], ExitBlock); BasicBlock* StartBlock = Preds[j]; BasicBlock* EndBlock; if (MiddleBlock->getSinglePredecessor() == ExitBlock) { EndBlock = MiddleBlock; MiddleBlock = EndBlock->getSinglePredecessor();; } else { EndBlock = ExitBlock; } std::set InsertedPHIs; PHINode* OldLCSSA = 0; for (BasicBlock::iterator I = EndBlock->begin(); (OldLCSSA = dyn_cast(I)); ++I) { Value* OldValue = OldLCSSA->getIncomingValueForBlock(MiddleBlock); PHINode* NewLCSSA = new PHINode(OldLCSSA->getType(), OldLCSSA->getName() + ".us-lcssa", MiddleBlock->getTerminator()); NewLCSSA->addIncoming(OldValue, StartBlock); OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(MiddleBlock), NewLCSSA); InsertedPHIs.insert(NewLCSSA); } BasicBlock::iterator InsertPt = EndBlock->begin(); while (dyn_cast(InsertPt)) ++InsertPt; for (BasicBlock::iterator I = MiddleBlock->begin(); (OldLCSSA = dyn_cast(I)) && InsertedPHIs.count(OldLCSSA) == 0; ++I) { PHINode *NewLCSSA = new PHINode(OldLCSSA->getType(), OldLCSSA->getName() + ".us-lcssa", InsertPt); OldLCSSA->replaceAllUsesWith(NewLCSSA); NewLCSSA->addIncoming(OldLCSSA, MiddleBlock); } } } // The exit blocks may have been changed due to edge splitting, recompute. ExitBlocks.clear(); L->getUniqueExitBlocks(ExitBlocks); // Add exit blocks to the loop blocks. LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); // Next step, clone all of the basic blocks that make up the loop (including // the loop preheader and exit blocks), keeping track of the mapping between // the instructions and blocks. std::vector NewBlocks; NewBlocks.reserve(LoopBlocks.size()); DenseMap ValueMap; for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F); NewBlocks.push_back(New); ValueMap[LoopBlocks[i]] = New; // Keep the BB mapping. } // Splice the newly inserted blocks into the function right before the // original preheader. F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(), NewBlocks[0], F->end()); // Now we create the new Loop object for the versioned loop. Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM); Loop *ParentLoop = L->getParentLoop(); if (ParentLoop) { // Make sure to add the cloned preheader and exit blocks to the parent loop // as well. ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); } for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { BasicBlock *NewExit = cast(ValueMap[ExitBlocks[i]]); // The new exit block should be in the same loop as the old one. if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); assert(NewExit->getTerminator()->getNumSuccessors() == 1 && "Exit block should have been split to have one successor!"); BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); // If the successor of the exit block had PHI nodes, add an entry for // NewExit. PHINode *PN; for (BasicBlock::iterator I = ExitSucc->begin(); (PN = dyn_cast(I)); ++I) { Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); DenseMap::iterator It = ValueMap.find(V); if (It != ValueMap.end()) V = It->second; PN->addIncoming(V, NewExit); } } // Rewrite the code to refer to itself. for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) RemapInstruction(I, ValueMap); // Rewrite the original preheader to select between versions of the loop. BranchInst *OldBR = cast(OrigPreheader->getTerminator()); assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && "Preheader splitting did not work correctly!"); // Emit the new branch that selects between the two versions of this loop. EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR); OldBR->eraseFromParent(); LoopProcessWorklist.push_back(NewLoop); LPM->redoLoop(L); // Now we rewrite the original code to know that the condition is true and the // new code to know that the condition is false. RewriteLoopBodyWithConditionConstant(L , LIC, Val, false); // It's possible that simplifying one loop could cause the other to be // deleted. If so, don't simplify it. if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop) RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true); } /// RemoveFromWorklist - Remove all instances of I from the worklist vector /// specified. static void RemoveFromWorklist(Instruction *I, std::vector &Worklist) { std::vector::iterator WI = std::find(Worklist.begin(), Worklist.end(), I); while (WI != Worklist.end()) { unsigned Offset = WI-Worklist.begin(); Worklist.erase(WI); WI = std::find(Worklist.begin()+Offset, Worklist.end(), I); } } /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the /// program, replacing all uses with V and update the worklist. static void ReplaceUsesOfWith(Instruction *I, Value *V, std::vector &Worklist) { DOUT << "Replace with '" << *V << "': " << *I; // Add uses to the worklist, which may be dead now. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *Use = dyn_cast(I->getOperand(i))) Worklist.push_back(Use); // Add users to the worklist which may be simplified now. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) Worklist.push_back(cast(*UI)); I->replaceAllUsesWith(V); I->eraseFromParent(); RemoveFromWorklist(I, Worklist); ++NumSimplify; } /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop /// information, and remove any dead successors it has. /// void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, std::vector &Worklist) { if (pred_begin(BB) != pred_end(BB)) { // This block isn't dead, since an edge to BB was just removed, see if there // are any easy simplifications we can do now. if (BasicBlock *Pred = BB->getSinglePredecessor()) { // If it has one pred, fold phi nodes in BB. while (isa(BB->begin())) ReplaceUsesOfWith(BB->begin(), cast(BB->begin())->getIncomingValue(0), Worklist); // If this is the header of a loop and the only pred is the latch, we now // have an unreachable loop. if (Loop *L = LI->getLoopFor(BB)) if (L->getHeader() == BB && L->contains(Pred)) { // Remove the branch from the latch to the header block, this makes // the header dead, which will make the latch dead (because the header // dominates the latch). Pred->getTerminator()->eraseFromParent(); new UnreachableInst(Pred); // The loop is now broken, remove it from LI. RemoveLoopFromHierarchy(L); // Reprocess the header, which now IS dead. RemoveBlockIfDead(BB, Worklist); return; } // If pred ends in a uncond branch, add uncond branch to worklist so that // the two blocks will get merged. if (BranchInst *BI = dyn_cast(Pred->getTerminator())) if (BI->isUnconditional()) Worklist.push_back(BI); } return; } DOUT << "Nuking dead block: " << *BB; // Remove the instructions in the basic block from the worklist. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { RemoveFromWorklist(I, Worklist); // Anything that uses the instructions in this basic block should have their // uses replaced with undefs. if (!I->use_empty()) I->replaceAllUsesWith(UndefValue::get(I->getType())); } // If this is the edge to the header block for a loop, remove the loop and // promote all subloops. if (Loop *BBLoop = LI->getLoopFor(BB)) { if (BBLoop->getLoopLatch() == BB) RemoveLoopFromHierarchy(BBLoop); } // Remove the block from the loop info, which removes it from any loops it // was in. LI->removeBlock(BB); // Remove phi node entries in successors for this block. TerminatorInst *TI = BB->getTerminator(); std::vector Succs; for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { Succs.push_back(TI->getSuccessor(i)); TI->getSuccessor(i)->removePredecessor(BB); } // Unique the successors, remove anything with multiple uses. std::sort(Succs.begin(), Succs.end()); Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end()); // Remove the basic block, including all of the instructions contained in it. BB->eraseFromParent(); // Remove successor blocks here that are not dead, so that we know we only // have dead blocks in this list. Nondead blocks have a way of becoming dead, // then getting removed before we revisit them, which is badness. // for (unsigned i = 0; i != Succs.size(); ++i) if (pred_begin(Succs[i]) != pred_end(Succs[i])) { // One exception is loop headers. If this block was the preheader for a // loop, then we DO want to visit the loop so the loop gets deleted. // We know that if the successor is a loop header, that this loop had to // be the preheader: the case where this was the latch block was handled // above and headers can only have two predecessors. if (!LI->isLoopHeader(Succs[i])) { Succs.erase(Succs.begin()+i); --i; } } for (unsigned i = 0, e = Succs.size(); i != e; ++i) RemoveBlockIfDead(Succs[i], Worklist); } /// RemoveLoopFromHierarchy - We have discovered that the specified loop has /// become unwrapped, either because the backedge was deleted, or because the /// edge into the header was removed. If the edge into the header from the /// latch block was removed, the loop is unwrapped but subloops are still alive, /// so they just reparent loops. If the loops are actually dead, they will be /// removed later. void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) { LPM->deleteLoopFromQueue(L); RemoveLoopFromWorklist(L); } // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has // the value specified by Val in the specified loop, or we know it does NOT have // that value. Rewrite any uses of LIC or of properties correlated to it. void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, Constant *Val, bool IsEqual) { assert(!isa(LIC) && "Why are we unswitching on a constant?"); // FIXME: Support correlated properties, like: // for (...) // if (li1 < li2) // ... // if (li1 > li2) // ... // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, // selects, switches. std::vector Users(LIC->use_begin(), LIC->use_end()); std::vector Worklist; // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC // in the loop with the appropriate one directly. if (IsEqual || (isa(Val) && Val->getType() == Type::Int1Ty)) { Value *Replacement; if (IsEqual) Replacement = Val; else Replacement = ConstantInt::get(Type::Int1Ty, !cast(Val)->getZExtValue()); for (unsigned i = 0, e = Users.size(); i != e; ++i) if (Instruction *U = cast(Users[i])) { if (!L->contains(U->getParent())) continue; U->replaceUsesOfWith(LIC, Replacement); Worklist.push_back(U); } } else { // Otherwise, we don't know the precise value of LIC, but we do know that it // is certainly NOT "Val". As such, simplify any uses in the loop that we // can. This case occurs when we unswitch switch statements. for (unsigned i = 0, e = Users.size(); i != e; ++i) if (Instruction *U = cast(Users[i])) { if (!L->contains(U->getParent())) continue; Worklist.push_back(U); // If we know that LIC is not Val, use this info to simplify code. if (SwitchInst *SI = dyn_cast(U)) { for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) { if (SI->getCaseValue(i) == Val) { // Found a dead case value. Don't remove PHI nodes in the // successor if they become single-entry, those PHI nodes may // be in the Users list. // FIXME: This is a hack. We need to keep the successor around // and hooked up so as to preserve the loop structure, because // trying to update it is complicated. So instead we preserve the // loop structure and put the block on an dead code path. BasicBlock* Old = SI->getParent(); BasicBlock* Split = SplitBlock(Old, SI); Instruction* OldTerm = Old->getTerminator(); new BranchInst(Split, SI->getSuccessor(i), ConstantInt::getTrue(), OldTerm); Old->getTerminator()->eraseFromParent(); PHINode *PN; for (BasicBlock::iterator II = SI->getSuccessor(i)->begin(); (PN = dyn_cast(II)); ++II) { Value *InVal = PN->removeIncomingValue(Split, false); PN->addIncoming(InVal, Old); } SI->removeCase(i); break; } } } // TODO: We could do other simplifications, for example, turning // LIC == Val -> false. } } SimplifyCode(Worklist); } /// SimplifyCode - Okay, now that we have simplified some instructions in the /// loop, walk over it and constant prop, dce, and fold control flow where /// possible. Note that this is effectively a very simple loop-structure-aware /// optimizer. During processing of this loop, L could very well be deleted, so /// it must not be used. /// /// FIXME: When the loop optimizer is more mature, separate this out to a new /// pass. /// void LoopUnswitch::SimplifyCode(std::vector &Worklist) { while (!Worklist.empty()) { Instruction *I = Worklist.back(); Worklist.pop_back(); // Simple constant folding. if (Constant *C = ConstantFoldInstruction(I)) { ReplaceUsesOfWith(I, C, Worklist); continue; } // Simple DCE. if (isInstructionTriviallyDead(I)) { DOUT << "Remove dead instruction '" << *I; // Add uses to the worklist, which may be dead now. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *Use = dyn_cast(I->getOperand(i))) Worklist.push_back(Use); I->eraseFromParent(); RemoveFromWorklist(I, Worklist); ++NumSimplify; continue; } // Special case hacks that appear commonly in unswitched code. switch (I->getOpcode()) { case Instruction::Select: if (ConstantInt *CB = dyn_cast(I->getOperand(0))) { ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist); continue; } break; case Instruction::And: if (isa(I->getOperand(0)) && I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS cast(I)->swapOperands(); if (ConstantInt *CB = dyn_cast(I->getOperand(1))) if (CB->getType() == Type::Int1Ty) { if (CB->isOne()) // X & 1 -> X ReplaceUsesOfWith(I, I->getOperand(0), Worklist); else // X & 0 -> 0 ReplaceUsesOfWith(I, I->getOperand(1), Worklist); continue; } break; case Instruction::Or: if (isa(I->getOperand(0)) && I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS cast(I)->swapOperands(); if (ConstantInt *CB = dyn_cast(I->getOperand(1))) if (CB->getType() == Type::Int1Ty) { if (CB->isOne()) // X | 1 -> 1 ReplaceUsesOfWith(I, I->getOperand(1), Worklist); else // X | 0 -> X ReplaceUsesOfWith(I, I->getOperand(0), Worklist); continue; } break; case Instruction::Br: { BranchInst *BI = cast(I); if (BI->isUnconditional()) { // If BI's parent is the only pred of the successor, fold the two blocks // together. BasicBlock *Pred = BI->getParent(); BasicBlock *Succ = BI->getSuccessor(0); BasicBlock *SinglePred = Succ->getSinglePredecessor(); if (!SinglePred) continue; // Nothing to do. assert(SinglePred == Pred && "CFG broken"); DOUT << "Merging blocks: " << Pred->getName() << " <- " << Succ->getName() << "\n"; // Resolve any single entry PHI nodes in Succ. while (PHINode *PN = dyn_cast(Succ->begin())) ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist); // Move all of the successor contents from Succ to Pred. Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), Succ->end()); BI->eraseFromParent(); RemoveFromWorklist(BI, Worklist); // If Succ has any successors with PHI nodes, update them to have // entries coming from Pred instead of Succ. Succ->replaceAllUsesWith(Pred); // Remove Succ from the loop tree. LI->removeBlock(Succ); Succ->eraseFromParent(); ++NumSimplify; } else if (ConstantInt *CB = dyn_cast(BI->getCondition())){ // Conditional branch. Turn it into an unconditional branch, then // remove dead blocks. break; // FIXME: Enable. DOUT << "Folded branch: " << *BI; BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue()); BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue()); DeadSucc->removePredecessor(BI->getParent(), true); Worklist.push_back(new BranchInst(LiveSucc, BI)); BI->eraseFromParent(); RemoveFromWorklist(BI, Worklist); ++NumSimplify; RemoveBlockIfDead(DeadSucc, Worklist); } break; } } } }