//===- X86InstrInfo.td - Describe the X86 Instruction Set --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // X86 specific DAG Nodes. // def SDTIntShiftDOp: SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>]>; def SDTX86CmpTest : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; def SDTX86Cmov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>, SDTCisVT<4, i32>]>; // Unary and binary operator instructions that set EFLAGS as a side-effect. def SDTUnaryArithWithFlags : SDTypeProfile<1, 1, [SDTCisInt<0>]>; def SDTBinaryArithWithFlags : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>]>; def SDTX86BrCond : SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC : SDTypeProfile<1, 2, [SDTCisVT<0, i8>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>, SDTCisVT<2, i8>]>; def SDTX86cas8 : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>; def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>; def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>; def SDTX86RdTsc : SDTypeProfile<0, 0, []>; def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86SegmentBaseAddress : SDTypeProfile<1, 1, [SDTCisPtrTy<0>]>; def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>; def X86bsf : SDNode<"X86ISD::BSF", SDTIntUnaryOp>; def X86bsr : SDNode<"X86ISD::BSR", SDTIntUnaryOp>; def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>; def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>; def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>; def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>; def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>; def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond, [SDNPHasChain]>; def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>; def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore, SDNPMayLoad]>; def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86cas8, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore, SDNPMayLoad]>; def X86AtomAdd64 : SDNode<"X86ISD::ATOMADD64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomSub64 : SDNode<"X86ISD::ATOMSUB64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomOr64 : SDNode<"X86ISD::ATOMOR64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomXor64 : SDNode<"X86ISD::ATOMXOR64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomAnd64 : SDNode<"X86ISD::ATOMAND64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomNand64 : SDNode<"X86ISD::ATOMNAND64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret, [SDNPHasChain, SDNPOptInFlag]>; def X86callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart, [SDNPHasChain, SDNPOutFlag]>; def X86callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def X86call : SDNode<"X86ISD::CALL", SDT_X86Call, [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>; def X86tailcall: SDNode<"X86ISD::TAILCALL", SDT_X86Call, [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>; def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore]>; def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore, SDNPMayLoad]>; def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG",SDTX86RdTsc, [SDNPHasChain, SDNPOutFlag, SDNPSideEffect]>; def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>; def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>; def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def X86SegmentBaseAddress : SDNode<"X86ISD::SegmentBaseAddress", SDT_X86SegmentBaseAddress, []>; def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET, [SDNPHasChain]>; def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET, [SDNPHasChain, SDNPOptInFlag]>; def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags>; def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>; def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags>; def X86umul_flag : SDNode<"X86ISD::UMUL", SDTUnaryArithWithFlags>; def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>; def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>; def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>; //===----------------------------------------------------------------------===// // X86 Operand Definitions. // def i32imm_pcrel : Operand { let PrintMethod = "print_pcrel_imm"; } // A version of ptr_rc which excludes SP, ESP, and RSP. This is used for // the index operand of an address, to conform to x86 encoding restrictions. def ptr_rc_nosp : PointerLikeRegClass<1>; // *mem - Operand definitions for the funky X86 addressing mode operands. // class X86MemOperand : Operand { let PrintMethod = printMethod; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); } def i8mem : X86MemOperand<"printi8mem">; def i16mem : X86MemOperand<"printi16mem">; def i32mem : X86MemOperand<"printi32mem">; def i64mem : X86MemOperand<"printi64mem">; def i128mem : X86MemOperand<"printi128mem">; def i256mem : X86MemOperand<"printi256mem">; def f32mem : X86MemOperand<"printf32mem">; def f64mem : X86MemOperand<"printf64mem">; def f80mem : X86MemOperand<"printf80mem">; def f128mem : X86MemOperand<"printf128mem">; def f256mem : X86MemOperand<"printf256mem">; // A version of i8mem for use on x86-64 that uses GR64_NOREX instead of // plain GR64, so that it doesn't potentially require a REX prefix. def i8mem_NOREX : Operand { let PrintMethod = "printi8mem"; let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm); } def lea32mem : Operand { let PrintMethod = "printlea32mem"; let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm); } def SSECC : Operand { let PrintMethod = "printSSECC"; } def piclabel: Operand { let PrintMethod = "printPICLabel"; } // A couple of more descriptive operand definitions. // 16-bits but only 8 bits are significant. def i16i8imm : Operand; // 32-bits but only 8 bits are significant. def i32i8imm : Operand; // Branch targets have OtherVT type and print as pc-relative values. def brtarget : Operand { let PrintMethod = "print_pcrel_imm"; } def brtarget8 : Operand { let PrintMethod = "print_pcrel_imm"; } //===----------------------------------------------------------------------===// // X86 Complex Pattern Definitions. // // Define X86 specific addressing mode. def addr : ComplexPattern; def lea32addr : ComplexPattern; def tls32addr : ComplexPattern; //===----------------------------------------------------------------------===// // X86 Instruction Predicate Definitions. def HasMMX : Predicate<"Subtarget->hasMMX()">; def HasSSE1 : Predicate<"Subtarget->hasSSE1()">; def HasSSE2 : Predicate<"Subtarget->hasSSE2()">; def HasSSE3 : Predicate<"Subtarget->hasSSE3()">; def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">; def HasSSE41 : Predicate<"Subtarget->hasSSE41()">; def HasSSE42 : Predicate<"Subtarget->hasSSE42()">; def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">; def HasAVX : Predicate<"Subtarget->hasAVX()">; def HasFMA3 : Predicate<"Subtarget->hasFMA3()">; def HasFMA4 : Predicate<"Subtarget->hasFMA4()">; def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">; def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">; def In32BitMode : Predicate<"!Subtarget->is64Bit()">; def In64BitMode : Predicate<"Subtarget->is64Bit()">; def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">; def NotSmallCode : Predicate<"TM.getCodeModel() != CodeModel::Small">; def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">; def OptForSpeed : Predicate<"!OptForSize">; def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">; def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">; //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. // include "X86InstrFormats.td" //===----------------------------------------------------------------------===// // Pattern fragments... // // X86 specific condition code. These correspond to CondCode in // X86InstrInfo.h. They must be kept in synch. def X86_COND_A : PatLeaf<(i8 0)>; // alt. COND_NBE def X86_COND_AE : PatLeaf<(i8 1)>; // alt. COND_NC def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C def X86_COND_BE : PatLeaf<(i8 3)>; // alt. COND_NA def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z def X86_COND_G : PatLeaf<(i8 5)>; // alt. COND_NLE def X86_COND_GE : PatLeaf<(i8 6)>; // alt. COND_NL def X86_COND_L : PatLeaf<(i8 7)>; // alt. COND_NGE def X86_COND_LE : PatLeaf<(i8 8)>; // alt. COND_NG def X86_COND_NE : PatLeaf<(i8 9)>; // alt. COND_NZ def X86_COND_NO : PatLeaf<(i8 10)>; def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO def X86_COND_NS : PatLeaf<(i8 12)>; def X86_COND_O : PatLeaf<(i8 13)>; def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE def X86_COND_S : PatLeaf<(i8 15)>; def i16immSExt8 : PatLeaf<(i16 imm), [{ // i16immSExt8 predicate - True if the 16-bit immediate fits in a 8-bit // sign extended field. return (int16_t)N->getZExtValue() == (int8_t)N->getZExtValue(); }]>; def i32immSExt8 : PatLeaf<(i32 imm), [{ // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit // sign extended field. return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue(); }]>; // Helper fragments for loads. // It's always safe to treat a anyext i16 load as a i32 load if the i16 is // known to be 32-bit aligned or better. Ditto for i8 to i16. def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 2 && !LD->isVolatile(); return false; }]>; def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 2 && !LD->isVolatile(); return false; }]>; def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 4 && !LD->isVolatile(); return false; }]>; def nvloadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; if (LD->isVolatile()) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 4; return false; }]>; def gsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) return PT->getAddressSpace() == 256; return false; }]>; def fsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) return PT->getAddressSpace() == 257; return false; }]>; def loadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr)), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; return true; }]>; def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr)), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; return true; }]>; def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr)), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; return true; }]>; def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr)), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; return true; }]>; def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr)), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; return true; }]>; def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>; def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>; def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>; def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>; def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>; def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>; def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>; def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>; def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>; def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; // An 'and' node with a single use. def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'srl' node with a single use. def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'trunc' node with a single use. def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{ return N->hasOneUse(); }]>; // 'shld' and 'shrd' instruction patterns. Note that even though these have // the srl and shl in their patterns, the C++ code must still check for them, // because predicates are tested before children nodes are explored. def shrd : PatFrag<(ops node:$src1, node:$amt1, node:$src2, node:$amt2), (or (srl node:$src1, node:$amt1), (shl node:$src2, node:$amt2)), [{ assert(N->getOpcode() == ISD::OR); return N->getOperand(0).getOpcode() == ISD::SRL && N->getOperand(1).getOpcode() == ISD::SHL && isa(N->getOperand(0).getOperand(1)) && isa(N->getOperand(1).getOperand(1)) && N->getOperand(0).getConstantOperandVal(1) == N->getValueSizeInBits(0) - N->getOperand(1).getConstantOperandVal(1); }]>; def shld : PatFrag<(ops node:$src1, node:$amt1, node:$src2, node:$amt2), (or (shl node:$src1, node:$amt1), (srl node:$src2, node:$amt2)), [{ assert(N->getOpcode() == ISD::OR); return N->getOperand(0).getOpcode() == ISD::SHL && N->getOperand(1).getOpcode() == ISD::SRL && isa(N->getOperand(0).getOperand(1)) && isa(N->getOperand(1).getOperand(1)) && N->getOperand(0).getConstantOperandVal(1) == N->getValueSizeInBits(0) - N->getOperand(1).getConstantOperandVal(1); }]>; //===----------------------------------------------------------------------===// // Instruction list... // // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [ESP, EFLAGS], Uses = [ESP] in { def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In32BitMode]>; def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In32BitMode]>; } // Nop let neverHasSideEffects = 1 in { def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>; def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero), "nopl\t$zero", []>, TB; } // PIC base let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins piclabel:$label), "call\t$label\n\t" "pop{l}\t$reg", []>; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // Return instructions. let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, FPForm = SpecialFP, FPFormBits = SpecialFP.Value in { def RET : I <0xC3, RawFrm, (outs), (ins variable_ops), "ret", [(X86retflag 0)]>; def RETI : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), "ret\t$amt", [(X86retflag imm:$amt)]>; } // All branches are RawFrm, Void, Branch, and Terminators let isBranch = 1, isTerminator = 1 in class IBr opcode, dag ins, string asm, list pattern> : I; let isBranch = 1, isBarrier = 1 in { def JMP : IBr<0xE9, (ins brtarget:$dst), "jmp\t$dst", [(br bb:$dst)]>; def JMP8 : IBr<0xEB, (ins brtarget8:$dst), "jmp\t$dst", []>; } // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", [(brind GR32:$dst)]>; def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", [(brind (loadi32 addr:$dst))]>; } // Conditional branches let Uses = [EFLAGS] in { // Short conditional jumps def JO8 : IBr<0x70, (ins brtarget8:$dst), "jo\t$dst", []>; def JNO8 : IBr<0x71, (ins brtarget8:$dst), "jno\t$dst", []>; def JB8 : IBr<0x72, (ins brtarget8:$dst), "jb\t$dst", []>; def JAE8 : IBr<0x73, (ins brtarget8:$dst), "jae\t$dst", []>; def JE8 : IBr<0x74, (ins brtarget8:$dst), "je\t$dst", []>; def JNE8 : IBr<0x75, (ins brtarget8:$dst), "jne\t$dst", []>; def JBE8 : IBr<0x76, (ins brtarget8:$dst), "jbe\t$dst", []>; def JA8 : IBr<0x77, (ins brtarget8:$dst), "ja\t$dst", []>; def JS8 : IBr<0x78, (ins brtarget8:$dst), "js\t$dst", []>; def JNS8 : IBr<0x79, (ins brtarget8:$dst), "jns\t$dst", []>; def JP8 : IBr<0x7A, (ins brtarget8:$dst), "jp\t$dst", []>; def JNP8 : IBr<0x7B, (ins brtarget8:$dst), "jnp\t$dst", []>; def JL8 : IBr<0x7C, (ins brtarget8:$dst), "jl\t$dst", []>; def JGE8 : IBr<0x7D, (ins brtarget8:$dst), "jge\t$dst", []>; def JLE8 : IBr<0x7E, (ins brtarget8:$dst), "jle\t$dst", []>; def JG8 : IBr<0x7F, (ins brtarget8:$dst), "jg\t$dst", []>; def JCXZ8 : IBr<0xE3, (ins brtarget8:$dst), "jcxz\t$dst", []>; def JE : IBr<0x84, (ins brtarget:$dst), "je\t$dst", [(X86brcond bb:$dst, X86_COND_E, EFLAGS)]>, TB; def JNE : IBr<0x85, (ins brtarget:$dst), "jne\t$dst", [(X86brcond bb:$dst, X86_COND_NE, EFLAGS)]>, TB; def JL : IBr<0x8C, (ins brtarget:$dst), "jl\t$dst", [(X86brcond bb:$dst, X86_COND_L, EFLAGS)]>, TB; def JLE : IBr<0x8E, (ins brtarget:$dst), "jle\t$dst", [(X86brcond bb:$dst, X86_COND_LE, EFLAGS)]>, TB; def JG : IBr<0x8F, (ins brtarget:$dst), "jg\t$dst", [(X86brcond bb:$dst, X86_COND_G, EFLAGS)]>, TB; def JGE : IBr<0x8D, (ins brtarget:$dst), "jge\t$dst", [(X86brcond bb:$dst, X86_COND_GE, EFLAGS)]>, TB; def JB : IBr<0x82, (ins brtarget:$dst), "jb\t$dst", [(X86brcond bb:$dst, X86_COND_B, EFLAGS)]>, TB; def JBE : IBr<0x86, (ins brtarget:$dst), "jbe\t$dst", [(X86brcond bb:$dst, X86_COND_BE, EFLAGS)]>, TB; def JA : IBr<0x87, (ins brtarget:$dst), "ja\t$dst", [(X86brcond bb:$dst, X86_COND_A, EFLAGS)]>, TB; def JAE : IBr<0x83, (ins brtarget:$dst), "jae\t$dst", [(X86brcond bb:$dst, X86_COND_AE, EFLAGS)]>, TB; def JS : IBr<0x88, (ins brtarget:$dst), "js\t$dst", [(X86brcond bb:$dst, X86_COND_S, EFLAGS)]>, TB; def JNS : IBr<0x89, (ins brtarget:$dst), "jns\t$dst", [(X86brcond bb:$dst, X86_COND_NS, EFLAGS)]>, TB; def JP : IBr<0x8A, (ins brtarget:$dst), "jp\t$dst", [(X86brcond bb:$dst, X86_COND_P, EFLAGS)]>, TB; def JNP : IBr<0x8B, (ins brtarget:$dst), "jnp\t$dst", [(X86brcond bb:$dst, X86_COND_NP, EFLAGS)]>, TB; def JO : IBr<0x80, (ins brtarget:$dst), "jo\t$dst", [(X86brcond bb:$dst, X86_COND_O, EFLAGS)]>, TB; def JNO : IBr<0x81, (ins brtarget:$dst), "jno\t$dst", [(X86brcond bb:$dst, X86_COND_NO, EFLAGS)]>, TB; } // Uses = [EFLAGS] //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. Uses for argument // registers are added manually. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in { def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm_pcrel:$dst,variable_ops), "call\t$dst", []>; def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops), "call\t{*}$dst", [(X86call GR32:$dst)]>; def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops), "call\t{*}$dst", [(X86call (loadi32 addr:$dst))]>; } // Tail call stuff. def TAILCALL : I<0, Pseudo, (outs), (ins), "#TAILCALL", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TCRETURNdi : I<0, Pseudo, (outs), (ins i32imm:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TCRETURNri : I<0, Pseudo, (outs), (ins GR32:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPd : IBr<0xE9, (ins i32imm_pcrel:$dst), "jmp\t$dst # TAILCALL", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPr : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst # TAILCALL", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp\t{*}$dst # TAILCALL", []>; //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in def LEAVE : I<0xC9, RawFrm, (outs), (ins), "leave", []>; let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in { let mayLoad = 1 in def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>; let mayStore = 1 in def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>; } let Defs = [ESP], Uses = [ESP], neverHasSideEffects = 1, mayStore = 1 in { def PUSH32i8 : Ii8<0x6a, RawFrm, (outs), (ins i8imm:$imm), "push{l}\t$imm", []>; def PUSH32i16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), "push{l}\t$imm", []>; def PUSH32i32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm), "push{l}\t$imm", []>; } let Defs = [ESP, EFLAGS], Uses = [ESP], mayLoad = 1, neverHasSideEffects=1 in def POPFD : I<0x9D, RawFrm, (outs), (ins), "popf", []>; let Defs = [ESP], Uses = [ESP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in def PUSHFD : I<0x9C, RawFrm, (outs), (ins), "pushf", []>; let isTwoAddress = 1 in // GR32 = bswap GR32 def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "bswap{l}\t$dst", [(set GR32:$dst, (bswap GR32:$src))]>, TB; // Bit scan instructions. let Defs = [EFLAGS] in { def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (X86bsf GR16:$src)), (implicit EFLAGS)]>, TB; def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (X86bsf (loadi16 addr:$src))), (implicit EFLAGS)]>, TB; def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (X86bsf GR32:$src)), (implicit EFLAGS)]>, TB; def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (X86bsf (loadi32 addr:$src))), (implicit EFLAGS)]>, TB; def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (X86bsr GR16:$src)), (implicit EFLAGS)]>, TB; def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (X86bsr (loadi16 addr:$src))), (implicit EFLAGS)]>, TB; def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (X86bsr GR32:$src)), (implicit EFLAGS)]>, TB; def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (X86bsr (loadi32 addr:$src))), (implicit EFLAGS)]>, TB; } // Defs = [EFLAGS] let neverHasSideEffects = 1 in def LEA16r : I<0x8D, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src), "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize; let isReMaterializable = 1 in def LEA32r : I<0x8D, MRMSrcMem, (outs GR32:$dst), (ins lea32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>; let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI] in { def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)]>, REP; def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)]>, REP, OpSize; def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)]>, REP; } let Defs = [ECX,EDI], Uses = [AL,ECX,EDI] in def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)]>, REP; let Defs = [ECX,EDI], Uses = [AX,ECX,EDI] in def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)]>, REP, OpSize; let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI] in def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)]>, REP; let Defs = [RAX, RDX] in def RDTSC : I<0x31, RawFrm, (outs), (ins), "rdtsc", [(X86rdtsc)]>, TB; let isBarrier = 1, hasCtrlDep = 1 in { def TRAP : I<0x0B, RawFrm, (outs), (ins), "ud2", [(trap)]>, TB; } //===----------------------------------------------------------------------===// // Input/Output Instructions... // let Defs = [AL], Uses = [DX] in def IN8rr : I<0xEC, RawFrm, (outs), (ins), "in{b}\t{%dx, %al|%AL, %DX}", []>; let Defs = [AX], Uses = [DX] in def IN16rr : I<0xED, RawFrm, (outs), (ins), "in{w}\t{%dx, %ax|%AX, %DX}", []>, OpSize; let Defs = [EAX], Uses = [DX] in def IN32rr : I<0xED, RawFrm, (outs), (ins), "in{l}\t{%dx, %eax|%EAX, %DX}", []>; let Defs = [AL] in def IN8ri : Ii8<0xE4, RawFrm, (outs), (ins i16i8imm:$port), "in{b}\t{$port, %al|%AL, $port}", []>; let Defs = [AX] in def IN16ri : Ii8<0xE5, RawFrm, (outs), (ins i16i8imm:$port), "in{w}\t{$port, %ax|%AX, $port}", []>, OpSize; let Defs = [EAX] in def IN32ri : Ii8<0xE5, RawFrm, (outs), (ins i16i8imm:$port), "in{l}\t{$port, %eax|%EAX, $port}", []>; let Uses = [DX, AL] in def OUT8rr : I<0xEE, RawFrm, (outs), (ins), "out{b}\t{%al, %dx|%DX, %AL}", []>; let Uses = [DX, AX] in def OUT16rr : I<0xEF, RawFrm, (outs), (ins), "out{w}\t{%ax, %dx|%DX, %AX}", []>, OpSize; let Uses = [DX, EAX] in def OUT32rr : I<0xEF, RawFrm, (outs), (ins), "out{l}\t{%eax, %dx|%DX, %EAX}", []>; let Uses = [AL] in def OUT8ir : Ii8<0xE6, RawFrm, (outs), (ins i16i8imm:$port), "out{b}\t{%al, $port|$port, %AL}", []>; let Uses = [AX] in def OUT16ir : Ii8<0xE7, RawFrm, (outs), (ins i16i8imm:$port), "out{w}\t{%ax, $port|$port, %AX}", []>, OpSize; let Uses = [EAX] in def OUT32ir : Ii8<0xE7, RawFrm, (outs), (ins i16i8imm:$port), "out{l}\t{%eax, $port|$port, %EAX}", []>; //===----------------------------------------------------------------------===// // Move Instructions... // let neverHasSideEffects = 1 in { def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", []>; def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, imm:$src)]>; def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, imm:$src)]>, OpSize; def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, imm:$src)]>; } def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store (i8 imm:$src), addr:$dst)]>; def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store (i16 imm:$src), addr:$dst)]>, OpSize; def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store (i32 imm:$src), addr:$dst)]>; let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in { def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, (loadi8 addr:$src))]>; def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (loadi16 addr:$src))]>, OpSize; def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (loadi32 addr:$src))]>; } def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store GR8:$src, addr:$dst)]>; def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store GR16:$src, addr:$dst)]>, OpSize; def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store GR32:$src, addr:$dst)]>; // Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so // that they can be used for copying and storing h registers, which can't be // encoded when a REX prefix is present. let neverHasSideEffects = 1 in def MOV8rr_NOREX : I<0x88, MRMDestReg, (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>; let mayStore = 1 in def MOV8mr_NOREX : I<0x88, MRMDestMem, (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>; let mayLoad = 1, canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in def MOV8rm_NOREX : I<0x8A, MRMSrcMem, (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>; //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication let Defs = [AL,AH,EFLAGS], Uses = [AL] in def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]>; // AL,AH = AL*GR8 let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), "mul{w}\t$src", []>, OpSize; // AX,DX = AX*GR16 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), "mul{l}\t$src", []>; // EAX,EDX = EAX*GR32 let Defs = [AL,AH,EFLAGS], Uses = [AL] in def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, (loadi8 addr:$src))), (implicit EFLAGS)]>; // AL,AH = AL*[mem8] let mayLoad = 1, neverHasSideEffects = 1 in { let Defs = [AX,DX,EFLAGS], Uses = [AX] in def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), "mul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), "mul{l}\t$src", []>; // EAX,EDX = EAX*[mem32] } let neverHasSideEffects = 1 in { let Defs = [AL,AH,EFLAGS], Uses = [AL] in def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>; // AL,AH = AL*GR8 let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>, OpSize; // AX,DX = AX*GR16 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>; // EAX,EDX = EAX*GR32 let mayLoad = 1 in { let Defs = [AL,AH,EFLAGS], Uses = [AL] in def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), "imul{b}\t$src", []>; // AL,AH = AL*[mem8] let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16] let Defs = [EAX,EDX], Uses = [EAX] in def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), "imul{l}\t$src", []>; // EAX,EDX = EAX*[mem32] } } // neverHasSideEffects // unsigned division/remainder let Defs = [AL,AH,EFLAGS], Uses = [AX] in def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "div{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX "div{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX "div{l}\t$src", []>; let mayLoad = 1 in { let Defs = [AL,AH,EFLAGS], Uses = [AX] in def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH "div{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX "div{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "div{l}\t$src", []>; } // Signed division/remainder. let Defs = [AL,AH,EFLAGS], Uses = [AX] in def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "idiv{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX "idiv{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX "idiv{l}\t$src", []>; let mayLoad = 1, mayLoad = 1 in { let Defs = [AL,AH,EFLAGS], Uses = [AX] in def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH "idiv{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX "idiv{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "idiv{l}\t$src", []>; } //===----------------------------------------------------------------------===// // Two address Instructions. // let isTwoAddress = 1 in { // Conditional moves let Uses = [EFLAGS] in { let isCommutable = 1 in { def CMOVB16rr : I<0x42, MRMSrcReg, // if , TB, OpSize; def CMOVB32rr : I<0x42, MRMSrcReg, // if , TB; def CMOVAE16rr: I<0x43, MRMSrcReg, // if >=u, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovae\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_AE, EFLAGS))]>, TB, OpSize; def CMOVAE32rr: I<0x43, MRMSrcReg, // if >=u, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovae\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_AE, EFLAGS))]>, TB; def CMOVE16rr : I<0x44, MRMSrcReg, // if ==, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmove\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_E, EFLAGS))]>, TB, OpSize; def CMOVE32rr : I<0x44, MRMSrcReg, // if ==, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmove\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_E, EFLAGS))]>, TB; def CMOVNE16rr: I<0x45, MRMSrcReg, // if !=, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovne\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NE, EFLAGS))]>, TB, OpSize; def CMOVNE32rr: I<0x45, MRMSrcReg, // if !=, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovne\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NE, EFLAGS))]>, TB; def CMOVBE16rr: I<0x46, MRMSrcReg, // if <=u, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovbe\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_BE, EFLAGS))]>, TB, OpSize; def CMOVBE32rr: I<0x46, MRMSrcReg, // if <=u, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovbe\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_BE, EFLAGS))]>, TB; def CMOVA16rr : I<0x47, MRMSrcReg, // if >u, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmova\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_A, EFLAGS))]>, TB, OpSize; def CMOVA32rr : I<0x47, MRMSrcReg, // if >u, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmova\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_A, EFLAGS))]>, TB; def CMOVL16rr : I<0x4C, MRMSrcReg, // if , TB, OpSize; def CMOVL32rr : I<0x4C, MRMSrcReg, // if , TB; def CMOVGE16rr: I<0x4D, MRMSrcReg, // if >=s, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovge\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_GE, EFLAGS))]>, TB, OpSize; def CMOVGE32rr: I<0x4D, MRMSrcReg, // if >=s, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovge\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_GE, EFLAGS))]>, TB; def CMOVLE16rr: I<0x4E, MRMSrcReg, // if <=s, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovle\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_LE, EFLAGS))]>, TB, OpSize; def CMOVLE32rr: I<0x4E, MRMSrcReg, // if <=s, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovle\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_LE, EFLAGS))]>, TB; def CMOVG16rr : I<0x4F, MRMSrcReg, // if >s, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovg\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_G, EFLAGS))]>, TB, OpSize; def CMOVG32rr : I<0x4F, MRMSrcReg, // if >s, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovg\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_G, EFLAGS))]>, TB; def CMOVS16rr : I<0x48, MRMSrcReg, // if signed, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovs\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_S, EFLAGS))]>, TB, OpSize; def CMOVS32rr : I<0x48, MRMSrcReg, // if signed, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovs\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_S, EFLAGS))]>, TB; def CMOVNS16rr: I<0x49, MRMSrcReg, // if !signed, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovns\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NS, EFLAGS))]>, TB, OpSize; def CMOVNS32rr: I<0x49, MRMSrcReg, // if !signed, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovns\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NS, EFLAGS))]>, TB; def CMOVP16rr : I<0x4A, MRMSrcReg, // if parity, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovp\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_P, EFLAGS))]>, TB, OpSize; def CMOVP32rr : I<0x4A, MRMSrcReg, // if parity, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovp\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_P, EFLAGS))]>, TB; def CMOVNP16rr : I<0x4B, MRMSrcReg, // if !parity, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovnp\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NP, EFLAGS))]>, TB, OpSize; def CMOVNP32rr : I<0x4B, MRMSrcReg, // if !parity, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovnp\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NP, EFLAGS))]>, TB; def CMOVO16rr : I<0x40, MRMSrcReg, // if overflow, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovo\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_O, EFLAGS))]>, TB, OpSize; def CMOVO32rr : I<0x40, MRMSrcReg, // if overflow, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovo\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_O, EFLAGS))]>, TB; def CMOVNO16rr : I<0x41, MRMSrcReg, // if !overflow, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovno\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NO, EFLAGS))]>, TB, OpSize; def CMOVNO32rr : I<0x41, MRMSrcReg, // if !overflow, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovno\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NO, EFLAGS))]>, TB; } // isCommutable = 1 def CMOVB16rm : I<0x42, MRMSrcMem, // if , TB, OpSize; def CMOVB32rm : I<0x42, MRMSrcMem, // if , TB; def CMOVAE16rm: I<0x43, MRMSrcMem, // if >=u, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovae\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_AE, EFLAGS))]>, TB, OpSize; def CMOVAE32rm: I<0x43, MRMSrcMem, // if >=u, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovae\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_AE, EFLAGS))]>, TB; def CMOVE16rm : I<0x44, MRMSrcMem, // if ==, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmove\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_E, EFLAGS))]>, TB, OpSize; def CMOVE32rm : I<0x44, MRMSrcMem, // if ==, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmove\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_E, EFLAGS))]>, TB; def CMOVNE16rm: I<0x45, MRMSrcMem, // if !=, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovne\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NE, EFLAGS))]>, TB, OpSize; def CMOVNE32rm: I<0x45, MRMSrcMem, // if !=, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovne\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NE, EFLAGS))]>, TB; def CMOVBE16rm: I<0x46, MRMSrcMem, // if <=u, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovbe\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_BE, EFLAGS))]>, TB, OpSize; def CMOVBE32rm: I<0x46, MRMSrcMem, // if <=u, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovbe\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_BE, EFLAGS))]>, TB; def CMOVA16rm : I<0x47, MRMSrcMem, // if >u, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmova\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_A, EFLAGS))]>, TB, OpSize; def CMOVA32rm : I<0x47, MRMSrcMem, // if >u, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmova\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_A, EFLAGS))]>, TB; def CMOVL16rm : I<0x4C, MRMSrcMem, // if , TB, OpSize; def CMOVL32rm : I<0x4C, MRMSrcMem, // if , TB; def CMOVGE16rm: I<0x4D, MRMSrcMem, // if >=s, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovge\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_GE, EFLAGS))]>, TB, OpSize; def CMOVGE32rm: I<0x4D, MRMSrcMem, // if >=s, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovge\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_GE, EFLAGS))]>, TB; def CMOVLE16rm: I<0x4E, MRMSrcMem, // if <=s, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovle\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_LE, EFLAGS))]>, TB, OpSize; def CMOVLE32rm: I<0x4E, MRMSrcMem, // if <=s, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovle\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_LE, EFLAGS))]>, TB; def CMOVG16rm : I<0x4F, MRMSrcMem, // if >s, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovg\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_G, EFLAGS))]>, TB, OpSize; def CMOVG32rm : I<0x4F, MRMSrcMem, // if >s, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovg\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_G, EFLAGS))]>, TB; def CMOVS16rm : I<0x48, MRMSrcMem, // if signed, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovs\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_S, EFLAGS))]>, TB, OpSize; def CMOVS32rm : I<0x48, MRMSrcMem, // if signed, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovs\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_S, EFLAGS))]>, TB; def CMOVNS16rm: I<0x49, MRMSrcMem, // if !signed, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovns\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NS, EFLAGS))]>, TB, OpSize; def CMOVNS32rm: I<0x49, MRMSrcMem, // if !signed, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovns\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NS, EFLAGS))]>, TB; def CMOVP16rm : I<0x4A, MRMSrcMem, // if parity, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovp\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_P, EFLAGS))]>, TB, OpSize; def CMOVP32rm : I<0x4A, MRMSrcMem, // if parity, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovp\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_P, EFLAGS))]>, TB; def CMOVNP16rm : I<0x4B, MRMSrcMem, // if !parity, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovnp\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NP, EFLAGS))]>, TB, OpSize; def CMOVNP32rm : I<0x4B, MRMSrcMem, // if !parity, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovnp\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NP, EFLAGS))]>, TB; def CMOVO16rm : I<0x40, MRMSrcMem, // if overflow, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovo\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_O, EFLAGS))]>, TB, OpSize; def CMOVO32rm : I<0x40, MRMSrcMem, // if overflow, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovo\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_O, EFLAGS))]>, TB; def CMOVNO16rm : I<0x41, MRMSrcMem, // if !overflow, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovno\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NO, EFLAGS))]>, TB, OpSize; def CMOVNO32rm : I<0x41, MRMSrcMem, // if !overflow, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovno\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NO, EFLAGS))]>, TB; } // Uses = [EFLAGS] // unary instructions let CodeSize = 2 in { let Defs = [EFLAGS] in { def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src), "neg{b}\t$dst", [(set GR8:$dst, (ineg GR8:$src)), (implicit EFLAGS)]>; def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src), "neg{w}\t$dst", [(set GR16:$dst, (ineg GR16:$src)), (implicit EFLAGS)]>, OpSize; def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src), "neg{l}\t$dst", [(set GR32:$dst, (ineg GR32:$src)), (implicit EFLAGS)]>; let isTwoAddress = 0 in { def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), "neg{b}\t$dst", [(store (ineg (loadi8 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), "neg{w}\t$dst", [(store (ineg (loadi16 addr:$dst)), addr:$dst), (implicit EFLAGS)]>, OpSize; def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), "neg{l}\t$dst", [(store (ineg (loadi32 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; } } // Defs = [EFLAGS] // Match xor -1 to not. Favors these over a move imm + xor to save code size. let AddedComplexity = 15 in { def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src), "not{b}\t$dst", [(set GR8:$dst, (not GR8:$src))]>; def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src), "not{w}\t$dst", [(set GR16:$dst, (not GR16:$src))]>, OpSize; def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src), "not{l}\t$dst", [(set GR32:$dst, (not GR32:$src))]>; } let isTwoAddress = 0 in { def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), "not{b}\t$dst", [(store (not (loadi8 addr:$dst)), addr:$dst)]>; def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), "not{w}\t$dst", [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize; def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), "not{l}\t$dst", [(store (not (loadi32 addr:$dst)), addr:$dst)]>; } } // CodeSize // TODO: inc/dec is slow for P4, but fast for Pentium-M. let Defs = [EFLAGS] in { let CodeSize = 2 in def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), "inc{b}\t$dst", [(set GR8:$dst, (add GR8:$src, 1)), (implicit EFLAGS)]>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst", [(set GR16:$dst, (add GR16:$src, 1)), (implicit EFLAGS)]>, OpSize, Requires<[In32BitMode]>; def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "inc{l}\t$dst", [(set GR32:$dst, (add GR32:$src, 1)), (implicit EFLAGS)]>, Requires<[In32BitMode]>; } let isTwoAddress = 0, CodeSize = 2 in { def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", [(store (add (loadi8 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>; def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", [(store (add (loadi16 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, OpSize, Requires<[In32BitMode]>; def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", [(store (add (loadi32 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, Requires<[In32BitMode]>; } let CodeSize = 2 in def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), "dec{b}\t$dst", [(set GR8:$dst, (add GR8:$src, -1)), (implicit EFLAGS)]>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), "dec{w}\t$dst", [(set GR16:$dst, (add GR16:$src, -1)), (implicit EFLAGS)]>, OpSize, Requires<[In32BitMode]>; def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst", [(set GR32:$dst, (add GR32:$src, -1)), (implicit EFLAGS)]>, Requires<[In32BitMode]>; } let isTwoAddress = 0, CodeSize = 2 in { def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", [(store (add (loadi8 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>; def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", [(store (add (loadi16 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, OpSize, Requires<[In32BitMode]>; def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, Requires<[In32BitMode]>; } } // Defs = [EFLAGS] // Logical operators... let Defs = [EFLAGS] in { let isCommutable = 1 in { // X = AND Y, Z --> X = AND Z, Y def AND8rr : I<0x20, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "and{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (and GR8:$src1, GR8:$src2)), (implicit EFLAGS)]>; def AND16rr : I<0x21, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (and GR16:$src1, GR16:$src2)), (implicit EFLAGS)]>, OpSize; def AND32rr : I<0x21, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (and GR32:$src1, GR32:$src2)), (implicit EFLAGS)]>; } def AND8rm : I<0x22, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "and{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (and GR8:$src1, (loadi8 addr:$src2))), (implicit EFLAGS)]>; def AND16rm : I<0x23, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (and GR16:$src1, (loadi16 addr:$src2))), (implicit EFLAGS)]>, OpSize; def AND32rm : I<0x23, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (and GR32:$src1, (loadi32 addr:$src2))), (implicit EFLAGS)]>; def AND8ri : Ii8<0x80, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm :$src2), "and{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (and GR8:$src1, imm:$src2)), (implicit EFLAGS)]>; def AND16ri : Ii16<0x81, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (and GR16:$src1, imm:$src2)), (implicit EFLAGS)]>, OpSize; def AND32ri : Ii32<0x81, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (and GR32:$src1, imm:$src2)), (implicit EFLAGS)]>; def AND16ri8 : Ii8<0x83, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (and GR16:$src1, i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def AND32ri8 : Ii8<0x83, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (and GR32:$src1, i32immSExt8:$src2)), (implicit EFLAGS)]>; let isTwoAddress = 0 in { def AND8mr : I<0x20, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "and{b}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR8:$src), addr:$dst), (implicit EFLAGS)]>; def AND16mr : I<0x21, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "and{w}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR16:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def AND32mr : I<0x21, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "and{l}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR32:$src), addr:$dst), (implicit EFLAGS)]>; def AND8mi : Ii8<0x80, MRM4m, (outs), (ins i8mem :$dst, i8imm :$src), "and{b}\t{$src, $dst|$dst, $src}", [(store (and (loadi8 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def AND16mi : Ii16<0x81, MRM4m, (outs), (ins i16mem:$dst, i16imm:$src), "and{w}\t{$src, $dst|$dst, $src}", [(store (and (loadi16 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def AND32mi : Ii32<0x81, MRM4m, (outs), (ins i32mem:$dst, i32imm:$src), "and{l}\t{$src, $dst|$dst, $src}", [(store (and (loadi32 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def AND16mi8 : Ii8<0x83, MRM4m, (outs), (ins i16mem:$dst, i16i8imm :$src), "and{w}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), i16immSExt8:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def AND32mi8 : Ii8<0x83, MRM4m, (outs), (ins i32mem:$dst, i32i8imm :$src), "and{l}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), i32immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; } let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y def OR8rr : I<0x08, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "or{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (or GR8:$src1, GR8:$src2)), (implicit EFLAGS)]>; def OR16rr : I<0x09, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (or GR16:$src1, GR16:$src2)), (implicit EFLAGS)]>, OpSize; def OR32rr : I<0x09, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, GR32:$src2)), (implicit EFLAGS)]>; } def OR8rm : I<0x0A, MRMSrcMem , (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "or{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (or GR8:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def OR16rm : I<0x0B, MRMSrcMem , (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (or GR16:$src1, (load addr:$src2))), (implicit EFLAGS)]>, OpSize; def OR32rm : I<0x0B, MRMSrcMem , (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def OR8ri : Ii8 <0x80, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "or{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (or GR8:$src1, imm:$src2)), (implicit EFLAGS)]>; def OR16ri : Ii16<0x81, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (or GR16:$src1, imm:$src2)), (implicit EFLAGS)]>, OpSize; def OR32ri : Ii32<0x81, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, imm:$src2)), (implicit EFLAGS)]>; def OR16ri8 : Ii8<0x83, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (or GR16:$src1, i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def OR32ri8 : Ii8<0x83, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (or GR32:$src1, i32immSExt8:$src2)), (implicit EFLAGS)]>; let isTwoAddress = 0 in { def OR8mr : I<0x08, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "or{b}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR8:$src), addr:$dst), (implicit EFLAGS)]>; def OR16mr : I<0x09, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "or{w}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR16:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def OR32mr : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "or{l}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR32:$src), addr:$dst), (implicit EFLAGS)]>; def OR8mi : Ii8<0x80, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src), "or{b}\t{$src, $dst|$dst, $src}", [(store (or (loadi8 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def OR16mi : Ii16<0x81, MRM1m, (outs), (ins i16mem:$dst, i16imm:$src), "or{w}\t{$src, $dst|$dst, $src}", [(store (or (loadi16 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def OR32mi : Ii32<0x81, MRM1m, (outs), (ins i32mem:$dst, i32imm:$src), "or{l}\t{$src, $dst|$dst, $src}", [(store (or (loadi32 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def OR16mi8 : Ii8<0x83, MRM1m, (outs), (ins i16mem:$dst, i16i8imm:$src), "or{w}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i16immSExt8:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def OR32mi8 : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$src), "or{l}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i32immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; } // isTwoAddress = 0 let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y def XOR8rr : I<0x30, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (xor GR8:$src1, GR8:$src2)), (implicit EFLAGS)]>; def XOR16rr : I<0x31, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (xor GR16:$src1, GR16:$src2)), (implicit EFLAGS)]>, OpSize; def XOR32rr : I<0x31, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (xor GR32:$src1, GR32:$src2)), (implicit EFLAGS)]>; } // isCommutable = 1 def XOR8rm : I<0x32, MRMSrcMem , (outs GR8 :$dst), (ins GR8:$src1, i8mem :$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (xor GR8:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def XOR16rm : I<0x33, MRMSrcMem , (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (xor GR16:$src1, (load addr:$src2))), (implicit EFLAGS)]>, OpSize; def XOR32rm : I<0x33, MRMSrcMem , (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (xor GR32:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def XOR8ri : Ii8<0x80, MRM6r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (xor GR8:$src1, imm:$src2)), (implicit EFLAGS)]>; def XOR16ri : Ii16<0x81, MRM6r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (xor GR16:$src1, imm:$src2)), (implicit EFLAGS)]>, OpSize; def XOR32ri : Ii32<0x81, MRM6r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (xor GR32:$src1, imm:$src2)), (implicit EFLAGS)]>; def XOR16ri8 : Ii8<0x83, MRM6r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (xor GR16:$src1, i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def XOR32ri8 : Ii8<0x83, MRM6r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (xor GR32:$src1, i32immSExt8:$src2)), (implicit EFLAGS)]>; let isTwoAddress = 0 in { def XOR8mr : I<0x30, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "xor{b}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR8:$src), addr:$dst), (implicit EFLAGS)]>; def XOR16mr : I<0x31, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "xor{w}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR16:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def XOR32mr : I<0x31, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "xor{l}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR32:$src), addr:$dst), (implicit EFLAGS)]>; def XOR8mi : Ii8<0x80, MRM6m, (outs), (ins i8mem :$dst, i8imm :$src), "xor{b}\t{$src, $dst|$dst, $src}", [(store (xor (loadi8 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def XOR16mi : Ii16<0x81, MRM6m, (outs), (ins i16mem:$dst, i16imm:$src), "xor{w}\t{$src, $dst|$dst, $src}", [(store (xor (loadi16 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def XOR32mi : Ii32<0x81, MRM6m, (outs), (ins i32mem:$dst, i32imm:$src), "xor{l}\t{$src, $dst|$dst, $src}", [(store (xor (loadi32 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def XOR16mi8 : Ii8<0x83, MRM6m, (outs), (ins i16mem:$dst, i16i8imm :$src), "xor{w}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i16immSExt8:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def XOR32mi8 : Ii8<0x83, MRM6m, (outs), (ins i32mem:$dst, i32i8imm :$src), "xor{l}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i32immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; } // isTwoAddress = 0 } // Defs = [EFLAGS] // Shift instructions let Defs = [EFLAGS] in { let Uses = [CL] in { def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src), "shl{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (shl GR8:$src, CL))]>; def SHL16rCL : I<0xD3, MRM4r, (outs GR16:$dst), (ins GR16:$src), "shl{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (shl GR16:$src, CL))]>, OpSize; def SHL32rCL : I<0xD3, MRM4r, (outs GR32:$dst), (ins GR32:$src), "shl{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (shl GR32:$src, CL))]>; } // Uses = [CL] def SHL8ri : Ii8<0xC0, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "shl{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (shl GR8:$src1, (i8 imm:$src2)))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def SHL16ri : Ii8<0xC1, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "shl{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (shl GR16:$src1, (i8 imm:$src2)))]>, OpSize; def SHL32ri : Ii8<0xC1, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "shl{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (shl GR32:$src1, (i8 imm:$src2)))]>; // NOTE: We don't use shifts of a register by one, because 'add reg,reg' is // cheaper. } // isConvertibleToThreeAddress = 1 let isTwoAddress = 0 in { let Uses = [CL] in { def SHL8mCL : I<0xD2, MRM4m, (outs), (ins i8mem :$dst), "shl{b}\t{%cl, $dst|$dst, CL}", [(store (shl (loadi8 addr:$dst), CL), addr:$dst)]>; def SHL16mCL : I<0xD3, MRM4m, (outs), (ins i16mem:$dst), "shl{w}\t{%cl, $dst|$dst, CL}", [(store (shl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def SHL32mCL : I<0xD3, MRM4m, (outs), (ins i32mem:$dst), "shl{l}\t{%cl, $dst|$dst, CL}", [(store (shl (loadi32 addr:$dst), CL), addr:$dst)]>; } def SHL8mi : Ii8<0xC0, MRM4m, (outs), (ins i8mem :$dst, i8imm:$src), "shl{b}\t{$src, $dst|$dst, $src}", [(store (shl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHL16mi : Ii8<0xC1, MRM4m, (outs), (ins i16mem:$dst, i8imm:$src), "shl{w}\t{$src, $dst|$dst, $src}", [(store (shl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SHL32mi : Ii8<0xC1, MRM4m, (outs), (ins i32mem:$dst, i8imm:$src), "shl{l}\t{$src, $dst|$dst, $src}", [(store (shl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Shift by 1 def SHL8m1 : I<0xD0, MRM4m, (outs), (ins i8mem :$dst), "shl{b}\t$dst", [(store (shl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def SHL16m1 : I<0xD1, MRM4m, (outs), (ins i16mem:$dst), "shl{w}\t$dst", [(store (shl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def SHL32m1 : I<0xD1, MRM4m, (outs), (ins i32mem:$dst), "shl{l}\t$dst", [(store (shl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } let Uses = [CL] in { def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src), "shr{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (srl GR8:$src, CL))]>; def SHR16rCL : I<0xD3, MRM5r, (outs GR16:$dst), (ins GR16:$src), "shr{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (srl GR16:$src, CL))]>, OpSize; def SHR32rCL : I<0xD3, MRM5r, (outs GR32:$dst), (ins GR32:$src), "shr{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (srl GR32:$src, CL))]>; } def SHR8ri : Ii8<0xC0, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "shr{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (srl GR8:$src1, (i8 imm:$src2)))]>; def SHR16ri : Ii8<0xC1, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "shr{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (srl GR16:$src1, (i8 imm:$src2)))]>, OpSize; def SHR32ri : Ii8<0xC1, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "shr{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (srl GR32:$src1, (i8 imm:$src2)))]>; // Shift by 1 def SHR8r1 : I<0xD0, MRM5r, (outs GR8:$dst), (ins GR8:$src1), "shr{b}\t$dst", [(set GR8:$dst, (srl GR8:$src1, (i8 1)))]>; def SHR16r1 : I<0xD1, MRM5r, (outs GR16:$dst), (ins GR16:$src1), "shr{w}\t$dst", [(set GR16:$dst, (srl GR16:$src1, (i8 1)))]>, OpSize; def SHR32r1 : I<0xD1, MRM5r, (outs GR32:$dst), (ins GR32:$src1), "shr{l}\t$dst", [(set GR32:$dst, (srl GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def SHR8mCL : I<0xD2, MRM5m, (outs), (ins i8mem :$dst), "shr{b}\t{%cl, $dst|$dst, CL}", [(store (srl (loadi8 addr:$dst), CL), addr:$dst)]>; def SHR16mCL : I<0xD3, MRM5m, (outs), (ins i16mem:$dst), "shr{w}\t{%cl, $dst|$dst, CL}", [(store (srl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def SHR32mCL : I<0xD3, MRM5m, (outs), (ins i32mem:$dst), "shr{l}\t{%cl, $dst|$dst, CL}", [(store (srl (loadi32 addr:$dst), CL), addr:$dst)]>; } def SHR8mi : Ii8<0xC0, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src), "shr{b}\t{$src, $dst|$dst, $src}", [(store (srl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHR16mi : Ii8<0xC1, MRM5m, (outs), (ins i16mem:$dst, i8imm:$src), "shr{w}\t{$src, $dst|$dst, $src}", [(store (srl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SHR32mi : Ii8<0xC1, MRM5m, (outs), (ins i32mem:$dst, i8imm:$src), "shr{l}\t{$src, $dst|$dst, $src}", [(store (srl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Shift by 1 def SHR8m1 : I<0xD0, MRM5m, (outs), (ins i8mem :$dst), "shr{b}\t$dst", [(store (srl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def SHR16m1 : I<0xD1, MRM5m, (outs), (ins i16mem:$dst), "shr{w}\t$dst", [(store (srl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,OpSize; def SHR32m1 : I<0xD1, MRM5m, (outs), (ins i32mem:$dst), "shr{l}\t$dst", [(store (srl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } let Uses = [CL] in { def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src), "sar{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (sra GR8:$src, CL))]>; def SAR16rCL : I<0xD3, MRM7r, (outs GR16:$dst), (ins GR16:$src), "sar{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (sra GR16:$src, CL))]>, OpSize; def SAR32rCL : I<0xD3, MRM7r, (outs GR32:$dst), (ins GR32:$src), "sar{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (sra GR32:$src, CL))]>; } def SAR8ri : Ii8<0xC0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "sar{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sra GR8:$src1, (i8 imm:$src2)))]>; def SAR16ri : Ii8<0xC1, MRM7r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "sar{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sra GR16:$src1, (i8 imm:$src2)))]>, OpSize; def SAR32ri : Ii8<0xC1, MRM7r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "sar{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sra GR32:$src1, (i8 imm:$src2)))]>; // Shift by 1 def SAR8r1 : I<0xD0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1), "sar{b}\t$dst", [(set GR8:$dst, (sra GR8:$src1, (i8 1)))]>; def SAR16r1 : I<0xD1, MRM7r, (outs GR16:$dst), (ins GR16:$src1), "sar{w}\t$dst", [(set GR16:$dst, (sra GR16:$src1, (i8 1)))]>, OpSize; def SAR32r1 : I<0xD1, MRM7r, (outs GR32:$dst), (ins GR32:$src1), "sar{l}\t$dst", [(set GR32:$dst, (sra GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def SAR8mCL : I<0xD2, MRM7m, (outs), (ins i8mem :$dst), "sar{b}\t{%cl, $dst|$dst, CL}", [(store (sra (loadi8 addr:$dst), CL), addr:$dst)]>; def SAR16mCL : I<0xD3, MRM7m, (outs), (ins i16mem:$dst), "sar{w}\t{%cl, $dst|$dst, CL}", [(store (sra (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def SAR32mCL : I<0xD3, MRM7m, (outs), (ins i32mem:$dst), "sar{l}\t{%cl, $dst|$dst, CL}", [(store (sra (loadi32 addr:$dst), CL), addr:$dst)]>; } def SAR8mi : Ii8<0xC0, MRM7m, (outs), (ins i8mem :$dst, i8imm:$src), "sar{b}\t{$src, $dst|$dst, $src}", [(store (sra (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SAR16mi : Ii8<0xC1, MRM7m, (outs), (ins i16mem:$dst, i8imm:$src), "sar{w}\t{$src, $dst|$dst, $src}", [(store (sra (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SAR32mi : Ii8<0xC1, MRM7m, (outs), (ins i32mem:$dst, i8imm:$src), "sar{l}\t{$src, $dst|$dst, $src}", [(store (sra (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Shift by 1 def SAR8m1 : I<0xD0, MRM7m, (outs), (ins i8mem :$dst), "sar{b}\t$dst", [(store (sra (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def SAR16m1 : I<0xD1, MRM7m, (outs), (ins i16mem:$dst), "sar{w}\t$dst", [(store (sra (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def SAR32m1 : I<0xD1, MRM7m, (outs), (ins i32mem:$dst), "sar{l}\t$dst", [(store (sra (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } // Rotate instructions // FIXME: provide shorter instructions when imm8 == 1 let Uses = [CL] in { def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), "rol{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (rotl GR8:$src, CL))]>; def ROL16rCL : I<0xD3, MRM0r, (outs GR16:$dst), (ins GR16:$src), "rol{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (rotl GR16:$src, CL))]>, OpSize; def ROL32rCL : I<0xD3, MRM0r, (outs GR32:$dst), (ins GR32:$src), "rol{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (rotl GR32:$src, CL))]>; } def ROL8ri : Ii8<0xC0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "rol{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (rotl GR8:$src1, (i8 imm:$src2)))]>; def ROL16ri : Ii8<0xC1, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "rol{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (rotl GR16:$src1, (i8 imm:$src2)))]>, OpSize; def ROL32ri : Ii8<0xC1, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "rol{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$src2)))]>; // Rotate by 1 def ROL8r1 : I<0xD0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), "rol{b}\t$dst", [(set GR8:$dst, (rotl GR8:$src1, (i8 1)))]>; def ROL16r1 : I<0xD1, MRM0r, (outs GR16:$dst), (ins GR16:$src1), "rol{w}\t$dst", [(set GR16:$dst, (rotl GR16:$src1, (i8 1)))]>, OpSize; def ROL32r1 : I<0xD1, MRM0r, (outs GR32:$dst), (ins GR32:$src1), "rol{l}\t$dst", [(set GR32:$dst, (rotl GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def ROL8mCL : I<0xD2, MRM0m, (outs), (ins i8mem :$dst), "rol{b}\t{%cl, $dst|$dst, CL}", [(store (rotl (loadi8 addr:$dst), CL), addr:$dst)]>; def ROL16mCL : I<0xD3, MRM0m, (outs), (ins i16mem:$dst), "rol{w}\t{%cl, $dst|$dst, CL}", [(store (rotl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def ROL32mCL : I<0xD3, MRM0m, (outs), (ins i32mem:$dst), "rol{l}\t{%cl, $dst|$dst, CL}", [(store (rotl (loadi32 addr:$dst), CL), addr:$dst)]>; } def ROL8mi : Ii8<0xC0, MRM0m, (outs), (ins i8mem :$dst, i8imm:$src), "rol{b}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def ROL16mi : Ii8<0xC1, MRM0m, (outs), (ins i16mem:$dst, i8imm:$src), "rol{w}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def ROL32mi : Ii8<0xC1, MRM0m, (outs), (ins i32mem:$dst, i8imm:$src), "rol{l}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Rotate by 1 def ROL8m1 : I<0xD0, MRM0m, (outs), (ins i8mem :$dst), "rol{b}\t$dst", [(store (rotl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def ROL16m1 : I<0xD1, MRM0m, (outs), (ins i16mem:$dst), "rol{w}\t$dst", [(store (rotl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def ROL32m1 : I<0xD1, MRM0m, (outs), (ins i32mem:$dst), "rol{l}\t$dst", [(store (rotl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } let Uses = [CL] in { def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), "ror{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (rotr GR8:$src, CL))]>; def ROR16rCL : I<0xD3, MRM1r, (outs GR16:$dst), (ins GR16:$src), "ror{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (rotr GR16:$src, CL))]>, OpSize; def ROR32rCL : I<0xD3, MRM1r, (outs GR32:$dst), (ins GR32:$src), "ror{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (rotr GR32:$src, CL))]>; } def ROR8ri : Ii8<0xC0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "ror{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (rotr GR8:$src1, (i8 imm:$src2)))]>; def ROR16ri : Ii8<0xC1, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "ror{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (rotr GR16:$src1, (i8 imm:$src2)))]>, OpSize; def ROR32ri : Ii8<0xC1, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "ror{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$src2)))]>; // Rotate by 1 def ROR8r1 : I<0xD0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), "ror{b}\t$dst", [(set GR8:$dst, (rotr GR8:$src1, (i8 1)))]>; def ROR16r1 : I<0xD1, MRM1r, (outs GR16:$dst), (ins GR16:$src1), "ror{w}\t$dst", [(set GR16:$dst, (rotr GR16:$src1, (i8 1)))]>, OpSize; def ROR32r1 : I<0xD1, MRM1r, (outs GR32:$dst), (ins GR32:$src1), "ror{l}\t$dst", [(set GR32:$dst, (rotr GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def ROR8mCL : I<0xD2, MRM1m, (outs), (ins i8mem :$dst), "ror{b}\t{%cl, $dst|$dst, CL}", [(store (rotr (loadi8 addr:$dst), CL), addr:$dst)]>; def ROR16mCL : I<0xD3, MRM1m, (outs), (ins i16mem:$dst), "ror{w}\t{%cl, $dst|$dst, CL}", [(store (rotr (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def ROR32mCL : I<0xD3, MRM1m, (outs), (ins i32mem:$dst), "ror{l}\t{%cl, $dst|$dst, CL}", [(store (rotr (loadi32 addr:$dst), CL), addr:$dst)]>; } def ROR8mi : Ii8<0xC0, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src), "ror{b}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def ROR16mi : Ii8<0xC1, MRM1m, (outs), (ins i16mem:$dst, i8imm:$src), "ror{w}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def ROR32mi : Ii8<0xC1, MRM1m, (outs), (ins i32mem:$dst, i8imm:$src), "ror{l}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Rotate by 1 def ROR8m1 : I<0xD0, MRM1m, (outs), (ins i8mem :$dst), "ror{b}\t$dst", [(store (rotr (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def ROR16m1 : I<0xD1, MRM1m, (outs), (ins i16mem:$dst), "ror{w}\t$dst", [(store (rotr (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def ROR32m1 : I<0xD1, MRM1m, (outs), (ins i32mem:$dst), "ror{l}\t$dst", [(store (rotr (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } // Double shift instructions (generalizations of rotate) let Uses = [CL] in { def SHLD32rrCL : I<0xA5, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, CL))]>, TB; def SHRD32rrCL : I<0xAD, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "shrd{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, CL))]>, TB; def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, CL))]>, TB, OpSize; def SHRD16rrCL : I<0xAD, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "shrd{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, CL))]>, TB, OpSize; } let isCommutable = 1 in { // These instructions commute to each other. def SHLD32rri8 : Ii8<0xA4, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$src3), "shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, (i8 imm:$src3)))]>, TB; def SHRD32rri8 : Ii8<0xAC, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$src3), "shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, (i8 imm:$src3)))]>, TB; def SHLD16rri8 : Ii8<0xA4, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$src3), "shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, (i8 imm:$src3)))]>, TB, OpSize; def SHRD16rri8 : Ii8<0xAC, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$src3), "shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, (i8 imm:$src3)))]>, TB, OpSize; } let isTwoAddress = 0 in { let Uses = [CL] in { def SHLD32mrCL : I<0xA5, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shld (loadi32 addr:$dst), GR32:$src2, CL), addr:$dst)]>, TB; def SHRD32mrCL : I<0xAD, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "shrd{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shrd (loadi32 addr:$dst), GR32:$src2, CL), addr:$dst)]>, TB; } def SHLD32mri8 : Ii8<0xA4, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3), "shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi32 addr:$dst), GR32:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; def SHRD32mri8 : Ii8<0xAC, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3), "shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi32 addr:$dst), GR32:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; let Uses = [CL] in { def SHLD16mrCL : I<0xA5, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shld (loadi16 addr:$dst), GR16:$src2, CL), addr:$dst)]>, TB, OpSize; def SHRD16mrCL : I<0xAD, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "shrd{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shrd (loadi16 addr:$dst), GR16:$src2, CL), addr:$dst)]>, TB, OpSize; } def SHLD16mri8 : Ii8<0xA4, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3), "shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi16 addr:$dst), GR16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; def SHRD16mri8 : Ii8<0xAC, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3), "shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi16 addr:$dst), GR16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; } } // Defs = [EFLAGS] // Arithmetic. let Defs = [EFLAGS] in { let isCommutable = 1 in { // X = ADD Y, Z --> X = ADD Z, Y // Register-Register Addition def ADD8rr : I<0x00, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (add GR8:$src1, GR8:$src2)), (implicit EFLAGS)]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. // Register-Register Addition def ADD16rr : I<0x01, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (add GR16:$src1, GR16:$src2)), (implicit EFLAGS)]>, OpSize; def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, GR32:$src2)), (implicit EFLAGS)]>; } // end isConvertibleToThreeAddress } // end isCommutable // Register-Memory Addition def ADD8rm : I<0x02, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (add GR8:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def ADD16rm : I<0x03, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (add GR16:$src1, (load addr:$src2))), (implicit EFLAGS)]>, OpSize; def ADD32rm : I<0x03, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, (load addr:$src2))), (implicit EFLAGS)]>; // Register-Integer Addition def ADD8ri : Ii8<0x80, MRM0r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (add GR8:$src1, imm:$src2)), (implicit EFLAGS)]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. // Register-Integer Addition def ADD16ri : Ii16<0x81, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (add GR16:$src1, imm:$src2)), (implicit EFLAGS)]>, OpSize; def ADD32ri : Ii32<0x81, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, imm:$src2)), (implicit EFLAGS)]>; def ADD16ri8 : Ii8<0x83, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (add GR16:$src1, i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def ADD32ri8 : Ii8<0x83, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, i32immSExt8:$src2)), (implicit EFLAGS)]>; } let isTwoAddress = 0 in { // Memory-Register Addition def ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR8:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR16:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR32:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(store (add (loadi8 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(store (add (loadi16 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(store (add (loadi32 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i16immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i32immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>; } let Uses = [EFLAGS] in { let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y def ADC8rr : I<0x10, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (adde GR8:$src1, GR8:$src2))]>; def ADC16rr : I<0x11, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, GR16:$src2))]>, OpSize; def ADC32rr : I<0x11, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, GR32:$src2))]>; } def ADC8rm : I<0x12, MRMSrcMem , (outs GR8:$dst), (ins GR8:$src1, i8mem:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (adde GR8:$src1, (load addr:$src2)))]>; def ADC16rm : I<0x13, MRMSrcMem , (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, (load addr:$src2)))]>, OpSize; def ADC32rm : I<0x13, MRMSrcMem , (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, (load addr:$src2)))]>; def ADC8ri : Ii8<0x80, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (adde GR8:$src1, imm:$src2))]>; def ADC16ri : Ii16<0x81, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, imm:$src2))]>, OpSize; def ADC16ri8 : Ii8<0x83, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, i16immSExt8:$src2))]>, OpSize; def ADC32ri : Ii32<0x81, MRM2r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, imm:$src2))]>; def ADC32ri8 : Ii8<0x83, MRM2r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def ADC8mr : I<0x10, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR8:$src2), addr:$dst)]>; def ADC16mr : I<0x11, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR16:$src2), addr:$dst)]>, OpSize; def ADC32mr : I<0x11, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR32:$src2), addr:$dst)]>; def ADC8mi : Ii8<0x80, MRM2m, (outs), (ins i8mem:$dst, i8imm:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(store (adde (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def ADC16mi : Ii16<0x81, MRM2m, (outs), (ins i16mem:$dst, i16imm:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(store (adde (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def ADC16mi8 : Ii8<0x83, MRM2m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def ADC32mi : Ii32<0x81, MRM2m, (outs), (ins i32mem:$dst, i32imm:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(store (adde (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def ADC32mi8 : Ii8<0x83, MRM2m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; } } // Uses = [EFLAGS] // Register-Register Subtraction def SUB8rr : I<0x28, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sub GR8:$src1, GR8:$src2)), (implicit EFLAGS)]>; def SUB16rr : I<0x29, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sub GR16:$src1, GR16:$src2)), (implicit EFLAGS)]>, OpSize; def SUB32rr : I<0x29, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sub GR32:$src1, GR32:$src2)), (implicit EFLAGS)]>; // Register-Memory Subtraction def SUB8rm : I<0x2A, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sub GR8:$src1, (load addr:$src2))), (implicit EFLAGS)]>; def SUB16rm : I<0x2B, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sub GR16:$src1, (load addr:$src2))), (implicit EFLAGS)]>, OpSize; def SUB32rm : I<0x2B, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sub GR32:$src1, (load addr:$src2))), (implicit EFLAGS)]>; // Register-Integer Subtraction def SUB8ri : Ii8 <0x80, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sub GR8:$src1, imm:$src2)), (implicit EFLAGS)]>; def SUB16ri : Ii16<0x81, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sub GR16:$src1, imm:$src2)), (implicit EFLAGS)]>, OpSize; def SUB32ri : Ii32<0x81, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sub GR32:$src1, imm:$src2)), (implicit EFLAGS)]>; def SUB16ri8 : Ii8<0x83, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sub GR16:$src1, i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def SUB32ri8 : Ii8<0x83, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sub GR32:$src1, i32immSExt8:$src2)), (implicit EFLAGS)]>; let isTwoAddress = 0 in { // Memory-Register Subtraction def SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR8:$src2), addr:$dst), (implicit EFLAGS)]>; def SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR16:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR32:$src2), addr:$dst), (implicit EFLAGS)]>; // Memory-Integer Subtraction def SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(store (sub (loadi8 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>; def SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(store (sub (loadi16 addr:$dst), imm:$src2),addr:$dst), (implicit EFLAGS)]>, OpSize; def SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(store (sub (loadi32 addr:$dst), imm:$src2),addr:$dst), (implicit EFLAGS)]>; def SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i16immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i32immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>; } let Uses = [EFLAGS] in { def SBB8rr : I<0x18, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sube GR8:$src1, GR8:$src2))]>; def SBB16rr : I<0x19, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, GR16:$src2))]>, OpSize; def SBB32rr : I<0x19, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, GR32:$src2))]>; let isTwoAddress = 0 in { def SBB8mr : I<0x18, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR8:$src2), addr:$dst)]>; def SBB16mr : I<0x19, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR16:$src2), addr:$dst)]>, OpSize; def SBB32mr : I<0x19, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR32:$src2), addr:$dst)]>; def SBB8mi : Ii32<0x80, MRM3m, (outs), (ins i8mem:$dst, i8imm:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(store (sube (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def SBB16mi : Ii16<0x81, MRM3m, (outs), (ins i16mem:$dst, i16imm:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(store (sube (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def SBB16mi8 : Ii8<0x83, MRM3m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def SBB32mi : Ii32<0x81, MRM3m, (outs), (ins i32mem:$dst, i32imm:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(store (sube (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def SBB32mi8 : Ii8<0x83, MRM3m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; } def SBB8rm : I<0x1A, MRMSrcMem, (outs GR8:$dst), (ins GR8:$src1, i8mem:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sube GR8:$src1, (load addr:$src2)))]>; def SBB16rm : I<0x1B, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, (load addr:$src2)))]>, OpSize; def SBB32rm : I<0x1B, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, (load addr:$src2)))]>; def SBB8ri : Ii8<0x80, MRM3r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sube GR8:$src1, imm:$src2))]>; def SBB16ri : Ii16<0x81, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, imm:$src2))]>, OpSize; def SBB16ri8 : Ii8<0x83, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, i16immSExt8:$src2))]>, OpSize; def SBB32ri : Ii32<0x81, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, imm:$src2))]>; def SBB32ri8 : Ii8<0x83, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, i32immSExt8:$src2))]>; } // Uses = [EFLAGS] } // Defs = [EFLAGS] let Defs = [EFLAGS] in { let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y // Register-Register Signed Integer Multiply def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (mul GR16:$src1, GR16:$src2)), (implicit EFLAGS)]>, TB, OpSize; def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (mul GR32:$src1, GR32:$src2)), (implicit EFLAGS)]>, TB; } // Register-Memory Signed Integer Multiply def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (mul GR16:$src1, (load addr:$src2))), (implicit EFLAGS)]>, TB, OpSize; def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (mul GR32:$src1, (load addr:$src2))), (implicit EFLAGS)]>, TB; } // Defs = [EFLAGS] } // end Two Address instructions // Suprisingly enough, these are not two address instructions! let Defs = [EFLAGS] in { // Register-Integer Signed Integer Multiply def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, (mul GR16:$src1, imm:$src2)), (implicit EFLAGS)]>, OpSize; def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (mul GR32:$src1, imm:$src2)), (implicit EFLAGS)]>; def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, (mul GR16:$src1, i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (mul GR32:$src1, i32immSExt8:$src2)), (implicit EFLAGS)]>; // Memory-Integer Signed Integer Multiply def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, (mul (load addr:$src1), imm:$src2)), (implicit EFLAGS)]>, OpSize; def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (mul (load addr:$src1), imm:$src2)), (implicit EFLAGS)]>; def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, (mul (load addr:$src1), i16immSExt8:$src2)), (implicit EFLAGS)]>, OpSize; def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (mul (load addr:$src1), i32immSExt8:$src2)), (implicit EFLAGS)]>; } // Defs = [EFLAGS] //===----------------------------------------------------------------------===// // Test instructions are just like AND, except they don't generate a result. // let Defs = [EFLAGS] in { let isCommutable = 1 in { // TEST X, Y --> TEST Y, X def TEST8rr : I<0x84, MRMDestReg, (outs), (ins GR8:$src1, GR8:$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and_su GR8:$src1, GR8:$src2), 0), (implicit EFLAGS)]>; def TEST16rr : I<0x85, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and_su GR16:$src1, GR16:$src2), 0), (implicit EFLAGS)]>, OpSize; def TEST32rr : I<0x85, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and_su GR32:$src1, GR32:$src2), 0), (implicit EFLAGS)]>; } def TEST8rm : I<0x84, MRMSrcMem, (outs), (ins GR8 :$src1, i8mem :$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and GR8:$src1, (loadi8 addr:$src2)), 0), (implicit EFLAGS)]>; def TEST16rm : I<0x85, MRMSrcMem, (outs), (ins GR16:$src1, i16mem:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and GR16:$src1, (loadi16 addr:$src2)), 0), (implicit EFLAGS)]>, OpSize; def TEST32rm : I<0x85, MRMSrcMem, (outs), (ins GR32:$src1, i32mem:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and GR32:$src1, (loadi32 addr:$src2)), 0), (implicit EFLAGS)]>; def TEST8ri : Ii8 <0xF6, MRM0r, // flags = GR8 & imm8 (outs), (ins GR8:$src1, i8imm:$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and_su GR8:$src1, imm:$src2), 0), (implicit EFLAGS)]>; def TEST16ri : Ii16<0xF7, MRM0r, // flags = GR16 & imm16 (outs), (ins GR16:$src1, i16imm:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and_su GR16:$src1, imm:$src2), 0), (implicit EFLAGS)]>, OpSize; def TEST32ri : Ii32<0xF7, MRM0r, // flags = GR32 & imm32 (outs), (ins GR32:$src1, i32imm:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and_su GR32:$src1, imm:$src2), 0), (implicit EFLAGS)]>; def TEST8mi : Ii8 <0xF6, MRM0m, // flags = [mem8] & imm8 (outs), (ins i8mem:$src1, i8imm:$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and (loadi8 addr:$src1), imm:$src2), 0), (implicit EFLAGS)]>; def TEST16mi : Ii16<0xF7, MRM0m, // flags = [mem16] & imm16 (outs), (ins i16mem:$src1, i16imm:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and (loadi16 addr:$src1), imm:$src2), 0), (implicit EFLAGS)]>, OpSize; def TEST32mi : Ii32<0xF7, MRM0m, // flags = [mem32] & imm32 (outs), (ins i32mem:$src1, i32imm:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (and (loadi32 addr:$src1), imm:$src2), 0), (implicit EFLAGS)]>; } // Defs = [EFLAGS] // Condition code ops, incl. set if equal/not equal/... let Defs = [EFLAGS], Uses = [AH], neverHasSideEffects = 1 in def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", []>; // flags = AH let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", []>; // AH = flags let Uses = [EFLAGS] in { def SETEr : I<0x94, MRM0r, (outs GR8 :$dst), (ins), "sete\t$dst", [(set GR8:$dst, (X86setcc X86_COND_E, EFLAGS))]>, TB; // GR8 = == def SETEm : I<0x94, MRM0m, (outs), (ins i8mem:$dst), "sete\t$dst", [(store (X86setcc X86_COND_E, EFLAGS), addr:$dst)]>, TB; // [mem8] = == def SETNEr : I<0x95, MRM0r, (outs GR8 :$dst), (ins), "setne\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NE, EFLAGS))]>, TB; // GR8 = != def SETNEm : I<0x95, MRM0m, (outs), (ins i8mem:$dst), "setne\t$dst", [(store (X86setcc X86_COND_NE, EFLAGS), addr:$dst)]>, TB; // [mem8] = != def SETLr : I<0x9C, MRM0r, (outs GR8 :$dst), (ins), "setl\t$dst", [(set GR8:$dst, (X86setcc X86_COND_L, EFLAGS))]>, TB; // GR8 = < signed def SETLm : I<0x9C, MRM0m, (outs), (ins i8mem:$dst), "setl\t$dst", [(store (X86setcc X86_COND_L, EFLAGS), addr:$dst)]>, TB; // [mem8] = < signed def SETGEr : I<0x9D, MRM0r, (outs GR8 :$dst), (ins), "setge\t$dst", [(set GR8:$dst, (X86setcc X86_COND_GE, EFLAGS))]>, TB; // GR8 = >= signed def SETGEm : I<0x9D, MRM0m, (outs), (ins i8mem:$dst), "setge\t$dst", [(store (X86setcc X86_COND_GE, EFLAGS), addr:$dst)]>, TB; // [mem8] = >= signed def SETLEr : I<0x9E, MRM0r, (outs GR8 :$dst), (ins), "setle\t$dst", [(set GR8:$dst, (X86setcc X86_COND_LE, EFLAGS))]>, TB; // GR8 = <= signed def SETLEm : I<0x9E, MRM0m, (outs), (ins i8mem:$dst), "setle\t$dst", [(store (X86setcc X86_COND_LE, EFLAGS), addr:$dst)]>, TB; // [mem8] = <= signed def SETGr : I<0x9F, MRM0r, (outs GR8 :$dst), (ins), "setg\t$dst", [(set GR8:$dst, (X86setcc X86_COND_G, EFLAGS))]>, TB; // GR8 = > signed def SETGm : I<0x9F, MRM0m, (outs), (ins i8mem:$dst), "setg\t$dst", [(store (X86setcc X86_COND_G, EFLAGS), addr:$dst)]>, TB; // [mem8] = > signed def SETBr : I<0x92, MRM0r, (outs GR8 :$dst), (ins), "setb\t$dst", [(set GR8:$dst, (X86setcc X86_COND_B, EFLAGS))]>, TB; // GR8 = < unsign def SETBm : I<0x92, MRM0m, (outs), (ins i8mem:$dst), "setb\t$dst", [(store (X86setcc X86_COND_B, EFLAGS), addr:$dst)]>, TB; // [mem8] = < unsign def SETAEr : I<0x93, MRM0r, (outs GR8 :$dst), (ins), "setae\t$dst", [(set GR8:$dst, (X86setcc X86_COND_AE, EFLAGS))]>, TB; // GR8 = >= unsign def SETAEm : I<0x93, MRM0m, (outs), (ins i8mem:$dst), "setae\t$dst", [(store (X86setcc X86_COND_AE, EFLAGS), addr:$dst)]>, TB; // [mem8] = >= unsign def SETBEr : I<0x96, MRM0r, (outs GR8 :$dst), (ins), "setbe\t$dst", [(set GR8:$dst, (X86setcc X86_COND_BE, EFLAGS))]>, TB; // GR8 = <= unsign def SETBEm : I<0x96, MRM0m, (outs), (ins i8mem:$dst), "setbe\t$dst", [(store (X86setcc X86_COND_BE, EFLAGS), addr:$dst)]>, TB; // [mem8] = <= unsign def SETAr : I<0x97, MRM0r, (outs GR8 :$dst), (ins), "seta\t$dst", [(set GR8:$dst, (X86setcc X86_COND_A, EFLAGS))]>, TB; // GR8 = > signed def SETAm : I<0x97, MRM0m, (outs), (ins i8mem:$dst), "seta\t$dst", [(store (X86setcc X86_COND_A, EFLAGS), addr:$dst)]>, TB; // [mem8] = > signed def SETSr : I<0x98, MRM0r, (outs GR8 :$dst), (ins), "sets\t$dst", [(set GR8:$dst, (X86setcc X86_COND_S, EFLAGS))]>, TB; // GR8 = def SETSm : I<0x98, MRM0m, (outs), (ins i8mem:$dst), "sets\t$dst", [(store (X86setcc X86_COND_S, EFLAGS), addr:$dst)]>, TB; // [mem8] = def SETNSr : I<0x99, MRM0r, (outs GR8 :$dst), (ins), "setns\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NS, EFLAGS))]>, TB; // GR8 = ! def SETNSm : I<0x99, MRM0m, (outs), (ins i8mem:$dst), "setns\t$dst", [(store (X86setcc X86_COND_NS, EFLAGS), addr:$dst)]>, TB; // [mem8] = ! def SETPr : I<0x9A, MRM0r, (outs GR8 :$dst), (ins), "setp\t$dst", [(set GR8:$dst, (X86setcc X86_COND_P, EFLAGS))]>, TB; // GR8 = parity def SETPm : I<0x9A, MRM0m, (outs), (ins i8mem:$dst), "setp\t$dst", [(store (X86setcc X86_COND_P, EFLAGS), addr:$dst)]>, TB; // [mem8] = parity def SETNPr : I<0x9B, MRM0r, (outs GR8 :$dst), (ins), "setnp\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NP, EFLAGS))]>, TB; // GR8 = not parity def SETNPm : I<0x9B, MRM0m, (outs), (ins i8mem:$dst), "setnp\t$dst", [(store (X86setcc X86_COND_NP, EFLAGS), addr:$dst)]>, TB; // [mem8] = not parity def SETOr : I<0x90, MRM0r, (outs GR8 :$dst), (ins), "seto\t$dst", [(set GR8:$dst, (X86setcc X86_COND_O, EFLAGS))]>, TB; // GR8 = overflow def SETOm : I<0x90, MRM0m, (outs), (ins i8mem:$dst), "seto\t$dst", [(store (X86setcc X86_COND_O, EFLAGS), addr:$dst)]>, TB; // [mem8] = overflow def SETNOr : I<0x91, MRM0r, (outs GR8 :$dst), (ins), "setno\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NO, EFLAGS))]>, TB; // GR8 = not overflow def SETNOm : I<0x91, MRM0m, (outs), (ins i8mem:$dst), "setno\t$dst", [(store (X86setcc X86_COND_NO, EFLAGS), addr:$dst)]>, TB; // [mem8] = not overflow } // Uses = [EFLAGS] // Integer comparisons let Defs = [EFLAGS] in { def CMP8rr : I<0x38, MRMDestReg, (outs), (ins GR8 :$src1, GR8 :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR8:$src1, GR8:$src2), (implicit EFLAGS)]>; def CMP16rr : I<0x39, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR16:$src1, GR16:$src2), (implicit EFLAGS)]>, OpSize; def CMP32rr : I<0x39, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR32:$src1, GR32:$src2), (implicit EFLAGS)]>; def CMP8mr : I<0x38, MRMDestMem, (outs), (ins i8mem :$src1, GR8 :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi8 addr:$src1), GR8:$src2), (implicit EFLAGS)]>; def CMP16mr : I<0x39, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi16 addr:$src1), GR16:$src2), (implicit EFLAGS)]>, OpSize; def CMP32mr : I<0x39, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi32 addr:$src1), GR32:$src2), (implicit EFLAGS)]>; def CMP8rm : I<0x3A, MRMSrcMem, (outs), (ins GR8 :$src1, i8mem :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR8:$src1, (loadi8 addr:$src2)), (implicit EFLAGS)]>; def CMP16rm : I<0x3B, MRMSrcMem, (outs), (ins GR16:$src1, i16mem:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR16:$src1, (loadi16 addr:$src2)), (implicit EFLAGS)]>, OpSize; def CMP32rm : I<0x3B, MRMSrcMem, (outs), (ins GR32:$src1, i32mem:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR32:$src1, (loadi32 addr:$src2)), (implicit EFLAGS)]>; def CMP8ri : Ii8<0x80, MRM7r, (outs), (ins GR8:$src1, i8imm:$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR8:$src1, imm:$src2), (implicit EFLAGS)]>; def CMP16ri : Ii16<0x81, MRM7r, (outs), (ins GR16:$src1, i16imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR16:$src1, imm:$src2), (implicit EFLAGS)]>, OpSize; def CMP32ri : Ii32<0x81, MRM7r, (outs), (ins GR32:$src1, i32imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR32:$src1, imm:$src2), (implicit EFLAGS)]>; def CMP8mi : Ii8 <0x80, MRM7m, (outs), (ins i8mem :$src1, i8imm :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi8 addr:$src1), imm:$src2), (implicit EFLAGS)]>; def CMP16mi : Ii16<0x81, MRM7m, (outs), (ins i16mem:$src1, i16imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi16 addr:$src1), imm:$src2), (implicit EFLAGS)]>, OpSize; def CMP32mi : Ii32<0x81, MRM7m, (outs), (ins i32mem:$src1, i32imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi32 addr:$src1), imm:$src2), (implicit EFLAGS)]>; def CMP16ri8 : Ii8<0x83, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR16:$src1, i16immSExt8:$src2), (implicit EFLAGS)]>, OpSize; def CMP16mi8 : Ii8<0x83, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi16 addr:$src1), i16immSExt8:$src2), (implicit EFLAGS)]>, OpSize; def CMP32mi8 : Ii8<0x83, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp (loadi32 addr:$src1), i32immSExt8:$src2), (implicit EFLAGS)]>; def CMP32ri8 : Ii8<0x83, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(X86cmp GR32:$src1, i32immSExt8:$src2), (implicit EFLAGS)]>; } // Defs = [EFLAGS] // Bit tests. // TODO: BTC, BTR, and BTS let Defs = [EFLAGS] in { def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(X86bt GR16:$src1, GR16:$src2), (implicit EFLAGS)]>, OpSize, TB; def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(X86bt GR32:$src1, GR32:$src2), (implicit EFLAGS)]>, TB; // Unlike with the register+register form, the memory+register form of the // bt instruction does not ignore the high bits of the index. From ISel's // perspective, this is pretty bizarre. Disable these instructions for now. //def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), // "bt{w}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi16 addr:$src1), GR16:$src2), // (implicit EFLAGS)]>, OpSize, TB, Requires<[FastBTMem]>; //def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), // "bt{l}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi32 addr:$src1), GR32:$src2), // (implicit EFLAGS)]>, TB, Requires<[FastBTMem]>; def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(X86bt GR16:$src1, i16immSExt8:$src2), (implicit EFLAGS)]>, OpSize, TB; def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(X86bt GR32:$src1, i32immSExt8:$src2), (implicit EFLAGS)]>, TB; // Note that these instructions don't need FastBTMem because that // only applies when the other operand is in a register. When it's // an immediate, bt is still fast. def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(X86bt (loadi16 addr:$src1), i16immSExt8:$src2), (implicit EFLAGS)]>, OpSize, TB; def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(X86bt (loadi32 addr:$src1), i32immSExt8:$src2), (implicit EFLAGS)]>, TB; } // Defs = [EFLAGS] // Sign/Zero extenders // Use movsbl intead of movsbw; we don't care about the high 16 bits // of the register here. This has a smaller encoding and avoids a // partial-register update. def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8 :$src), "movs{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR16:$dst, (sext GR8:$src))]>, TB; def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem :$src), "movs{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR16:$dst, (sextloadi16i8 addr:$src))]>, TB; def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sext GR8:$src))]>, TB; def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB; def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sext GR16:$src))]>, TB; def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i16 addr:$src))]>, TB; // Use movzbl intead of movzbw; we don't care about the high 16 bits // of the register here. This has a smaller encoding and avoids a // partial-register update. def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8 :$src), "movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR16:$dst, (zext GR8:$src))]>, TB; def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem :$src), "movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}", [(set GR16:$dst, (zextloadi16i8 addr:$src))]>, TB; def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zext GR8:$src))]>, TB; def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB; def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zext GR16:$src))]>, TB; def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i16 addr:$src))]>, TB; // These are the same as the regular regular MOVZX32rr8 and MOVZX32rm8 // except that they use GR32_NOREX for the output operand register class // instead of GR32. This allows them to operate on h registers on x86-64. def MOVZX32_NOREXrr8 : I<0xB6, MRMSrcReg, (outs GR32_NOREX:$dst), (ins GR8:$src), "movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX", []>, TB; let mayLoad = 1 in def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem, (outs GR32_NOREX:$dst), (ins i8mem:$src), "movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX", []>, TB; let neverHasSideEffects = 1 in { let Defs = [AX], Uses = [AL] in def CBW : I<0x98, RawFrm, (outs), (ins), "{cbtw|cbw}", []>, OpSize; // AX = signext(AL) let Defs = [EAX], Uses = [AX] in def CWDE : I<0x98, RawFrm, (outs), (ins), "{cwtl|cwde}", []>; // EAX = signext(AX) let Defs = [AX,DX], Uses = [AX] in def CWD : I<0x99, RawFrm, (outs), (ins), "{cwtd|cwd}", []>, OpSize; // DX:AX = signext(AX) let Defs = [EAX,EDX], Uses = [EAX] in def CDQ : I<0x99, RawFrm, (outs), (ins), "{cltd|cdq}", []>; // EDX:EAX = signext(EAX) } //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instructions that map movr0 to xor. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "xor{b}\t$dst, $dst", [(set GR8:$dst, 0)]>; // Use xorl instead of xorw since we don't care about the high 16 bits, // it's smaller, and it avoids a partial-register update. def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins), "xor{l}\t${dst:subreg32}, ${dst:subreg32}", [(set GR16:$dst, 0)]>; def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "xor{l}\t$dst, $dst", [(set GR32:$dst, 0)]>; } //===----------------------------------------------------------------------===// // Thread Local Storage Instructions // // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in def TLS_addr32 : I<0, Pseudo, (outs), (ins lea32mem:$sym), "leal\t$sym, %eax; " "call\t___tls_get_addr@PLT", [(X86tlsaddr tls32addr:$sym)]>, Requires<[In32BitMode]>; let AddedComplexity = 5 in def GS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movl\t%gs:$src, $dst", [(set GR32:$dst, (gsload addr:$src))]>, SegGS; let AddedComplexity = 5 in def FS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movl\t%fs:$src, $dst", [(set GR32:$dst, (fsload addr:$src))]>, SegFS; //===----------------------------------------------------------------------===// // DWARF Pseudo Instructions // def DWARF_LOC : I<0, Pseudo, (outs), (ins i32imm:$line, i32imm:$col, i32imm:$file), ".loc\t$file $line $col", [(dwarf_loc (i32 imm:$line), (i32 imm:$col), (i32 imm:$file))]>; //===----------------------------------------------------------------------===// // EH Pseudo Instructions // let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in { def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR32:$addr)]>; } //===----------------------------------------------------------------------===// // Atomic support // // Atomic swap. These are just normal xchg instructions. But since a memory // operand is referenced, the atomicity is ensured. let Constraints = "$val = $dst" in { def XCHG32rm : I<0x87, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val), "xchg{l}\t{$val, $ptr|$ptr, $val}", [(set GR32:$dst, (atomic_swap_32 addr:$ptr, GR32:$val))]>; def XCHG16rm : I<0x87, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val), "xchg{w}\t{$val, $ptr|$ptr, $val}", [(set GR16:$dst, (atomic_swap_16 addr:$ptr, GR16:$val))]>, OpSize; def XCHG8rm : I<0x86, MRMSrcMem, (outs GR8:$dst), (ins i8mem:$ptr, GR8:$val), "xchg{b}\t{$val, $ptr|$ptr, $val}", [(set GR8:$dst, (atomic_swap_8 addr:$ptr, GR8:$val))]>; } // Atomic compare and swap. let Defs = [EAX, EFLAGS], Uses = [EAX] in { def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap), "lock\n\t" "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}", [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK; } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in { def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i32mem:$ptr), "lock\n\t" "cmpxchg8b\t$ptr", [(X86cas8 addr:$ptr)]>, TB, LOCK; } let Defs = [AX, EFLAGS], Uses = [AX] in { def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap), "lock\n\t" "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}", [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK; } let Defs = [AL, EFLAGS], Uses = [AL] in { def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap), "lock\n\t" "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}", [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK; } // Atomic exchange and add let Constraints = "$val = $dst", Defs = [EFLAGS] in { def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val), "lock\n\t" "xadd{l}\t{$val, $ptr|$ptr, $val}", [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>, TB, LOCK; def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val), "lock\n\t" "xadd{w}\t{$val, $ptr|$ptr, $val}", [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>, TB, OpSize, LOCK; def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins i8mem:$ptr, GR8:$val), "lock\n\t" "xadd{b}\t{$val, $ptr|$ptr, $val}", [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>, TB, LOCK; } // Optimized codegen when the non-memory output is not used. // FIXME: Use normal add / sub instructions and add lock prefix dynamically. def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "lock\n\t" "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "lock\n\t" "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "lock\n\t" "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2), "lock\n\t" "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2), "lock\n\t" "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2), "lock\n\t" "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "lock\n\t" "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "lock\n\t" "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "lock\n\t" "inc{b}\t$dst", []>, LOCK; def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "lock\n\t" "inc{w}\t$dst", []>, OpSize, LOCK; def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "lock\n\t" "inc{l}\t$dst", []>, LOCK; def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2), "lock\n\t" "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "lock\n\t" "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "lock\n\t" "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2), "lock\n\t" "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2), "lock\n\t" "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2), "lock\n\t" "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "lock\n\t" "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "lock\n\t" "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "lock\n\t" "dec{b}\t$dst", []>, LOCK; def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "lock\n\t" "dec{w}\t$dst", []>, OpSize, LOCK; def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "lock\n\t" "dec{l}\t$dst", []>, LOCK; // Atomic exchange, and, or, xor let Constraints = "$val = $dst", Defs = [EFLAGS], usesCustomDAGSchedInserter = 1 in { def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMAND32 PSEUDO!", [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>; def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMOR32 PSEUDO!", [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>; def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMXOR32 PSEUDO!", [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>; def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMNAND32 PSEUDO!", [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>; def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val), "#ATOMMIN32 PSEUDO!", [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>; def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMMAX32 PSEUDO!", [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>; def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMUMIN32 PSEUDO!", [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>; def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMUMAX32 PSEUDO!", [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>; def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMAND16 PSEUDO!", [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>; def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMOR16 PSEUDO!", [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>; def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMXOR16 PSEUDO!", [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>; def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMNAND16 PSEUDO!", [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>; def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val), "#ATOMMIN16 PSEUDO!", [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>; def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMMAX16 PSEUDO!", [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>; def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMUMIN16 PSEUDO!", [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>; def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMUMAX16 PSEUDO!", [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>; def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMAND8 PSEUDO!", [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>; def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMOR8 PSEUDO!", [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>; def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMXOR8 PSEUDO!", [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>; def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMNAND8 PSEUDO!", [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>; } let Constraints = "$val1 = $dst1, $val2 = $dst2", Defs = [EFLAGS, EAX, EBX, ECX, EDX], Uses = [EAX, EBX, ECX, EDX], mayLoad = 1, mayStore = 1, usesCustomDAGSchedInserter = 1 in { def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMAND6432 PSEUDO!", []>; def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMOR6432 PSEUDO!", []>; def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMXOR6432 PSEUDO!", []>; def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMNAND6432 PSEUDO!", []>; def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMADD6432 PSEUDO!", []>; def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMSUB6432 PSEUDO!", []>; def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMSWAP6432 PSEUDO!", []>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), (ADD32ri GR32:$src1, tconstpool:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), (ADD32ri GR32:$src1, tjumptable:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), (ADD32ri GR32:$src1, tglobaladdr:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), (ADD32ri GR32:$src1, texternalsym:$src2)>; def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV32mi addr:$dst, tglobaladdr:$src)>; def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV32mi addr:$dst, texternalsym:$src)>; // Calls // tailcall stuff def : Pat<(X86tailcall GR32:$dst), (TAILCALL)>; def : Pat<(X86tailcall (i32 tglobaladdr:$dst)), (TAILCALL)>; def : Pat<(X86tailcall (i32 texternalsym:$dst)), (TAILCALL)>; def : Pat<(X86tcret GR32:$dst, imm:$off), (TCRETURNri GR32:$dst, imm:$off)>; def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>; def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>; def : Pat<(X86call (i32 tglobaladdr:$dst)), (CALLpcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i32 texternalsym:$dst)), (CALLpcrel32 texternalsym:$dst)>; def : Pat<(X86call (i32 imm:$dst)), (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; // X86 specific add which produces a flag. def : Pat<(addc GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; def : Pat<(addc GR32:$src1, (load addr:$src2)), (ADD32rm GR32:$src1, addr:$src2)>; def : Pat<(addc GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(addc GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(subc GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; def : Pat<(subc GR32:$src1, (load addr:$src2)), (SUB32rm GR32:$src1, addr:$src2)>; def : Pat<(subc GR32:$src1, imm:$src2), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(subc GR32:$src1, i32immSExt8:$src2), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // Comparisons. // TEST R,R is smaller than CMP R,0 def : Pat<(parallel (X86cmp GR8:$src1, 0), (implicit EFLAGS)), (TEST8rr GR8:$src1, GR8:$src1)>; def : Pat<(parallel (X86cmp GR16:$src1, 0), (implicit EFLAGS)), (TEST16rr GR16:$src1, GR16:$src1)>; def : Pat<(parallel (X86cmp GR32:$src1, 0), (implicit EFLAGS)), (TEST32rr GR32:$src1, GR32:$src1)>; // Conditional moves with folded loads with operands swapped and conditions // inverted. def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS), (CMOVAE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS), (CMOVAE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS), (CMOVB16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS), (CMOVB32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS), (CMOVNE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS), (CMOVNE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS), (CMOVE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS), (CMOVE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS), (CMOVA16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS), (CMOVA32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS), (CMOVBE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS), (CMOVBE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS), (CMOVGE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS), (CMOVGE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS), (CMOVL16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS), (CMOVL32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS), (CMOVG16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS), (CMOVG32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS), (CMOVLE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS), (CMOVLE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS), (CMOVNP16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS), (CMOVNP32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS), (CMOVP16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS), (CMOVP32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS), (CMOVNS16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS), (CMOVNS32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS), (CMOVS16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS), (CMOVS32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS), (CMOVNO16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS), (CMOVNO32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS), (CMOVO16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS), (CMOVO32rm GR32:$src2, addr:$src1)>; // zextload bool -> zextload byte def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; // extload bool -> extload byte def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>, Requires<[In32BitMode]>; def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>, Requires<[In32BitMode]>; def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; // anyext def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>, Requires<[In32BitMode]>; def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>, Requires<[In32BitMode]>; def : Pat<(i32 (anyext GR16:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>; // (and (i32 load), 255) -> (zextload i8) def : Pat<(i32 (and (nvloadi32 addr:$src), (i32 255))), (MOVZX32rm8 addr:$src)>; def : Pat<(i32 (and (nvloadi32 addr:$src), (i32 65535))), (MOVZX32rm16 addr:$src)>; //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // Odd encoding trick: -128 fits into an 8-bit immediate field while // +128 doesn't, so in this special case use a sub instead of an add. def : Pat<(add GR16:$src1, 128), (SUB16ri8 GR16:$src1, -128)>; def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), (SUB16mi8 addr:$dst, -128)>; def : Pat<(add GR32:$src1, 128), (SUB32ri8 GR32:$src1, -128)>; def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), (SUB32mi8 addr:$dst, -128)>; // r & (2^16-1) ==> movz def : Pat<(and GR32:$src1, 0xffff), (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, x86_subreg_16bit))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src1, GR32_ABCD), x86_subreg_8bit))>, Requires<[In32BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (MOVZX16rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD), x86_subreg_8bit))>, Requires<[In32BitMode]>; // sext_inreg patterns def : Pat<(sext_inreg GR32:$src, i16), (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, x86_subreg_16bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD), x86_subreg_8bit))>, Requires<[In32BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (MOVSX16rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit))>, Requires<[In32BitMode]>; // trunc patterns def : Pat<(i16 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, x86_subreg_16bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD), x86_subreg_8bit)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit)>, Requires<[In32BitMode]>; // h-register tricks def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD), x86_subreg_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(srl_su GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi)), x86_subreg_16bit)>, Requires<[In32BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD), x86_subreg_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32rr8 (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD), x86_subreg_8bit_hi))>, Requires<[In32BitMode]>; // (shl x, 1) ==> (add x, x) def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; // (shl x (and y, 31)) ==> (shl x, y) def : Pat<(shl GR8:$src1, (and CL:$amt, 31)), (SHL8rCL GR8:$src1)>; def : Pat<(shl GR16:$src1, (and CL:$amt, 31)), (SHL16rCL GR16:$src1)>; def : Pat<(shl GR32:$src1, (and CL:$amt, 31)), (SHL32rCL GR32:$src1)>; def : Pat<(store (shl (loadi8 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SHL8mCL addr:$dst)>; def : Pat<(store (shl (loadi16 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SHL16mCL addr:$dst)>; def : Pat<(store (shl (loadi32 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SHL32mCL addr:$dst)>; def : Pat<(srl GR8:$src1, (and CL:$amt, 31)), (SHR8rCL GR8:$src1)>; def : Pat<(srl GR16:$src1, (and CL:$amt, 31)), (SHR16rCL GR16:$src1)>; def : Pat<(srl GR32:$src1, (and CL:$amt, 31)), (SHR32rCL GR32:$src1)>; def : Pat<(store (srl (loadi8 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SHR8mCL addr:$dst)>; def : Pat<(store (srl (loadi16 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SHR16mCL addr:$dst)>; def : Pat<(store (srl (loadi32 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SHR32mCL addr:$dst)>; def : Pat<(sra GR8:$src1, (and CL:$amt, 31)), (SAR8rCL GR8:$src1)>; def : Pat<(sra GR16:$src1, (and CL:$amt, 31)), (SAR16rCL GR16:$src1)>; def : Pat<(sra GR32:$src1, (and CL:$amt, 31)), (SAR32rCL GR32:$src1)>; def : Pat<(store (sra (loadi8 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SAR8mCL addr:$dst)>; def : Pat<(store (sra (loadi16 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SAR16mCL addr:$dst)>; def : Pat<(store (sra (loadi32 addr:$dst), (and CL:$amt, 31)), addr:$dst), (SAR32mCL addr:$dst)>; // (or (x >> c) | (y << (32 - c))) ==> (shrd32 x, y, c) def : Pat<(or (srl GR32:$src1, CL:$amt), (shl GR32:$src2, (sub 32, CL:$amt))), (SHRD32rrCL GR32:$src1, GR32:$src2)>; def : Pat<(store (or (srl (loadi32 addr:$dst), CL:$amt), (shl GR32:$src2, (sub 32, CL:$amt))), addr:$dst), (SHRD32mrCL addr:$dst, GR32:$src2)>; def : Pat<(or (srl GR32:$src1, (i8 (trunc ECX:$amt))), (shl GR32:$src2, (i8 (trunc (sub 32, ECX:$amt))))), (SHRD32rrCL GR32:$src1, GR32:$src2)>; def : Pat<(store (or (srl (loadi32 addr:$dst), (i8 (trunc ECX:$amt))), (shl GR32:$src2, (i8 (trunc (sub 32, ECX:$amt))))), addr:$dst), (SHRD32mrCL addr:$dst, GR32:$src2)>; def : Pat<(shrd GR32:$src1, (i8 imm:$amt1), GR32:$src2, (i8 imm:$amt2)), (SHRD32rri8 GR32:$src1, GR32:$src2, (i8 imm:$amt1))>; def : Pat<(store (shrd (loadi32 addr:$dst), (i8 imm:$amt1), GR32:$src2, (i8 imm:$amt2)), addr:$dst), (SHRD32mri8 addr:$dst, GR32:$src2, (i8 imm:$amt1))>; // (or (x << c) | (y >> (32 - c))) ==> (shld32 x, y, c) def : Pat<(or (shl GR32:$src1, CL:$amt), (srl GR32:$src2, (sub 32, CL:$amt))), (SHLD32rrCL GR32:$src1, GR32:$src2)>; def : Pat<(store (or (shl (loadi32 addr:$dst), CL:$amt), (srl GR32:$src2, (sub 32, CL:$amt))), addr:$dst), (SHLD32mrCL addr:$dst, GR32:$src2)>; def : Pat<(or (shl GR32:$src1, (i8 (trunc ECX:$amt))), (srl GR32:$src2, (i8 (trunc (sub 32, ECX:$amt))))), (SHLD32rrCL GR32:$src1, GR32:$src2)>; def : Pat<(store (or (shl (loadi32 addr:$dst), (i8 (trunc ECX:$amt))), (srl GR32:$src2, (i8 (trunc (sub 32, ECX:$amt))))), addr:$dst), (SHLD32mrCL addr:$dst, GR32:$src2)>; def : Pat<(shld GR32:$src1, (i8 imm:$amt1), GR32:$src2, (i8 imm:$amt2)), (SHLD32rri8 GR32:$src1, GR32:$src2, (i8 imm:$amt1))>; def : Pat<(store (shld (loadi32 addr:$dst), (i8 imm:$amt1), GR32:$src2, (i8 imm:$amt2)), addr:$dst), (SHLD32mri8 addr:$dst, GR32:$src2, (i8 imm:$amt1))>; // (or (x >> c) | (y << (16 - c))) ==> (shrd16 x, y, c) def : Pat<(or (srl GR16:$src1, CL:$amt), (shl GR16:$src2, (sub 16, CL:$amt))), (SHRD16rrCL GR16:$src1, GR16:$src2)>; def : Pat<(store (or (srl (loadi16 addr:$dst), CL:$amt), (shl GR16:$src2, (sub 16, CL:$amt))), addr:$dst), (SHRD16mrCL addr:$dst, GR16:$src2)>; def : Pat<(or (srl GR16:$src1, (i8 (trunc CX:$amt))), (shl GR16:$src2, (i8 (trunc (sub 16, CX:$amt))))), (SHRD16rrCL GR16:$src1, GR16:$src2)>; def : Pat<(store (or (srl (loadi16 addr:$dst), (i8 (trunc CX:$amt))), (shl GR16:$src2, (i8 (trunc (sub 16, CX:$amt))))), addr:$dst), (SHRD16mrCL addr:$dst, GR16:$src2)>; def : Pat<(shrd GR16:$src1, (i8 imm:$amt1), GR16:$src2, (i8 imm:$amt2)), (SHRD16rri8 GR16:$src1, GR16:$src2, (i8 imm:$amt1))>; def : Pat<(store (shrd (loadi16 addr:$dst), (i8 imm:$amt1), GR16:$src2, (i8 imm:$amt2)), addr:$dst), (SHRD16mri8 addr:$dst, GR16:$src2, (i8 imm:$amt1))>; // (or (x << c) | (y >> (16 - c))) ==> (shld16 x, y, c) def : Pat<(or (shl GR16:$src1, CL:$amt), (srl GR16:$src2, (sub 16, CL:$amt))), (SHLD16rrCL GR16:$src1, GR16:$src2)>; def : Pat<(store (or (shl (loadi16 addr:$dst), CL:$amt), (srl GR16:$src2, (sub 16, CL:$amt))), addr:$dst), (SHLD16mrCL addr:$dst, GR16:$src2)>; def : Pat<(or (shl GR16:$src1, (i8 (trunc CX:$amt))), (srl GR16:$src2, (i8 (trunc (sub 16, CX:$amt))))), (SHLD16rrCL GR16:$src1, GR16:$src2)>; def : Pat<(store (or (shl (loadi16 addr:$dst), (i8 (trunc CX:$amt))), (srl GR16:$src2, (i8 (trunc (sub 16, CX:$amt))))), addr:$dst), (SHLD16mrCL addr:$dst, GR16:$src2)>; def : Pat<(shld GR16:$src1, (i8 imm:$amt1), GR16:$src2, (i8 imm:$amt2)), (SHLD16rri8 GR16:$src1, GR16:$src2, (i8 imm:$amt1))>; def : Pat<(store (shld (loadi16 addr:$dst), (i8 imm:$amt1), GR16:$src2, (i8 imm:$amt2)), addr:$dst), (SHLD16mri8 addr:$dst, GR16:$src2, (i8 imm:$amt1))>; //===----------------------------------------------------------------------===// // EFLAGS-defining Patterns //===----------------------------------------------------------------------===// // Register-Register Addition with EFLAGS result def : Pat<(parallel (X86add_flag GR8:$src1, GR8:$src2), (implicit EFLAGS)), (ADD8rr GR8:$src1, GR8:$src2)>; def : Pat<(parallel (X86add_flag GR16:$src1, GR16:$src2), (implicit EFLAGS)), (ADD16rr GR16:$src1, GR16:$src2)>; def : Pat<(parallel (X86add_flag GR32:$src1, GR32:$src2), (implicit EFLAGS)), (ADD32rr GR32:$src1, GR32:$src2)>; // Register-Memory Addition with EFLAGS result def : Pat<(parallel (X86add_flag GR8:$src1, (loadi8 addr:$src2)), (implicit EFLAGS)), (ADD8rm GR8:$src1, addr:$src2)>; def : Pat<(parallel (X86add_flag GR16:$src1, (loadi16 addr:$src2)), (implicit EFLAGS)), (ADD16rm GR16:$src1, addr:$src2)>; def : Pat<(parallel (X86add_flag GR32:$src1, (loadi32 addr:$src2)), (implicit EFLAGS)), (ADD32rm GR32:$src1, addr:$src2)>; // Register-Integer Addition with EFLAGS result def : Pat<(parallel (X86add_flag GR8:$src1, imm:$src2), (implicit EFLAGS)), (ADD8ri GR8:$src1, imm:$src2)>; def : Pat<(parallel (X86add_flag GR16:$src1, imm:$src2), (implicit EFLAGS)), (ADD16ri GR16:$src1, imm:$src2)>; def : Pat<(parallel (X86add_flag GR32:$src1, imm:$src2), (implicit EFLAGS)), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(parallel (X86add_flag GR16:$src1, i16immSExt8:$src2), (implicit EFLAGS)), (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(parallel (X86add_flag GR32:$src1, i32immSExt8:$src2), (implicit EFLAGS)), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; // Memory-Register Addition with EFLAGS result def : Pat<(parallel (store (X86add_flag (loadi8 addr:$dst), GR8:$src2), addr:$dst), (implicit EFLAGS)), (ADD8mr addr:$dst, GR8:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi16 addr:$dst), GR16:$src2), addr:$dst), (implicit EFLAGS)), (ADD16mr addr:$dst, GR16:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi32 addr:$dst), GR32:$src2), addr:$dst), (implicit EFLAGS)), (ADD32mr addr:$dst, GR32:$src2)>; // Memory-Integer Addition with EFLAGS result def : Pat<(parallel (store (X86add_flag (loadi8 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)), (ADD8mi addr:$dst, imm:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi16 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)), (ADD16mi addr:$dst, imm:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi32 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)), (ADD32mi addr:$dst, imm:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi16 addr:$dst), i16immSExt8:$src2), addr:$dst), (implicit EFLAGS)), (ADD16mi8 addr:$dst, i16immSExt8:$src2)>; def : Pat<(parallel (store (X86add_flag (loadi32 addr:$dst), i32immSExt8:$src2), addr:$dst), (implicit EFLAGS)), (ADD32mi8 addr:$dst, i32immSExt8:$src2)>; // Register-Register Subtraction with EFLAGS result def : Pat<(parallel (X86sub_flag GR8:$src1, GR8:$src2), (implicit EFLAGS)), (SUB8rr GR8:$src1, GR8:$src2)>; def : Pat<(parallel (X86sub_flag GR16:$src1, GR16:$src2), (implicit EFLAGS)), (SUB16rr GR16:$src1, GR16:$src2)>; def : Pat<(parallel (X86sub_flag GR32:$src1, GR32:$src2), (implicit EFLAGS)), (SUB32rr GR32:$src1, GR32:$src2)>; // Register-Memory Subtraction with EFLAGS result def : Pat<(parallel (X86sub_flag GR8:$src1, (loadi8 addr:$src2)), (implicit EFLAGS)), (SUB8rm GR8:$src1, addr:$src2)>; def : Pat<(parallel (X86sub_flag GR16:$src1, (loadi16 addr:$src2)), (implicit EFLAGS)), (SUB16rm GR16:$src1, addr:$src2)>; def : Pat<(parallel (X86sub_flag GR32:$src1, (loadi32 addr:$src2)), (implicit EFLAGS)), (SUB32rm GR32:$src1, addr:$src2)>; // Register-Integer Subtraction with EFLAGS result def : Pat<(parallel (X86sub_flag GR8:$src1, imm:$src2), (implicit EFLAGS)), (SUB8ri GR8:$src1, imm:$src2)>; def : Pat<(parallel (X86sub_flag GR16:$src1, imm:$src2), (implicit EFLAGS)), (SUB16ri GR16:$src1, imm:$src2)>; def : Pat<(parallel (X86sub_flag GR32:$src1, imm:$src2), (implicit EFLAGS)), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(parallel (X86sub_flag GR16:$src1, i16immSExt8:$src2), (implicit EFLAGS)), (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(parallel (X86sub_flag GR32:$src1, i32immSExt8:$src2), (implicit EFLAGS)), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // Memory-Register Subtraction with EFLAGS result def : Pat<(parallel (store (X86sub_flag (loadi8 addr:$dst), GR8:$src2), addr:$dst), (implicit EFLAGS)), (SUB8mr addr:$dst, GR8:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi16 addr:$dst), GR16:$src2), addr:$dst), (implicit EFLAGS)), (SUB16mr addr:$dst, GR16:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi32 addr:$dst), GR32:$src2), addr:$dst), (implicit EFLAGS)), (SUB32mr addr:$dst, GR32:$src2)>; // Memory-Integer Subtraction with EFLAGS result def : Pat<(parallel (store (X86sub_flag (loadi8 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)), (SUB8mi addr:$dst, imm:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi16 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)), (SUB16mi addr:$dst, imm:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi32 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)), (SUB32mi addr:$dst, imm:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi16 addr:$dst), i16immSExt8:$src2), addr:$dst), (implicit EFLAGS)), (SUB16mi8 addr:$dst, i16immSExt8:$src2)>; def : Pat<(parallel (store (X86sub_flag (loadi32 addr:$dst), i32immSExt8:$src2), addr:$dst), (implicit EFLAGS)), (SUB32mi8 addr:$dst, i32immSExt8:$src2)>; // Register-Register Signed Integer Multiply with EFLAGS result def : Pat<(parallel (X86smul_flag GR16:$src1, GR16:$src2), (implicit EFLAGS)), (IMUL16rr GR16:$src1, GR16:$src2)>; def : Pat<(parallel (X86smul_flag GR32:$src1, GR32:$src2), (implicit EFLAGS)), (IMUL32rr GR32:$src1, GR32:$src2)>; // Register-Memory Signed Integer Multiply with EFLAGS result def : Pat<(parallel (X86smul_flag GR16:$src1, (loadi16 addr:$src2)), (implicit EFLAGS)), (IMUL16rm GR16:$src1, addr:$src2)>; def : Pat<(parallel (X86smul_flag GR32:$src1, (loadi32 addr:$src2)), (implicit EFLAGS)), (IMUL32rm GR32:$src1, addr:$src2)>; // Register-Integer Signed Integer Multiply with EFLAGS result def : Pat<(parallel (X86smul_flag GR16:$src1, imm:$src2), (implicit EFLAGS)), (IMUL16rri GR16:$src1, imm:$src2)>; def : Pat<(parallel (X86smul_flag GR32:$src1, imm:$src2), (implicit EFLAGS)), (IMUL32rri GR32:$src1, imm:$src2)>; def : Pat<(parallel (X86smul_flag GR16:$src1, i16immSExt8:$src2), (implicit EFLAGS)), (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(parallel (X86smul_flag GR32:$src1, i32immSExt8:$src2), (implicit EFLAGS)), (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; // Memory-Integer Signed Integer Multiply with EFLAGS result def : Pat<(parallel (X86smul_flag (loadi16 addr:$src1), imm:$src2), (implicit EFLAGS)), (IMUL16rmi addr:$src1, imm:$src2)>; def : Pat<(parallel (X86smul_flag (loadi32 addr:$src1), imm:$src2), (implicit EFLAGS)), (IMUL32rmi addr:$src1, imm:$src2)>; def : Pat<(parallel (X86smul_flag (loadi16 addr:$src1), i16immSExt8:$src2), (implicit EFLAGS)), (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; def : Pat<(parallel (X86smul_flag (loadi32 addr:$src1), i32immSExt8:$src2), (implicit EFLAGS)), (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; // Optimize multiply by 2 with EFLAGS result. let AddedComplexity = 2 in { def : Pat<(parallel (X86smul_flag GR16:$src1, 2), (implicit EFLAGS)), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(parallel (X86smul_flag GR32:$src1, 2), (implicit EFLAGS)), (ADD32rr GR32:$src1, GR32:$src1)>; } // INC and DEC with EFLAGS result. Note that these do not set CF. def : Pat<(parallel (X86inc_flag GR8:$src), (implicit EFLAGS)), (INC8r GR8:$src)>; def : Pat<(parallel (store (i8 (X86inc_flag (loadi8 addr:$dst))), addr:$dst), (implicit EFLAGS)), (INC8m addr:$dst)>; def : Pat<(parallel (X86dec_flag GR8:$src), (implicit EFLAGS)), (DEC8r GR8:$src)>; def : Pat<(parallel (store (i8 (X86dec_flag (loadi8 addr:$dst))), addr:$dst), (implicit EFLAGS)), (DEC8m addr:$dst)>; def : Pat<(parallel (X86inc_flag GR16:$src), (implicit EFLAGS)), (INC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(parallel (store (i16 (X86inc_flag (loadi16 addr:$dst))), addr:$dst), (implicit EFLAGS)), (INC16m addr:$dst)>, Requires<[In32BitMode]>; def : Pat<(parallel (X86dec_flag GR16:$src), (implicit EFLAGS)), (DEC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(parallel (store (i16 (X86dec_flag (loadi16 addr:$dst))), addr:$dst), (implicit EFLAGS)), (DEC16m addr:$dst)>, Requires<[In32BitMode]>; def : Pat<(parallel (X86inc_flag GR32:$src), (implicit EFLAGS)), (INC32r GR32:$src)>, Requires<[In32BitMode]>; def : Pat<(parallel (store (i32 (X86inc_flag (loadi32 addr:$dst))), addr:$dst), (implicit EFLAGS)), (INC32m addr:$dst)>, Requires<[In32BitMode]>; def : Pat<(parallel (X86dec_flag GR32:$src), (implicit EFLAGS)), (DEC32r GR32:$src)>, Requires<[In32BitMode]>; def : Pat<(parallel (store (i32 (X86dec_flag (loadi32 addr:$dst))), addr:$dst), (implicit EFLAGS)), (DEC32m addr:$dst)>, Requires<[In32BitMode]>; //===----------------------------------------------------------------------===// // Floating Point Stack Support //===----------------------------------------------------------------------===// include "X86InstrFPStack.td" //===----------------------------------------------------------------------===// // X86-64 Support //===----------------------------------------------------------------------===// include "X86Instr64bit.td" //===----------------------------------------------------------------------===// // XMM Floating point support (requires SSE / SSE2) //===----------------------------------------------------------------------===// include "X86InstrSSE.td" //===----------------------------------------------------------------------===// // MMX and XMM Packed Integer support (requires MMX, SSE, and SSE2) //===----------------------------------------------------------------------===// include "X86InstrMMX.td"