// $Id$ -*-c++-*- //*************************************************************************** // File: // InstrSelection.cpp // // Purpose: // Machine-independent driver file for instruction selection. // This file constructs a forest of BURG instruction trees and then // uses the BURG-generated tree grammar (BURM) to find the optimal // instruction sequences for a given machine. // // History: // 7/02/01 - Vikram Adve - Created //**************************************************************************/ #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/InstrSelectionSupport.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/InstrForest.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineCodeForMethod.h" #include "llvm/Target/MachineRegInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/iPHINode.h" #include "Support/CommandLine.h" #include using std::cerr; //******************** Internal Data Declarations ************************/ // Use a static vector to avoid allocating a new one per VM instruction static MachineInstr* minstrVec[MAX_INSTR_PER_VMINSTR]; enum SelectDebugLevel_t { Select_NoDebugInfo, Select_PrintMachineCode, Select_DebugInstTrees, Select_DebugBurgTrees, }; // Enable Debug Options to be specified on the command line cl::Enum SelectDebugLevel("dselect", cl::NoFlags, "enable instruction selection debugging information", clEnumValN(Select_NoDebugInfo, "n", "disable debug output"), clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"), clEnumValN(Select_DebugInstTrees, "i", "print debugging info for instruction selection "), clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"), 0); //******************** Forward Function Declarations ***********************/ static bool SelectInstructionsForTree (InstrTreeNode* treeRoot, int goalnt, TargetMachine &target); static void PostprocessMachineCodeForTree(InstructionNode* instrNode, int ruleForNode, short* nts, TargetMachine &target); static void InsertCode4AllPhisInMeth(Method *method, TargetMachine &target); //******************* Externally Visible Functions *************************/ //--------------------------------------------------------------------------- // Entry point for instruction selection using BURG. // Returns true if instruction selection failed, false otherwise. //--------------------------------------------------------------------------- bool SelectInstructionsForMethod(Method* method, TargetMachine &target) { bool failed = false; // // Build the instruction trees to be given as inputs to BURG. // InstrForest instrForest(method); if (SelectDebugLevel >= Select_DebugInstTrees) { cerr << "\n\n*** Instruction trees for method " << (method->hasName()? method->getName() : "") << "\n\n"; instrForest.dump(); } // // Invoke BURG instruction selection for each tree // const std::hash_set &treeRoots = instrForest.getRootSet(); for (std::hash_set::const_iterator treeRootIter = treeRoots.begin(); treeRootIter != treeRoots.end(); ++treeRootIter) { InstrTreeNode* basicNode = *treeRootIter; // Invoke BURM to label each tree node with a state burm_label(basicNode); if (SelectDebugLevel >= Select_DebugBurgTrees) { printcover(basicNode, 1, 0); cerr << "\nCover cost == " << treecost(basicNode, 1, 0) << "\n\n"; printMatches(basicNode); } // Then recursively walk the tree to select instructions if (SelectInstructionsForTree(basicNode, /*goalnt*/1, target)) { failed = true; break; } } // // Record instructions in the vector for each basic block // for (Method::iterator BI = method->begin(); BI != method->end(); ++BI) { MachineCodeForBasicBlock& bbMvec = (*BI)->getMachineInstrVec(); for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II) { MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(*II); for (unsigned i=0; i < mvec.size(); i++) bbMvec.push_back(mvec[i]); } } // Insert phi elimination code -- added by Ruchira InsertCode4AllPhisInMeth(method, target); if (SelectDebugLevel >= Select_PrintMachineCode) { cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n"; MachineCodeForMethod::get(method).dump(); } return false; } //*********************** Private Functions *****************************/ //------------------------------------------------------------------------- // Thid method inserts a copy instruction to a predecessor BB as a result // of phi elimination. //------------------------------------------------------------------------- void InsertPhiElimInst(BasicBlock *BB, MachineInstr *CpMI) { Instruction *TermInst = (Instruction*)BB->getTerminator(); MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst); MachineInstr *FirstMIOfTerm = *( MC4Term.begin() ); assert( FirstMIOfTerm && "No Machine Instrs for terminator" ); // get an iterator to machine instructions in the BB MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec(); MachineCodeForBasicBlock::iterator MCIt = bbMvec.begin(); // find the position of first machine instruction generated by the // terminator of this BB for( ; (MCIt != bbMvec.end()) && (*MCIt != FirstMIOfTerm) ; ++MCIt ) ; assert( MCIt != bbMvec.end() && "Start inst of terminator not found"); // insert the copy instruction just before the first machine instruction // generated for the terminator bbMvec.insert( MCIt , CpMI ); //cerr << "\nPhiElimination copy inst: " << *CopyInstVec[0]; } #if 0 //------------------------------------------------------------------------- // This method inserts phi elimination code for all BBs in a method //------------------------------------------------------------------------- void InsertCode4AllPhisInMeth(Method *method, TargetMachine &target) { // for all basic blocks in method // for (Method::iterator BI = method->begin(); BI != method->end(); ++BI) { BasicBlock *BB = *BI; const BasicBlock::InstListType &InstList = BB->getInstList(); BasicBlock::InstListType::const_iterator IIt = InstList.begin(); // for all instructions in the basic block // for( ; IIt != InstList.end(); ++IIt ) { if( (*IIt)->getOpcode() == Instruction::PHINode ) { PHINode *PN = (PHINode *) (*IIt); // for each incoming value of the phi, insert phi elimination // for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) { // insert the copy instruction to the predecessor BB std::vector CopyInstVec; MachineInstr *CpMI = target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PN); InsertPhiElimInst( PN->getIncomingBlock(i), CpMI); } } else break; // since PHI nodes can only be at the top } // for each Phi Instr in BB } // for all BBs in method } #endif //------------------------------------------------------------------------- // This method inserts phi elimination code for all BBs in a method //------------------------------------------------------------------------- void InsertCode4AllPhisInMeth(Method *method, TargetMachine &target) { // for all basic blocks in method // for (Method::iterator BI = method->begin(); BI != method->end(); ++BI) { BasicBlock *BB = *BI; const BasicBlock::InstListType &InstList = BB->getInstList(); BasicBlock::InstListType::const_iterator IIt = InstList.begin(); // for all instructions in the basic block // for( ; IIt != InstList.end(); ++IIt ) { if( (*IIt)->getOpcode() == Instruction::PHINode ) { PHINode *PN = (PHINode *) (*IIt); Value *PhiCpRes = new Value(PN->getType(), PN->getValueType(),"PhiCp:"); // for each incoming value of the phi, insert phi elimination // for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) { // insert the copy instruction to the predecessor BB MachineInstr *CpMI = target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes); InsertPhiElimInst(PN->getIncomingBlock(i), CpMI); } MachineInstr *CpMI2 = target.getRegInfo().cpValue2Value(PhiCpRes, PN); // get an iterator to machine instructions in the BB MachineCodeForBasicBlock& bbMvec = BB->getMachineInstrVec(); bbMvec.insert( bbMvec.begin(), CpMI2); } else break; // since PHI nodes can only be at the top } // for each Phi Instr in BB } // for all BBs in method } //--------------------------------------------------------------------------- // Function PostprocessMachineCodeForTree // // Apply any final cleanups to machine code for the root of a subtree // after selection for all its children has been completed. //--------------------------------------------------------------------------- static void PostprocessMachineCodeForTree(InstructionNode* instrNode, int ruleForNode, short* nts, TargetMachine &target) { // Fix up any constant operands in the machine instructions to either // use an immediate field or to load the constant into a register // Walk backwards and use direct indexes to allow insertion before current // Instruction* vmInstr = instrNode->getInstruction(); MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr); for (int i = (int) mvec.size()-1; i >= 0; i--) { std::vector loadConstVec = FixConstantOperandsForInstr(vmInstr, mvec[i], target); if (loadConstVec.size() > 0) mvec.insert(mvec.begin()+i, loadConstVec.begin(), loadConstVec.end()); } } //--------------------------------------------------------------------------- // Function SelectInstructionsForTree // // Recursively walk the tree to select instructions. // Do this top-down so that child instructions can exploit decisions // made at the child instructions. // // E.g., if br(setle(reg,const)) decides the constant is 0 and uses // a branch-on-integer-register instruction, then the setle node // can use that information to avoid generating the SUBcc instruction. // // Note that this cannot be done bottom-up because setle must do this // only if it is a child of the branch (otherwise, the result of setle // may be used by multiple instructions). //--------------------------------------------------------------------------- bool SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt, TargetMachine &target) { // Get the rule that matches this node. // int ruleForNode = burm_rule(treeRoot->state, goalnt); if (ruleForNode == 0) { cerr << "Could not match instruction tree for instr selection\n"; assert(0); return true; } // Get this rule's non-terminals and the corresponding child nodes (if any) // short *nts = burm_nts[ruleForNode]; // First, select instructions for the current node and rule. // (If this is a list node, not an instruction, then skip this step). // This function is specific to the target architecture. // if (treeRoot->opLabel != VRegListOp) { InstructionNode* instrNode = (InstructionNode*)treeRoot; assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode); unsigned N = GetInstructionsByRule(instrNode, ruleForNode, nts, target, minstrVec); assert(N <= MAX_INSTR_PER_VMINSTR); MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(instrNode->getInstruction()); mvec.insert(mvec.end(), minstrVec, minstrVec+N); } // Then, recursively compile the child nodes, if any. // if (nts[0]) { // i.e., there is at least one kid InstrTreeNode* kids[2]; int currentRule = ruleForNode; burm_kids(treeRoot, currentRule, kids); // First skip over any chain rules so that we don't visit // the current node again. // while (ThisIsAChainRule(currentRule)) { currentRule = burm_rule(treeRoot->state, nts[0]); nts = burm_nts[currentRule]; burm_kids(treeRoot, currentRule, kids); } // Now we have the first non-chain rule so we have found // the actual child nodes. Recursively compile them. // for (int i = 0; nts[i]; i++) { assert(i < 2); InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType(); if (nodeType == InstrTreeNode::NTVRegListNode || nodeType == InstrTreeNode::NTInstructionNode) { if (SelectInstructionsForTree(kids[i], nts[i], target)) return true; // failure } } } // Finally, do any postprocessing on this node after its children // have been translated // if (treeRoot->opLabel != VRegListOp) { InstructionNode* instrNode = (InstructionNode*)treeRoot; PostprocessMachineCodeForTree(instrNode, ruleForNode, nts, target); } return false; // success }