//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef X86ISELLOWERING_H #define X86ISELLOWERING_H #include "X86MachineFunctionInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetTransformImpl.h" namespace llvm { namespace X86ISD { // X86 Specific DAG Nodes enum NodeType { // Start the numbering where the builtin ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, /// BSF - Bit scan forward. /// BSR - Bit scan reverse. BSF, BSR, /// SHLD, SHRD - Double shift instructions. These correspond to /// X86::SHLDxx and X86::SHRDxx instructions. SHLD, SHRD, /// FAND - Bitwise logical AND of floating point values. This corresponds /// to X86::ANDPS or X86::ANDPD. FAND, /// FOR - Bitwise logical OR of floating point values. This corresponds /// to X86::ORPS or X86::ORPD. FOR, /// FXOR - Bitwise logical XOR of floating point values. This corresponds /// to X86::XORPS or X86::XORPD. FXOR, /// FSRL - Bitwise logical right shift of floating point values. These /// corresponds to X86::PSRLDQ. FSRL, /// CALL - These operations represent an abstract X86 call /// instruction, which includes a bunch of information. In particular the /// operands of these node are: /// /// #0 - The incoming token chain /// #1 - The callee /// #2 - The number of arg bytes the caller pushes on the stack. /// #3 - The number of arg bytes the callee pops off the stack. /// #4 - The value to pass in AL/AX/EAX (optional) /// #5 - The value to pass in DL/DX/EDX (optional) /// /// The result values of these nodes are: /// /// #0 - The outgoing token chain /// #1 - The first register result value (optional) /// #2 - The second register result value (optional) /// CALL, /// RDTSC_DAG - This operation implements the lowering for /// readcyclecounter RDTSC_DAG, /// X86 compare and logical compare instructions. CMP, COMI, UCOMI, /// X86 bit-test instructions. BT, /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS /// operand, usually produced by a CMP instruction. SETCC, // Same as SETCC except it's materialized with a sbb and the value is all // one's or all zero's. SETCC_CARRY, // R = carry_bit ? ~0 : 0 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD. /// Operands are two FP values to compare; result is a mask of /// 0s or 1s. Generally DTRT for C/C++ with NaNs. FSETCCss, FSETCCsd, /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values, /// result in an integer GPR. Needs masking for scalar result. FGETSIGNx86, /// X86 conditional moves. Operand 0 and operand 1 are the two values /// to select from. Operand 2 is the condition code, and operand 3 is the /// flag operand produced by a CMP or TEST instruction. It also writes a /// flag result. CMOV, /// X86 conditional branches. Operand 0 is the chain operand, operand 1 /// is the block to branch if condition is true, operand 2 is the /// condition code, and operand 3 is the flag operand produced by a CMP /// or TEST instruction. BRCOND, /// Return with a flag operand. Operand 0 is the chain operand, operand /// 1 is the number of bytes of stack to pop. RET_FLAG, /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. REP_STOS, /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. REP_MOVS, /// GlobalBaseReg - On Darwin, this node represents the result of the popl /// at function entry, used for PIC code. GlobalBaseReg, /// Wrapper - A wrapper node for TargetConstantPool, /// TargetExternalSymbol, and TargetGlobalAddress. Wrapper, /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP /// relative displacements. WrapperRIP, /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector /// to an MMX vector. If you think this is too close to the previous /// mnemonic, so do I; blame Intel. MOVDQ2Q, /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX /// vector to a GPR. MMX_MOVD2W, /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRB. PEXTRB, /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRW. PEXTRW, /// INSERTPS - Insert any element of a 4 x float vector into any element /// of a destination 4 x floatvector. INSERTPS, /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRB. PINSRB, /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRW. PINSRW, MMX_PINSRW, /// PSHUFB - Shuffle 16 8-bit values within a vector. PSHUFB, /// ANDNP - Bitwise Logical AND NOT of Packed FP values. ANDNP, /// PSIGN - Copy integer sign. PSIGN, /// BLENDV - Blend where the selector is a register. BLENDV, /// BLENDI - Blend where the selector is an immediate. BLENDI, /// HADD - Integer horizontal add. HADD, /// HSUB - Integer horizontal sub. HSUB, /// FHADD - Floating point horizontal add. FHADD, /// FHSUB - Floating point horizontal sub. FHSUB, /// FMAX, FMIN - Floating point max and min. /// FMAX, FMIN, /// FMAXC, FMINC - Commutative FMIN and FMAX. FMAXC, FMINC, /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal /// approximation. Note that these typically require refinement /// in order to obtain suitable precision. FRSQRT, FRCP, // TLSADDR - Thread Local Storage. TLSADDR, // TLSBASEADDR - Thread Local Storage. A call to get the start address // of the TLS block for the current module. TLSBASEADDR, // TLSCALL - Thread Local Storage. When calling to an OS provided // thunk at the address from an earlier relocation. TLSCALL, // EH_RETURN - Exception Handling helpers. EH_RETURN, // EH_SJLJ_SETJMP - SjLj exception handling setjmp. EH_SJLJ_SETJMP, // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. EH_SJLJ_LONGJMP, /// TC_RETURN - Tail call return. /// operand #0 chain /// operand #1 callee (register or absolute) /// operand #2 stack adjustment /// operand #3 optional in flag TC_RETURN, // VZEXT_MOVL - Vector move low and zero extend. VZEXT_MOVL, // VSEXT_MOVL - Vector move low and sign extend. VSEXT_MOVL, // VZEXT - Vector integer zero-extend. VZEXT, // VSEXT - Vector integer signed-extend. VSEXT, // VFPEXT - Vector FP extend. VFPEXT, // VFPROUND - Vector FP round. VFPROUND, // VSHL, VSRL - 128-bit vector logical left / right shift VSHLDQ, VSRLDQ, // VSHL, VSRL, VSRA - Vector shift elements VSHL, VSRL, VSRA, // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate VSHLI, VSRLI, VSRAI, // CMPP - Vector packed double/float comparison. CMPP, // PCMP* - Vector integer comparisons. PCMPEQ, PCMPGT, // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results. ADD, SUB, ADC, SBB, SMUL, INC, DEC, OR, XOR, AND, ANDN, // ANDN - Bitwise AND NOT with FLAGS results. BLSI, // BLSI - Extract lowest set isolated bit BLSMSK, // BLSMSK - Get mask up to lowest set bit BLSR, // BLSR - Reset lowest set bit UMUL, // LOW, HI, FLAGS = umul LHS, RHS // MUL_IMM - X86 specific multiply by immediate. MUL_IMM, // PTEST - Vector bitwise comparisons PTEST, // TESTP - Vector packed fp sign bitwise comparisons TESTP, // Several flavors of instructions with vector shuffle behaviors. PALIGN, PSHUFD, PSHUFHW, PSHUFLW, SHUFP, MOVDDUP, MOVSHDUP, MOVSLDUP, MOVLHPS, MOVLHPD, MOVHLPS, MOVLPS, MOVLPD, MOVSD, MOVSS, UNPCKL, UNPCKH, VPERMILP, VPERMV, VPERMI, VPERM2X128, VBROADCAST, // PMULUDQ - Vector multiply packed unsigned doubleword integers PMULUDQ, // FMA nodes FMADD, FNMADD, FMSUB, FNMSUB, FMADDSUB, FMSUBADD, // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack, // according to %al. An operator is needed so that this can be expanded // with control flow. VASTART_SAVE_XMM_REGS, // WIN_ALLOCA - Windows's _chkstk call to do stack probing. WIN_ALLOCA, // SEG_ALLOCA - For allocating variable amounts of stack space when using // segmented stacks. Check if the current stacklet has enough space, and // falls back to heap allocation if not. SEG_ALLOCA, // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui. WIN_FTOL, // Memory barrier MEMBARRIER, MFENCE, SFENCE, LFENCE, // FNSTSW16r - Store FP status word into i16 register. FNSTSW16r, // SAHF - Store contents of %ah into %eflags. SAHF, // RDRAND - Get a random integer and indicate whether it is valid in CF. RDRAND, // PCMP*STRI PCMPISTRI, PCMPESTRI, // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - // Atomic 64-bit binary operations. ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMXOR64_DAG, ATOMAND64_DAG, ATOMNAND64_DAG, ATOMMAX64_DAG, ATOMMIN64_DAG, ATOMUMAX64_DAG, ATOMUMIN64_DAG, ATOMSWAP64_DAG, // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap. LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG, // VZEXT_LOAD - Load, scalar_to_vector, and zero extend. VZEXT_LOAD, // FNSTCW16m - Store FP control world into i16 memory. FNSTCW16m, /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the /// integer destination in memory and a FP reg source. This corresponds /// to the X86::FIST*m instructions and the rounding mode change stuff. It /// has two inputs (token chain and address) and two outputs (int value /// and token chain). FP_TO_INT16_IN_MEM, FP_TO_INT32_IN_MEM, FP_TO_INT64_IN_MEM, /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the /// integer source in memory and FP reg result. This corresponds to the /// X86::FILD*m instructions. It has three inputs (token chain, address, /// and source type) and two outputs (FP value and token chain). FILD_FLAG /// also produces a flag). FILD, FILD_FLAG, /// FLD - This instruction implements an extending load to FP stack slots. /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain /// operand, ptr to load from, and a ValueType node indicating the type /// to load to. FLD, /// FST - This instruction implements a truncating store to FP stack /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a /// chain operand, value to store, address, and a ValueType to store it /// as. FST, /// VAARG_64 - This instruction grabs the address of the next argument /// from a va_list. (reads and modifies the va_list in memory) VAARG_64 // WARNING: Do not add anything in the end unless you want the node to // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be // thought as target memory ops! }; } /// Define some predicates that are used for node matching. namespace X86 { /// isVEXTRACTF128Index - Return true if the specified /// EXTRACT_SUBVECTOR operand specifies a vector extract that is /// suitable for input to VEXTRACTF128. bool isVEXTRACTF128Index(SDNode *N); /// isVINSERTF128Index - Return true if the specified /// INSERT_SUBVECTOR operand specifies a subvector insert that is /// suitable for input to VINSERTF128. bool isVINSERTF128Index(SDNode *N); /// getExtractVEXTRACTF128Immediate - Return the appropriate /// immediate to extract the specified EXTRACT_SUBVECTOR index /// with VEXTRACTF128 instructions. unsigned getExtractVEXTRACTF128Immediate(SDNode *N); /// getInsertVINSERTF128Immediate - Return the appropriate /// immediate to insert at the specified INSERT_SUBVECTOR index /// with VINSERTF128 instructions. unsigned getInsertVINSERTF128Immediate(SDNode *N); /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. bool isZeroNode(SDValue Elt); /// isOffsetSuitableForCodeModel - Returns true of the given offset can be /// fit into displacement field of the instruction. bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement = true); /// isCalleePop - Determines whether the callee is required to pop its /// own arguments. Callee pop is necessary to support tail calls. bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool TailCallOpt); } //===--------------------------------------------------------------------===// // X86TargetLowering - X86 Implementation of the TargetLowering interface class X86TargetLowering : public TargetLowering { public: explicit X86TargetLowering(X86TargetMachine &TM); virtual unsigned getJumpTableEncoding() const; virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; } virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const; /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC /// jumptable. virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const; virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const; /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contains are placed at 16-byte boundaries while the rest are at /// 4-byte boundaries. virtual unsigned getByValTypeAlignment(Type *Ty) const; /// getOptimalMemOpType - Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If /// 'IsZeroVal' is true, that means it's safe to return a /// non-scalar-integer type, e.g. empty string source, constant, or loaded /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is /// constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. virtual EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsZeroVal, bool MemcpyStrSrc, MachineFunction &MF) const; /// allowsUnalignedMemoryAccesses - Returns true if the target allows /// unaligned memory accesses. of the specified type. virtual bool allowsUnalignedMemoryAccesses(EVT VT) const { return true; } /// LowerOperation - Provide custom lowering hooks for some operations. /// virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const; virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; /// isTypeDesirableForOp - Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 /// instruction encodings are longer and some i16 instructions are slow. virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const; /// isTypeDesirable - Return true if the target has native support for the /// specified value type and it is 'desirable' to use the type. e.g. On x86 /// i16 is legal, but undesirable since i16 instruction encodings are longer /// and some i16 instructions are slow. virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const; virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; /// getTargetNodeName - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// getSetCCResultType - Return the value type to use for ISD::SETCC. virtual EVT getSetCCResultType(EVT VT) const; /// computeMaskedBitsForTargetNode - Determine which of the bits specified /// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const; // ComputeNumSignBitsForTargetNode - Determine the number of bits in the // operation that are sign bits. virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, unsigned Depth) const; virtual bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const; virtual bool ExpandInlineAsm(CallInst *CI) const; ConstraintType getConstraintType(const std::string &Constraint) const; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const; virtual const char *LowerXConstraint(EVT ConstraintVT) const; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. If hasMemory is /// true it means one of the asm constraint of the inline asm instruction /// being processed is 'm'. virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const; /// getRegForInlineAsmConstraint - Given a physical register constraint /// (e.g. {edx}), return the register number and the register class for the /// register. This should only be used for C_Register constraints. On /// error, this returns a register number of 0. std::pair getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const; /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. virtual bool isLegalICmpImmediate(int64_t Imm) const; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. virtual bool isLegalAddImmediate(int64_t Imm) const; /// isTruncateFree - Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const; virtual bool isTruncateFree(EVT VT1, EVT VT2) const; /// isZExtFree - Return true if any actual instruction that defines a /// value of type Ty1 implicit zero-extends the value to Ty2 in the result /// register. This does not necessarily include registers defined in /// unknown ways, such as incoming arguments, or copies from unknown /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this /// does not necessarily apply to truncate instructions. e.g. on x86-64, /// all instructions that define 32-bit values implicit zero-extend the /// result out to 64 bits. virtual bool isZExtFree(Type *Ty1, Type *Ty2) const; virtual bool isZExtFree(EVT VT1, EVT VT2) const; virtual bool isZExtFree(SDValue Val, EVT VT2) const; /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd /// is expanded to mul + add. virtual bool isFMAFasterThanMulAndAdd(EVT) const { return true; } /// isNarrowingProfitable - Return true if it's profitable to narrow /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow /// from i32 to i8 but not from i32 to i16. virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const; /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const; /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask /// values are assumed to be legal. virtual bool isShuffleMaskLegal(const SmallVectorImpl &Mask, EVT VT) const; /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is /// used by Targets can use this to indicate if there is a suitable /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant /// pool entry. virtual bool isVectorClearMaskLegal(const SmallVectorImpl &Mask, EVT VT) const; /// ShouldShrinkFPConstant - If true, then instruction selection should /// seek to shrink the FP constant of the specified type to a smaller type /// in order to save space and / or reduce runtime. virtual bool ShouldShrinkFPConstant(EVT VT) const { // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more // expensive than a straight movsd. On the other hand, it's important to // shrink long double fp constant since fldt is very slow. return !X86ScalarSSEf64 || VT == MVT::f80; } const X86Subtarget* getSubtarget() const { return Subtarget; } /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(EVT VT) const { return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 } /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine /// for fptoui. bool isTargetFTOL() const { return Subtarget->isTargetWindows() && !Subtarget->is64Bit(); } /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be /// used for fptoui to the given type. bool isIntegerTypeFTOL(EVT VT) const { return isTargetFTOL() && VT == MVT::i64; } /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const; /// getStackCookieLocation - Return true if the target stores stack /// protector cookies at a fixed offset in some non-standard address /// space, and populates the address space and offset as /// appropriate. virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const; SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, SelectionDAG &DAG) const; protected: std::pair findRepresentativeClass(EVT VT) const; private: /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; const X86RegisterInfo *RegInfo; const DataLayout *TD; /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 /// floating point ops. /// When SSE is available, use it for f32 operations. /// When SSE2 is available, use it for f64 operations. bool X86ScalarSSEf32; bool X86ScalarSSEf64; /// LegalFPImmediates - A list of legal fp immediates. std::vector LegalFPImmediates; /// addLegalFPImmediate - Indicate that this x86 target can instruction /// select the specified FP immediate natively. void addLegalFPImmediate(const APFloat& Imm) { LegalFPImmediates.push_back(Imm); } SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, const SmallVectorImpl &ArgInfo, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned i) const; SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, DebugLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const; // Call lowering helpers. /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const; SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, DebugLoc dl) const; unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG) const; std::pair FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned, bool isReplace) const; SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, SelectionDAG &DAG) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, int64_t Offset, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const; SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const; SDValue lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; SDValue lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToBT(SDValue And, ISD::CondCode CC, DebugLoc dl, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const; SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; // Utility functions to help LowerVECTOR_SHUFFLE & LowerBUILD_VECTOR SDValue LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const; SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const; SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const; virtual SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; virtual SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const; virtual SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const; virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const; virtual bool mayBeEmittedAsTailCall(CallInst *CI) const; virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, ISD::NodeType ExtendKind) const; virtual bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const; /// Utility function to emit atomic-load-arith operations (and, or, xor, /// nand, max, min, umax, umin). It takes the corresponding instruction to /// expand, the associated machine basic block, and the associated X86 /// opcodes for reg/reg. MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI, MachineBasicBlock *MBB) const; /// Utility function to emit atomic-load-arith operations (and, or, xor, /// nand, add, sub, swap) for 64-bit operands on 32-bit target. MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI, MachineBasicBlock *MBB) const; // Utility function to emit the low-level va_arg code for X86-64. MachineBasicBlock *EmitVAARG64WithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const; /// Utility function to emit the xmm reg save portion of va_start. MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter( MachineInstr *BInstr, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredSelect(MachineInstr *I, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB, bool Is64Bit) const; MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const; /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent, for use with the given x86 condition code. SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const; /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent, for use with the given x86 condition code. SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SelectionDAG &DAG) const; /// Convert a comparison if required by the subtarget. SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const; }; namespace X86 { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } class X86ScalarTargetTransformImpl : public ScalarTargetTransformImpl { public: explicit X86ScalarTargetTransformImpl(const TargetLowering *TL) : ScalarTargetTransformImpl(TL) {}; virtual PopcntHwSupport getPopcntHwSupport(unsigned TyWidth) const; }; class X86VectorTargetTransformInfo : public VectorTargetTransformImpl { public: explicit X86VectorTargetTransformInfo(const TargetLowering *TL) : VectorTargetTransformImpl(TL) {} virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const; unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const; virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const; }; } #endif // X86ISELLOWERING_H