//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H #define LLVM_CODEGEN_MACHINEFRAMEINFO_H #include namespace llvm { class TargetData; class TargetRegisterClass; class Type; class MachineDebugInfo; class MachineFunction; /// The CalleeSavedInfo class tracks the information need to locate where a /// callee saved register in the current frame. class CalleeSavedInfo { private: unsigned Reg; const TargetRegisterClass *RegClass; int FrameIdx; public: CalleeSavedInfo(unsigned R, const TargetRegisterClass *RC, int FI = 0) : Reg(R) , RegClass(RC) , FrameIdx(FI) {} // Accessors. unsigned getReg() const { return Reg; } const TargetRegisterClass *getRegClass() const { return RegClass; } int getFrameIdx() const { return FrameIdx; } void setFrameIdx(int FI) { FrameIdx = FI; } }; /// The MachineFrameInfo class represents an abstract stack frame until /// prolog/epilog code is inserted. This class is key to allowing stack frame /// representation optimizations, such as frame pointer elimination. It also /// allows more mundane (but still important) optimizations, such as reordering /// of abstract objects on the stack frame. /// /// To support this, the class assigns unique integer identifiers to stack /// objects requested clients. These identifiers are negative integers for /// fixed stack objects (such as arguments passed on the stack) or positive /// for objects that may be reordered. Instructions which refer to stack /// objects use a special MO_FrameIndex operand to represent these frame /// indexes. /// /// Because this class keeps track of all references to the stack frame, it /// knows when a variable sized object is allocated on the stack. This is the /// sole condition which prevents frame pointer elimination, which is an /// important optimization on register-poor architectures. Because original /// variable sized alloca's in the source program are the only source of /// variable sized stack objects, it is safe to decide whether there will be /// any variable sized objects before all stack objects are known (for /// example, register allocator spill code never needs variable sized /// objects). /// /// When prolog/epilog code emission is performed, the final stack frame is /// built and the machine instructions are modified to refer to the actual /// stack offsets of the object, eliminating all MO_FrameIndex operands from /// the program. /// /// @brief Abstract Stack Frame Information class MachineFrameInfo { // StackObject - Represent a single object allocated on the stack. struct StackObject { // The size of this object on the stack. 0 means a variable sized object unsigned Size; // Alignment - The required alignment of this stack slot. unsigned Alignment; // SPOffset - The offset of this object from the stack pointer on entry to // the function. This field has no meaning for a variable sized element. int SPOffset; StackObject(unsigned Sz, unsigned Al, int SP) : Size(Sz), Alignment(Al), SPOffset(SP) {} }; /// Objects - The list of stack objects allocated... /// std::vector Objects; /// NumFixedObjects - This contains the number of fixed objects contained on /// the stack. Because fixed objects are stored at a negative index in the /// Objects list, this is also the index to the 0th object in the list. /// unsigned NumFixedObjects; /// HasVarSizedObjects - This boolean keeps track of whether any variable /// sized objects have been allocated yet. /// bool HasVarSizedObjects; /// StackSize - The prolog/epilog code inserter calculates the final stack /// offsets for all of the fixed size objects, updating the Objects list /// above. It then updates StackSize to contain the number of bytes that need /// to be allocated on entry to the function. /// unsigned StackSize; /// OffsetAdjustment - The amount that a frame offset needs to be adjusted to /// have the actual offset from the stack/frame pointer. The calculation is /// MFI->getObjectOffset(Index) + StackSize - TFI.getOffsetOfLocalArea() + /// OffsetAdjustment. If OffsetAdjustment is zero (default) then offsets are /// away from TOS. If OffsetAdjustment == StackSize then offsets are toward /// TOS. int OffsetAdjustment; /// MaxAlignment - The prolog/epilog code inserter may process objects /// that require greater alignment than the default alignment the target /// provides. To handle this, MaxAlignment is set to the maximum alignment /// needed by the objects on the current frame. If this is greater than the /// native alignment maintained by the compiler, dynamic alignment code will /// be needed. /// unsigned MaxAlignment; /// HasCalls - Set to true if this function has any function calls. This is /// only valid during and after prolog/epilog code insertion. bool HasCalls; /// MaxCallFrameSize - This contains the size of the largest call frame if the /// target uses frame setup/destroy pseudo instructions (as defined in the /// TargetFrameInfo class). This information is important for frame pointer /// elimination. If is only valid during and after prolog/epilog code /// insertion. /// unsigned MaxCallFrameSize; /// CSInfo - The prolog/epilog code inserter fills in this vector with each /// callee saved register saved in the frame. Beyond its use by the prolog/ /// epilog code inserter, this data used for debug info and exception /// handling. std::vector CSInfo; /// DebugInfo - This field is set (via setMachineDebugInfo) by a debug info /// consumer (ex. DwarfWriter) to indicate that frame layout information /// should be acquired. Typically, it's the responsibility of the target's /// MRegisterInfo prologue/epilogue emitting code to inform MachineDebugInfo /// of frame layouts. MachineDebugInfo *DebugInfo; public: MachineFrameInfo() { NumFixedObjects = StackSize = OffsetAdjustment = MaxAlignment = 0; HasVarSizedObjects = false; HasCalls = false; MaxCallFrameSize = 0; DebugInfo = 0; } /// hasStackObjects - Return true if there are any stack objects in this /// function. /// bool hasStackObjects() const { return !Objects.empty(); } /// hasVarSizedObjects - This method may be called any time after instruction /// selection is complete to determine if the stack frame for this function /// contains any variable sized objects. /// bool hasVarSizedObjects() const { return HasVarSizedObjects; } /// getObjectIndexBegin - Return the minimum frame object index... /// int getObjectIndexBegin() const { return -NumFixedObjects; } /// getObjectIndexEnd - Return one past the maximum frame object index... /// int getObjectIndexEnd() const { return Objects.size()-NumFixedObjects; } /// getObjectSize - Return the size of the specified object /// int getObjectSize(int ObjectIdx) const { assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!"); return Objects[ObjectIdx+NumFixedObjects].Size; } /// getObjectAlignment - Return the alignment of the specified stack object... int getObjectAlignment(int ObjectIdx) const { assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!"); return Objects[ObjectIdx+NumFixedObjects].Alignment; } /// getObjectOffset - Return the assigned stack offset of the specified object /// from the incoming stack pointer. /// int getObjectOffset(int ObjectIdx) const { assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!"); return Objects[ObjectIdx+NumFixedObjects].SPOffset; } /// setObjectOffset - Set the stack frame offset of the specified object. The /// offset is relative to the stack pointer on entry to the function. /// void setObjectOffset(int ObjectIdx, int SPOffset) { assert(ObjectIdx+NumFixedObjects < Objects.size() && "Invalid Object Idx!"); Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; } /// getStackSize - Return the number of bytes that must be allocated to hold /// all of the fixed size frame objects. This is only valid after /// Prolog/Epilog code insertion has finalized the stack frame layout. /// unsigned getStackSize() const { return StackSize; } /// setStackSize - Set the size of the stack... /// void setStackSize(unsigned Size) { StackSize = Size; } /// getOffsetAdjustment - Return the correction for frame offsets. /// int getOffsetAdjustment() const { return OffsetAdjustment; } /// setOffsetAdjustment - Set the correction for frame offsets. /// void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } /// getMaxAlignment - Return the alignment in bytes that this function must be /// aligned to, which is greater than the default stack alignment provided by /// the target. /// unsigned getMaxAlignment() const { return MaxAlignment; } /// setMaxAlignment - Set the preferred alignment. /// void setMaxAlignment(unsigned Align) { MaxAlignment = Align; } /// hasCalls - Return true if the current function has no function calls. /// This is only valid during or after prolog/epilog code emission. /// bool hasCalls() const { return HasCalls; } void setHasCalls(bool V) { HasCalls = V; } /// getMaxCallFrameSize - Return the maximum size of a call frame that must be /// allocated for an outgoing function call. This is only available if /// CallFrameSetup/Destroy pseudo instructions are used by the target, and /// then only during or after prolog/epilog code insertion. /// unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; } void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } /// CreateFixedObject - Create a new object at a fixed location on the stack. /// All fixed objects should be created before other objects are created for /// efficiency. This returns an index with a negative value. /// int CreateFixedObject(unsigned Size, int SPOffset) { assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset)); return -++NumFixedObjects; } /// CreateStackObject - Create a new statically sized stack object, returning /// a postive identifier to represent it. /// int CreateStackObject(unsigned Size, unsigned Alignment) { // Keep track of the maximum alignment. if (MaxAlignment < Alignment) MaxAlignment = Alignment; assert(Size != 0 && "Cannot allocate zero size stack objects!"); Objects.push_back(StackObject(Size, Alignment, -1)); return Objects.size()-NumFixedObjects-1; } /// CreateVariableSizedObject - Notify the MachineFrameInfo object that a /// variable sized object has been created. This must be created whenever a /// variable sized object is created, whether or not the index returned is /// actually used. /// int CreateVariableSizedObject() { HasVarSizedObjects = true; if (MaxAlignment < 1) MaxAlignment = 1; Objects.push_back(StackObject(0, 1, -1)); return Objects.size()-NumFixedObjects-1; } /// getCalleeSavedInfo - Returns a reference to call saved info vector for the /// current function. const std::vector &getCalleeSavedInfo() const { return CSInfo; } /// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's /// callee saved information. void setCalleeSavedInfo(const std::vector &CSI) { CSInfo = CSI; } /// getMachineDebugInfo - Used by a prologue/epilogue emitter (MRegisterInfo) /// to provide frame layout information. MachineDebugInfo *getMachineDebugInfo() const { return DebugInfo; } /// setMachineDebugInfo - Used by a debug consumer (DwarfWriter) to indicate /// that frame layout information should be gathered. void setMachineDebugInfo(MachineDebugInfo *DI) { DebugInfo = DI; } /// print - Used by the MachineFunction printer to print information about /// stack objects. Implemented in MachineFunction.cpp /// void print(const MachineFunction &MF, std::ostream &OS) const; /// dump - Call print(MF, std::cerr) to be called from the debugger. void dump(const MachineFunction &MF) const; }; } // End llvm namespace #endif