//===- llvm/PassManager.h - Container for Passes -----------------*- C++ -*--=// // // This file defines the PassManager class. This class is used to hold, // maintain, and optimize execution of Pass's. The PassManager class ensures // that analysis results are available before a pass runs, and that Pass's are // destroyed when the PassManager is destroyed. // // The PassManagerT template is instantiated three times to do its job. // //===----------------------------------------------------------------------===// #ifndef LLVM_PASSMANAGER_H #define LLVM_PASSMANAGER_H #include "llvm/Pass.h" #include //===----------------------------------------------------------------------===// // PMDebug class - a set of debugging functions that are enabled when compiling // with -g on. If compiling at -O, all functions are inlined noops. // struct PMDebug { #ifdef NDEBUG inline static void PrintPassStructure(Pass *) {} inline static void PrintPassInformation(unsigned,const char*,Pass*,Value*) {} inline static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P, const Pass::AnalysisSet &) {} #else // If compiled in debug mode, these functions can be enabled by setting // -debug-pass on the command line of the tool being used. // static void PrintPassStructure(Pass *P); static void PrintPassInformation(unsigned,const char*,Pass *, Value *); static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P, const Pass::AnalysisSet&); #endif }; //===----------------------------------------------------------------------===// // Declare the PassManagerTraits which will be specialized... // template class PassManagerTraits; // Do not define. //===----------------------------------------------------------------------===// // PassManagerT - Container object for passes. The PassManagerT destructor // deletes all passes contained inside of the PassManagerT, so you shouldn't // delete passes manually, and all passes should be dynamically allocated. // template class PassManagerT : public PassManagerTraits,public AnalysisResolver{ typedef typename PassManagerTraits::PassClass PassClass; typedef typename PassManagerTraits::SubPassClass SubPassClass; typedef typename PassManagerTraits::BatcherClass BatcherClass; typedef typename PassManagerTraits::ParentClass ParentClass; typedef PassManagerTraits Traits; friend typename PassManagerTraits::PassClass; friend typename PassManagerTraits::SubPassClass; friend class PassManagerTraits; std::vector Passes; // List of pass's to run // The parent of this pass manager... ParentClass * const Parent; // The current batcher if one is in use, or null BatcherClass *Batcher; // CurrentAnalyses - As the passes are being run, this map contains the // analyses that are available to the current pass for use. This is accessed // through the getAnalysis() function in this class and in Pass. // std::map CurrentAnalyses; // LastUseOf - This map keeps track of the last usage in our pipeline of a // particular pass. When executing passes, the memory for .first is free'd // after .second is run. // std::map LastUseOf; public: PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {} ~PassManagerT() { // Delete all of the contained passes... for (std::vector::iterator I = Passes.begin(), E = Passes.end(); I != E; ++I) delete *I; } // run - Run all of the queued passes on the specified module in an optimal // way. virtual bool runOnUnit(UnitType *M) { bool MadeChanges = false; closeBatcher(); CurrentAnalyses.clear(); // LastUserOf - This contains the inverted LastUseOfMap... std::map > LastUserOf; for (std::map::iterator I = LastUseOf.begin(), E = LastUseOf.end(); I != E; ++I) LastUserOf[I->second].push_back(I->first); // Output debug information... if (Parent == 0) PMDebug::PrintPassStructure(this); // Run all of the passes for (unsigned i = 0, e = Passes.size(); i < e; ++i) { PassClass *P = Passes[i]; PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, (Value*)M); // Get information about what analyses the pass uses... std::vector Required, Destroyed, Provided; P->getAnalysisUsageInfo(Required, Destroyed, Provided); PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P, Required); #ifndef NDEBUG // All Required analyses should be available to the pass as it runs! for (Pass::AnalysisSet::iterator I = Required.begin(), E = Required.end(); I != E; ++I) { assert(getAnalysisOrNullUp(*I) && "Analysis used but not available!"); } #endif // Run the sub pass! bool Changed = Traits::runPass(P, M); MadeChanges |= Changed; if (Changed) PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P, (Value*)M); PMDebug::PrintAnalysisSetInfo(getDepth(), "Destroyed", P, Destroyed); PMDebug::PrintAnalysisSetInfo(getDepth(), "Provided", P, Provided); // Erase all analyses in the destroyed set... for (Pass::AnalysisSet::iterator I = Destroyed.begin(), E = Destroyed.end(); I != E; ++I) CurrentAnalyses.erase(*I); // Add all analyses in the provided set... for (Pass::AnalysisSet::iterator I = Provided.begin(), E = Provided.end(); I != E; ++I) CurrentAnalyses[*I] = P; // Free memory for any passes that we are the last use of... std::vector &DeadPass = LastUserOf[P]; for (std::vector::iterator I = DeadPass.begin(),E = DeadPass.end(); I != E; ++I) { PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I, (Value*)M); (*I)->releaseMemory(); } } return MadeChanges; } #ifndef NDEBUG // dumpPassStructure - Implement the -debug-passes=PassStructure option virtual void dumpPassStructure(unsigned Offset = 0) { std::cerr << std::string(Offset*2, ' ') << Traits::getPMName() << " Pass Manager\n"; for (std::vector::iterator I = Passes.begin(), E = Passes.end(); I != E; ++I) { PassClass *P = *I; P->dumpPassStructure(Offset+1); // Loop through and see which classes are destroyed after this one... for (std::map::iterator I = LastUseOf.begin(), E = LastUseOf.end(); I != E; ++I) { if (P == I->second) { std::cerr << "Fr" << std::string(Offset*2, ' '); I->first->dumpPassStructure(0); } } } } #endif Pass *getAnalysisOrNullDown(AnalysisID ID) const { std::map::const_iterator I = CurrentAnalyses.find(ID); if (I == CurrentAnalyses.end()) { if (Batcher) return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID); return 0; } return I->second; } Pass *getAnalysisOrNullUp(AnalysisID ID) const { std::map::const_iterator I = CurrentAnalyses.find(ID); if (I == CurrentAnalyses.end()) { if (Parent) return Parent->getAnalysisOrNullUp(ID); return 0; } return I->second; } // markPassUsed - Inform higher level pass managers (and ourselves) // that these analyses are being used by this pass. This is used to // make sure that analyses are not free'd before we have to use // them... // void markPassUsed(AnalysisID P, Pass *User) { std::map::iterator I = CurrentAnalyses.find(P); if (I != CurrentAnalyses.end()) { LastUseOf[I->second] = User; // Local pass, extend the lifetime } else { // Pass not in current available set, must be a higher level pass // available to us, propogate to parent pass manager... We tell the // parent that we (the passmanager) are using the analysis so that it // frees the analysis AFTER this pass manager runs. // assert(Parent != 0 && "Pass available but not found! " "Did your analysis pass 'Provide' itself?"); Parent->markPassUsed(P, this); } } // Return the number of parent PassManagers that exist virtual unsigned getDepth() const { if (Parent == 0) return 0; return 1 + Parent->getDepth(); } // add - Add a pass to the queue of passes to run. This passes ownership of // the Pass to the PassManager. When the PassManager is destroyed, the pass // will be destroyed as well, so there is no need to delete the pass. This // implies that all passes MUST be new'd. // void add(PassClass *P) { // Get information about what analyses the pass uses... std::vector Required, Destroyed, Provided; P->getAnalysisUsageInfo(Required, Destroyed, Provided); // Loop over all of the analyses used by this pass, for (std::vector::iterator I = Required.begin(), E = Required.end(); I != E; ++I) { if (getAnalysisOrNullDown(*I) == 0) add((PassClass*)I->createPass()); } // Tell the pass to add itself to this PassManager... the way it does so // depends on the class of the pass, and is critical to laying out passes in // an optimal order.. // P->addToPassManager(this, Required, Destroyed, Provided); } private: // addPass - These functions are used to implement the subclass specific // behaviors present in PassManager. Basically the add(Pass*) method ends up // reflecting its behavior into a Pass::addToPassManager call. Subclasses of // Pass override it specifically so that they can reflect the type // information inherent in "this" back to the PassManager. // // For generic Pass subclasses (which are interprocedural passes), we simply // add the pass to the end of the pass list and terminate any accumulation of // MethodPasses that are present. // void addPass(PassClass *P, Pass::AnalysisSet &Required, Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &Provided) { // Providers are analysis classes which are forbidden to modify the module // they are operating on, so they are allowed to be reordered to before the // batcher... // if (Batcher && Provided.empty()) closeBatcher(); // This pass cannot be batched! // Set the Resolver instance variable in the Pass so that it knows where to // find this object... // setAnalysisResolver(P, this); Passes.push_back(P); // Inform higher level pass managers (and ourselves) that these analyses are // being used by this pass. This is used to make sure that analyses are not // free'd before we have to use them... // for (std::vector::iterator I = Required.begin(), E = Required.end(); I != E; ++I) markPassUsed(*I, P); // Mark *I as used by P // Erase all analyses in the destroyed set... for (std::vector::iterator I = Destroyed.begin(), E = Destroyed.end(); I != E; ++I) CurrentAnalyses.erase(*I); // Add all analyses in the provided set... for (std::vector::iterator I = Provided.begin(), E = Provided.end(); I != E; ++I) CurrentAnalyses[*I] = P; // For now assume that our results are never used... LastUseOf[P] = P; } // For MethodPass subclasses, we must be sure to batch the MethodPasses // together in a MethodPassBatcher object so that all of the analyses are run // together a method at a time. // void addPass(SubPassClass *MP, Pass::AnalysisSet &Required, Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &Provided) { if (Batcher == 0) // If we don't have a batcher yet, make one now. Batcher = new BatcherClass(this); // The Batcher will queue them passes up MP->addToPassManager(Batcher, Required, Destroyed, Provided); } // closeBatcher - Terminate the batcher that is being worked on. void closeBatcher() { if (Batcher) { Passes.push_back(Batcher); Batcher = 0; } } }; //===----------------------------------------------------------------------===// // PassManagerTraits Specialization // // This pass manager is used to group together all of the BasicBlockPass's // into a single unit. // template<> struct PassManagerTraits : public BasicBlockPass { // PassClass - The type of passes tracked by this PassManager typedef BasicBlockPass PassClass; // SubPassClass - The types of classes that should be collated together // This is impossible to match, so BasicBlock instantiations of PassManagerT // do not collate. // typedef PassManagerT SubPassClass; // BatcherClass - The type to use for collation of subtypes... This class is // never instantiated for the PassManager, but it must be an // instance of PassClass to typecheck. // typedef PassClass BatcherClass; // ParentClass - The type of the parent PassManager... typedef PassManagerT ParentClass; // PMType - The type of the passmanager that subclasses this class typedef PassManagerT PMType; // runPass - Specify how the pass should be run on the UnitType static bool runPass(PassClass *P, BasicBlock *M) { // todo, init and finalize return P->runOnBasicBlock(M); } // getPMName() - Return the name of the unit the PassManager operates on for // debugging. const char *getPMName() const { return "BasicBlock"; } // Implement the BasicBlockPass interface... virtual bool doInitialization(Module *M); virtual bool runOnBasicBlock(BasicBlock *BB); virtual bool doFinalization(Module *M); }; //===----------------------------------------------------------------------===// // PassManagerTraits Specialization // // This pass manager is used to group together all of the MethodPass's // into a single unit. // template<> struct PassManagerTraits : public MethodPass { // PassClass - The type of passes tracked by this PassManager typedef MethodPass PassClass; // SubPassClass - The types of classes that should be collated together typedef BasicBlockPass SubPassClass; // BatcherClass - The type to use for collation of subtypes... typedef PassManagerT BatcherClass; // ParentClass - The type of the parent PassManager... typedef PassManagerT ParentClass; // PMType - The type of the passmanager that subclasses this class typedef PassManagerT PMType; // runPass - Specify how the pass should be run on the UnitType static bool runPass(PassClass *P, Function *M) { return P->runOnMethod(M); } // getPMName() - Return the name of the unit the PassManager operates on for // debugging. const char *getPMName() const { return "Function"; } // Implement the MethodPass interface... virtual bool doInitialization(Module *M); virtual bool runOnMethod(Function *M); virtual bool doFinalization(Module *M); }; //===----------------------------------------------------------------------===// // PassManagerTraits Specialization // // This is the top level PassManager implementation that holds generic passes. // template<> struct PassManagerTraits : public Pass { // PassClass - The type of passes tracked by this PassManager typedef Pass PassClass; // SubPassClass - The types of classes that should be collated together typedef MethodPass SubPassClass; // BatcherClass - The type to use for collation of subtypes... typedef PassManagerT BatcherClass; // ParentClass - The type of the parent PassManager... typedef AnalysisResolver ParentClass; // runPass - Specify how the pass should be run on the UnitType static bool runPass(PassClass *P, Module *M) { return P->run(M); } // getPMName() - Return the name of the unit the PassManager operates on for // debugging. const char *getPMName() const { return "Module"; } // run - Implement the Pass interface... virtual bool run(Module *M) { return ((PassManagerT*)this)->runOnUnit(M); } }; //===----------------------------------------------------------------------===// // PassManagerTraits Method Implementations // // PassManagerTraits Implementations // inline bool PassManagerTraits::doInitialization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doInitialization(M); return Changed; } inline bool PassManagerTraits::runOnBasicBlock(BasicBlock *BB) { return ((PMType*)this)->runOnUnit(BB); } inline bool PassManagerTraits::doFinalization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doFinalization(M); return Changed; } // PassManagerTraits Implementations // inline bool PassManagerTraits::doInitialization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doInitialization(M); return Changed; } inline bool PassManagerTraits::runOnMethod(Function *M) { return ((PMType*)this)->runOnUnit(M); } inline bool PassManagerTraits::doFinalization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doFinalization(M); return Changed; } #endif