//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "liveintervals" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "VirtRegMap.h" #include "llvm/Value.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; STATISTIC(numIntervals, "Number of original intervals"); STATISTIC(numIntervalsAfter, "Number of intervals after coalescing"); STATISTIC(numFolded , "Number of loads/stores folded into instructions"); char LiveIntervals::ID = 0; namespace { RegisterPass X("liveintervals", "Live Interval Analysis"); } void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addRequired(); AU.addPreservedID(PHIEliminationID); AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { mi2iMap_.clear(); i2miMap_.clear(); r2iMap_.clear(); } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); lv_ = &getAnalysis(); allocatableRegs_ = mri_->getAllocatableSet(fn); // Number MachineInstrs and MachineBasicBlocks. // Initialize MBB indexes to a sentinal. MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U); unsigned MIIndex = 0; for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end(); MBB != E; ++MBB) { // Set the MBB2IdxMap entry for this MBB. MBB2IdxMap[MBB->getNumber()] = MIIndex; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second; assert(inserted && "multiple MachineInstr -> index mappings"); i2miMap_.push_back(I); MIIndex += InstrSlots::NUM; } } computeIntervals(); numIntervals += getNumIntervals(); DOUT << "********** INTERVALS **********\n"; for (iterator I = begin(), E = end(); I != E; ++I) { I->second.print(DOUT, mri_); DOUT << "\n"; } numIntervalsAfter += getNumIntervals(); DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(std::ostream &O, const Module* ) const { O << "********** INTERVALS **********\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) { I->second.print(DOUT, mri_); DOUT << "\n"; } O << "********** MACHINEINSTRS **********\n"; for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; for (MachineBasicBlock::iterator mii = mbbi->begin(), mie = mbbi->end(); mii != mie; ++mii) { O << getInstructionIndex(mii) << '\t' << *mii; } } } // Not called? /// CreateNewLiveInterval - Create a new live interval with the given live /// ranges. The new live interval will have an infinite spill weight. LiveInterval& LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI, const std::vector &LRs) { const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg); // Create a new virtual register for the spill interval. unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC); // Replace the old virtual registers in the machine operands with the shiny // new one. for (std::vector::const_iterator I = LRs.begin(), E = LRs.end(); I != E; ++I) { unsigned Index = getBaseIndex(I->start); unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM; for (; Index != End; Index += InstrSlots::NUM) { // Skip deleted instructions while (Index != End && !getInstructionFromIndex(Index)) Index += InstrSlots::NUM; if (Index == End) break; MachineInstr *MI = getInstructionFromIndex(Index); for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) { MachineOperand &MOp = MI->getOperand(J); if (MOp.isRegister() && MOp.getReg() == LI->reg) MOp.setReg(NewVReg); } } } LiveInterval &NewLI = getOrCreateInterval(NewVReg); // The spill weight is now infinity as it cannot be spilled again NewLI.weight = float(HUGE_VAL); for (std::vector::const_iterator I = LRs.begin(), E = LRs.end(); I != E; ++I) { DOUT << " Adding live range " << *I << " to new interval\n"; NewLI.addRange(*I); } DOUT << "Created new live interval " << NewLI << "\n"; return NewLI; } std::vector LiveIntervals:: addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { // since this is called after the analysis is done we don't know if // LiveVariables is available lv_ = getAnalysisToUpdate(); std::vector added; assert(li.weight != HUGE_VALF && "attempt to spill already spilled interval!"); DOUT << "\t\t\t\tadding intervals for spills for interval: "; li.print(DOUT, mri_); DOUT << '\n'; const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); for (LiveInterval::Ranges::const_iterator i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { unsigned index = getBaseIndex(i->start); unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; for (; index != end; index += InstrSlots::NUM) { // skip deleted instructions while (index != end && !getInstructionFromIndex(index)) index += InstrSlots::NUM; if (index == end) break; MachineInstr *MI = getInstructionFromIndex(index); RestartInstruction: for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& mop = MI->getOperand(i); if (mop.isRegister() && mop.getReg() == li.reg) { MachineInstr *fmi = li.remat ? NULL : mri_->foldMemoryOperand(MI, i, slot); if (fmi) { // Attempt to fold the memory reference into the instruction. If we // can do this, we don't need to insert spill code. if (lv_) lv_->instructionChanged(MI, fmi); MachineBasicBlock &MBB = *MI->getParent(); vrm.virtFolded(li.reg, MI, i, fmi); mi2iMap_.erase(MI); i2miMap_[index/InstrSlots::NUM] = fmi; mi2iMap_[fmi] = index; MI = MBB.insert(MBB.erase(MI), fmi); ++numFolded; // Folding the load/store can completely change the instruction in // unpredictable ways, rescan it from the beginning. goto RestartInstruction; } else { // Create a new virtual register for the spill interval. unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc); // Scan all of the operands of this instruction rewriting operands // to use NewVReg instead of li.reg as appropriate. We do this for // two reasons: // // 1. If the instr reads the same spilled vreg multiple times, we // want to reuse the NewVReg. // 2. If the instr is a two-addr instruction, we are required to // keep the src/dst regs pinned. // // Keep track of whether we replace a use and/or def so that we can // create the spill interval with the appropriate range. mop.setReg(NewVReg); bool HasUse = mop.isUse(); bool HasDef = mop.isDef(); for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { if (MI->getOperand(j).isReg() && MI->getOperand(j).getReg() == li.reg) { MI->getOperand(j).setReg(NewVReg); HasUse |= MI->getOperand(j).isUse(); HasDef |= MI->getOperand(j).isDef(); } } // create a new register for this spill vrm.grow(); if (li.remat) vrm.setVirtIsReMaterialized(NewVReg, li.remat); vrm.assignVirt2StackSlot(NewVReg, slot); LiveInterval &nI = getOrCreateInterval(NewVReg); nI.remat = li.remat; assert(nI.empty()); // the spill weight is now infinity as it // cannot be spilled again nI.weight = HUGE_VALF; if (HasUse) { LiveRange LR(getLoadIndex(index), getUseIndex(index), nI.getNextValue(~0U, 0)); DOUT << " +" << LR; nI.addRange(LR); } if (HasDef) { LiveRange LR(getDefIndex(index), getStoreIndex(index), nI.getNextValue(~0U, 0)); DOUT << " +" << LR; nI.addRange(LR); } added.push_back(&nI); // update live variables if it is available if (lv_) lv_->addVirtualRegisterKilled(NewVReg, MI); DOUT << "\t\t\t\tadded new interval: "; nI.print(DOUT, mri_); DOUT << '\n'; } } } } } return added; } void LiveIntervals::printRegName(unsigned reg) const { if (MRegisterInfo::isPhysicalRegister(reg)) cerr << mri_->getName(reg); else cerr << "%reg" << reg; } /// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to /// two addr elimination. static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg, const TargetInstrInfo *TII) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO1 = MI->getOperand(i); if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) { for (unsigned j = i+1; j < e; ++j) { MachineOperand &MO2 = MI->getOperand(j); if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg && MI->getInstrDescriptor()-> getOperandConstraint(j, TOI::TIED_TO) == (int)i) return true; } } } return false; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, unsigned MIIdx, LiveInterval &interval) { DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. if (interval.empty()) { // Remember if the definition can be rematerialized. All load's from fixed // stack slots are re-materializable. The target may permit other // instructions to be re-materialized as well. int FrameIdx = 0; if (vi.DefInst && (tii_->isTriviallyReMaterializable(vi.DefInst) || (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) && mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx)))) interval.remat = vi.DefInst; // Get the Idx of the defining instructions. unsigned defIndex = getDefIndex(MIIdx); unsigned ValNum; unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*mi, SrcReg, DstReg)) ValNum = interval.getNextValue(~0U, 0); else ValNum = interval.getNextValue(defIndex, SrcReg); assert(ValNum == 0 && "First value in interval is not 0?"); ValNum = 0; // Clue in the optimizer. // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? unsigned killIdx; if (vi.Kills[0] != mi) killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; else killIdx = defIndex+1; // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.none() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNum); interval.addRange(LR); DOUT << " +" << LR << "\n"; return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); DOUT << " +" << NewLR; interval.addRange(NewLR); // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { if (vi.AliveBlocks[i]) { MachineBasicBlock *MBB = mf_->getBlockNumbered(i); if (!MBB->empty()) { LiveRange LR(getMBBStartIdx(i), getInstructionIndex(&MBB->back()) + InstrSlots::NUM, ValNum); interval.addRange(LR); DOUT << " +" << LR; } } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; LiveRange LR(getMBBStartIdx(Kill->getParent()), getUseIndex(getInstructionIndex(Kill))+1, ValNum); interval.addRange(LR); DOUT << " +" << LR; } } else { // Can no longer safely assume definition is rematerializable. interval.remat = NULL; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); unsigned RedefIndex = getDefIndex(MIIdx); // Delete the initial value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // Two-address vregs should always only be redefined once. This means // that at this point, there should be exactly one value number in it. assert(interval.containsOneValue() && "Unexpected 2-addr liveint!"); // The new value number (#1) is defined by the instruction we claimed // defined value #0. unsigned ValNo = interval.getNextValue(0, 0); interval.setValueNumberInfo(1, interval.getValNumInfo(0)); // Value#0 is now defined by the 2-addr instruction. interval.setValueNumberInfo(0, std::make_pair(~0U, 0U)); // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DOUT << " replace range with " << LR; interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (lv_->RegisterDefIsDead(mi, interval.reg)) interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0)); DOUT << " RESULT: "; interval.print(DOUT, mri_); } else { // Otherwise, this must be because of phi elimination. If this is the // first redefinition of the vreg that we have seen, go back and change // the live range in the PHI block to be a different value number. if (interval.containsOneValue()) { assert(vi.Kills.size() == 1 && "PHI elimination vreg should have one kill, the PHI itself!"); // Remove the old range that we now know has an incorrect number. MachineInstr *Killer = vi.Kills[0]; unsigned Start = getMBBStartIdx(Killer->getParent()); unsigned End = getUseIndex(getInstructionIndex(Killer))+1; DOUT << " Removing [" << Start << "," << End << "] from: "; interval.print(DOUT, mri_); DOUT << "\n"; interval.removeRange(Start, End); DOUT << " RESULT: "; interval.print(DOUT, mri_); // Replace the interval with one of a NEW value number. Note that this // value number isn't actually defined by an instruction, weird huh? :) LiveRange LR(Start, End, interval.getNextValue(~0U, 0)); DOUT << " replace range with " << LR; interval.addRange(LR); DOUT << " RESULT: "; interval.print(DOUT, mri_); } // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. unsigned defIndex = getDefIndex(MIIdx); unsigned ValNum; unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*mi, SrcReg, DstReg)) ValNum = interval.getNextValue(~0U, 0); else ValNum = interval.getNextValue(defIndex, SrcReg); LiveRange LR(defIndex, getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); interval.addRange(LR); DOUT << " +" << LR; } } DOUT << '\n'; } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator mi, unsigned MIIdx, LiveInterval &interval, unsigned SrcReg) { // A physical register cannot be live across basic block, so its // lifetime must end somewhere in its defining basic block. DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg)); unsigned baseIndex = MIIdx; unsigned start = getDefIndex(baseIndex); unsigned end = start; // If it is not used after definition, it is considered dead at // the instruction defining it. Hence its interval is: // [defSlot(def), defSlot(def)+1) if (lv_->RegisterDefIsDead(mi, interval.reg)) { DOUT << " dead"; end = getDefIndex(start) + 1; goto exit; } // If it is not dead on definition, it must be killed by a // subsequent instruction. Hence its interval is: // [defSlot(def), useSlot(kill)+1) while (++mi != MBB->end()) { baseIndex += InstrSlots::NUM; if (lv_->KillsRegister(mi, interval.reg)) { DOUT << " killed"; end = getUseIndex(baseIndex) + 1; goto exit; } else if (lv_->ModifiesRegister(mi, interval.reg)) { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that defines // it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DOUT << " dead"; end = getDefIndex(start) + 1; goto exit; } } // The only case we should have a dead physreg here without a killing or // instruction where we know it's dead is if it is live-in to the function // and never used. assert(!SrcReg && "physreg was not killed in defining block!"); end = getDefIndex(start) + 1; // It's dead. exit: assert(start < end && "did not find end of interval?"); // Already exists? Extend old live interval. LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start); unsigned Id = (OldLR != interval.end()) ? OldLR->ValId : interval.getNextValue(SrcReg != 0 ? start : ~0U, SrcReg); LiveRange LR(start, end, Id); interval.addRange(LR); DOUT << " +" << LR << '\n'; } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, unsigned MIIdx, unsigned reg) { if (MRegisterInfo::isVirtualRegister(reg)) handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg)); else if (allocatableRegs_[reg]) { unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) SrcReg = 0; handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg); // Def of a register also defines its sub-registers. for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS) // Avoid processing some defs more than once. if (!MI->findRegisterDefOperand(*AS)) handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0); } } void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB, unsigned MIIdx, LiveInterval &interval, bool isAlias) { DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg)); // Look for kills, if it reaches a def before it's killed, then it shouldn't // be considered a livein. MachineBasicBlock::iterator mi = MBB->begin(); unsigned baseIndex = MIIdx; unsigned start = baseIndex; unsigned end = start; while (mi != MBB->end()) { if (lv_->KillsRegister(mi, interval.reg)) { DOUT << " killed"; end = getUseIndex(baseIndex) + 1; goto exit; } else if (lv_->ModifiesRegister(mi, interval.reg)) { // Another instruction redefines the register before it is ever read. // Then the register is essentially dead at the instruction that defines // it. Hence its interval is: // [defSlot(def), defSlot(def)+1) DOUT << " dead"; end = getDefIndex(start) + 1; goto exit; } baseIndex += InstrSlots::NUM; ++mi; } exit: // Live-in register might not be used at all. if (end == MIIdx) { if (isAlias) { DOUT << " dead"; end = getDefIndex(MIIdx) + 1; } else { DOUT << " live through"; end = baseIndex; } } LiveRange LR(start, end, interval.getNextValue(~0U, 0)); DOUT << " +" << LR << '\n'; interval.addRange(LR); } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DOUT << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'; // Track the index of the current machine instr. unsigned MIIndex = 0; for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n"; MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); if (MBB->livein_begin() != MBB->livein_end()) { // Create intervals for live-ins to this BB first. for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(), LE = MBB->livein_end(); LI != LE; ++LI) { handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI)); // Multiple live-ins can alias the same register. for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS) if (!hasInterval(*AS)) handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), true); } } for (; MI != miEnd; ++MI) { DOUT << MIIndex << "\t" << *MI; // Handle defs. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &MO = MI->getOperand(i); // handle register defs - build intervals if (MO.isRegister() && MO.getReg() && MO.isDef()) handleRegisterDef(MBB, MI, MIIndex, MO.getReg()); } MIIndex += InstrSlots::NUM; } } } LiveInterval LiveIntervals::createInterval(unsigned reg) { float Weight = MRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; return LiveInterval(reg, Weight); }