//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the auto-upgrade helper functions // //===----------------------------------------------------------------------===// #include "llvm/AutoUpgrade.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/IntrinsicInst.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { assert(F && "Illegal to upgrade a non-existent Function."); // Get the Function's name. const std::string& Name = F->getName(); // Convenience const FunctionType *FTy = F->getFunctionType(); // Quickly eliminate it, if it's not a candidate. if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.') return false; Module *M = F->getParent(); switch (Name[5]) { default: break; case 'a': // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss, // and atomics with default address spaces to their new names to their new // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32) if (Name.compare(5,7,"atomic.",7) == 0) { if (Name.compare(12,3,"lcs",3) == 0) { std::string::size_type delim = Name.find('.',12); F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } else if (Name.compare(12,3,"las",3) == 0) { std::string::size_type delim = Name.find('.',12); F->setName("llvm.atomic.load.add"+Name.substr(delim) + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } else if (Name.compare(12,3,"lss",3) == 0) { std::string::size_type delim = Name.find('.',12); F->setName("llvm.atomic.load.sub"+Name.substr(delim) + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } else if (Name.rfind(".p") == std::string::npos) { // We don't have an address space qualifier so this has be upgraded // to the new name. Copy the type name at the end of the intrinsic // and add to it std::string::size_type delim = Name.find_last_of('.'); assert(delim != std::string::npos && "can not find type"); F->setName(Name + ".p0" + Name.substr(delim+1)); NewFn = F; return true; } } break; case 'b': // This upgrades the name of the llvm.bswap intrinsic function to only use // a single type name for overloading. We only care about the old format // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being // a '.' after 'bswap.' if (Name.compare(5,6,"bswap.",6) == 0) { std::string::size_type delim = Name.find('.',11); if (delim != std::string::npos) { // Construct the new name as 'llvm.bswap' + '.i*' F->setName(Name.substr(0,10)+Name.substr(delim)); NewFn = F; return true; } } break; case 'c': // We only want to fix the 'llvm.ct*' intrinsics which do not have the // correct return type, so we check for the name, and then check if the // return type does not match the parameter type. if ( (Name.compare(5,5,"ctpop",5) == 0 || Name.compare(5,4,"ctlz",4) == 0 || Name.compare(5,4,"cttz",4) == 0) && FTy->getReturnType() != FTy->getParamType(0)) { // We first need to change the name of the old (bad) intrinsic, because // its type is incorrect, but we cannot overload that name. We // arbitrarily unique it here allowing us to construct a correctly named // and typed function below. F->setName(""); // Now construct the new intrinsic with the correct name and type. We // leave the old function around in order to query its type, whatever it // may be, and correctly convert up to the new type. NewFn = cast(M->getOrInsertFunction(Name, FTy->getParamType(0), FTy->getParamType(0), (Type *)0)); return true; } break; case 'e': // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector. if (Name.compare("llvm.eh.selector.i32") == 0) { F->setName("llvm.eh.selector"); NewFn = F; return true; } // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for. if (Name.compare("llvm.eh.typeid.for.i32") == 0) { F->setName("llvm.eh.typeid.for"); NewFn = F; return true; } // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector. if (Name.compare("llvm.eh.selector.i64") == 0) { NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector); return true; } // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for. if (Name.compare("llvm.eh.typeid.for.i64") == 0) { NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for); return true; } break; case 'p': // This upgrades the llvm.part.select overloaded intrinsic names to only // use one type specifier in the name. We only care about the old format // 'llvm.part.select.i*.i*', and solve as above with bswap. if (Name.compare(5,12,"part.select.",12) == 0) { std::string::size_type delim = Name.find('.',17); if (delim != std::string::npos) { // Construct a new name as 'llvm.part.select' + '.i*' F->setName(Name.substr(0,16)+Name.substr(delim)); NewFn = F; return true; } break; } // This upgrades the llvm.part.set intrinsics similarly as above, however // we care about 'llvm.part.set.i*.i*.i*', but only the first two types // must match. There is an additional type specifier after these two // matching types that we must retain when upgrading. Thus, we require // finding 2 periods, not just one, after the intrinsic name. if (Name.compare(5,9,"part.set.",9) == 0) { std::string::size_type delim = Name.find('.',14); if (delim != std::string::npos && Name.find('.',delim+1) != std::string::npos) { // Construct a new name as 'llvm.part.select' + '.i*.i*' F->setName(Name.substr(0,13)+Name.substr(delim)); NewFn = F; return true; } break; } break; case 'x': // This fixes all MMX shift intrinsic instructions to take a // v1i64 instead of a v2i32 as the second parameter. if (Name.compare(5,10,"x86.mmx.ps",10) == 0 && (Name.compare(13,4,"psll", 4) == 0 || Name.compare(13,4,"psra", 4) == 0 || Name.compare(13,4,"psrl", 4) == 0) && Name[17] != 'i') { const llvm::Type *VT = VectorType::get(IntegerType::get(FTy->getContext(), 64), 1); // We don't have to do anything if the parameter already has // the correct type. if (FTy->getParamType(1) == VT) break; // We first need to change the name of the old (bad) intrinsic, because // its type is incorrect, but we cannot overload that name. We // arbitrarily unique it here allowing us to construct a correctly named // and typed function below. F->setName(""); assert(FTy->getNumParams() == 2 && "MMX shift intrinsics take 2 args!"); // Now construct the new intrinsic with the correct name and type. We // leave the old function around in order to query its type, whatever it // may be, and correctly convert up to the new type. NewFn = cast(M->getOrInsertFunction(Name, FTy->getReturnType(), FTy->getParamType(0), VT, (Type *)0)); return true; } else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 || Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 || Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 || Name.compare(5,15,"x86.sse2.movs.d",15) == 0 || Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 || Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 || Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 || Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 || Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) { // Calls to these intrinsics are transformed into ShuffleVector's. NewFn = 0; return true; } else if (Name.compare(5, 16, "x86.sse41.pmulld", 16) == 0) { // Calls to these intrinsics are transformed into vector multiplies. NewFn = 0; return true; } break; } // This may not belong here. This function is effectively being overloaded // to both detect an intrinsic which needs upgrading, and to provide the // upgraded form of the intrinsic. We should perhaps have two separate // functions for this. return false; } bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { NewFn = 0; bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); // Upgrade intrinsic attributes. This does not change the function. if (NewFn) F = NewFn; if (unsigned id = F->getIntrinsicID()) F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id)); return Upgraded; } // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the // upgraded intrinsic. All argument and return casting must be provided in // order to seamlessly integrate with existing context. void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { Function *F = CI->getCalledFunction(); LLVMContext &C = CI->getContext(); assert(F && "CallInst has no function associated with it."); if (!NewFn) { bool isLoadH = false, isLoadL = false, isMovL = false; bool isMovSD = false, isShufPD = false; bool isUnpckhPD = false, isUnpcklPD = false; bool isPunpckhQPD = false, isPunpcklQPD = false; if (F->getName() == "llvm.x86.sse2.loadh.pd") isLoadH = true; else if (F->getName() == "llvm.x86.sse2.loadl.pd") isLoadL = true; else if (F->getName() == "llvm.x86.sse2.movl.dq") isMovL = true; else if (F->getName() == "llvm.x86.sse2.movs.d") isMovSD = true; else if (F->getName() == "llvm.x86.sse2.shuf.pd") isShufPD = true; else if (F->getName() == "llvm.x86.sse2.unpckh.pd") isUnpckhPD = true; else if (F->getName() == "llvm.x86.sse2.unpckl.pd") isUnpcklPD = true; else if (F->getName() == "llvm.x86.sse2.punpckh.qdq") isPunpckhQPD = true; else if (F->getName() == "llvm.x86.sse2.punpckl.qdq") isPunpcklQPD = true; if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD || isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { std::vector Idxs; Value *Op0 = CI->getOperand(1); ShuffleVectorInst *SI = NULL; if (isLoadH || isLoadL) { Value *Op1 = UndefValue::get(Op0->getType()); Value *Addr = new BitCastInst(CI->getOperand(2), Type::getDoublePtrTy(C), "upgraded.", CI); Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI); Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0); Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI); if (isLoadH) { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); } else { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); } Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); } else if (isMovL) { Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0); Idxs.push_back(Zero); Idxs.push_back(Zero); Idxs.push_back(Zero); Idxs.push_back(Zero); Value *ZeroV = ConstantVector::get(Idxs); Idxs.clear(); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI); } else if (isMovSD || isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { Value *Op1 = CI->getOperand(2); if (isMovSD) { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); } else if (isUnpckhPD || isPunpckhQPD) { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); } else { Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); } Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); } else if (isShufPD) { Value *Op1 = CI->getOperand(2); unsigned MaskVal = cast(CI->getOperand(3))->getZExtValue(); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1)); Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), ((MaskVal >> 1) & 1)+2)); Value *Mask = ConstantVector::get(Idxs); SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); } assert(SI && "Unexpected!"); // Handle any uses of the old CallInst. if (!CI->use_empty()) // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(SI); // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); } else if (F->getName() == "llvm.x86.sse41.pmulld") { // Upgrade this set of intrinsics into vector multiplies. Instruction *Mul = BinaryOperator::CreateMul(CI->getOperand(1), CI->getOperand(2), CI->getName(), CI); // Fix up all the uses with our new multiply. if (!CI->use_empty()) CI->replaceAllUsesWith(Mul); // Remove upgraded multiply. CI->eraseFromParent(); } else { llvm_unreachable("Unknown function for CallInst upgrade."); } return; } switch (NewFn->getIntrinsicID()) { default: llvm_unreachable("Unknown function for CallInst upgrade."); case Intrinsic::x86_mmx_psll_d: case Intrinsic::x86_mmx_psll_q: case Intrinsic::x86_mmx_psll_w: case Intrinsic::x86_mmx_psra_d: case Intrinsic::x86_mmx_psra_w: case Intrinsic::x86_mmx_psrl_d: case Intrinsic::x86_mmx_psrl_q: case Intrinsic::x86_mmx_psrl_w: { Value *Operands[2]; Operands[0] = CI->getOperand(1); // Cast the second parameter to the correct type. BitCastInst *BC = new BitCastInst(CI->getOperand(2), NewFn->getFunctionType()->getParamType(1), "upgraded.", CI); Operands[1] = BC; // Construct a new CallInst CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+2, "upgraded."+CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(NewCI); // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); break; } case Intrinsic::ctlz: case Intrinsic::ctpop: case Intrinsic::cttz: { // Build a small vector of the 1..(N-1) operands, which are the // parameters. SmallVector Operands(CI->op_begin()+1, CI->op_end()); // Construct a new CallInst CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), "upgraded."+CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) { // Check for sign extend parameter attributes on the return values. bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt); bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt); // Construct an appropriate cast from the new return type to the old. CastInst *RetCast = CastInst::Create( CastInst::getCastOpcode(NewCI, SrcSExt, F->getReturnType(), DestSExt), NewCI, F->getReturnType(), NewCI->getName(), CI); NewCI->moveBefore(RetCast); // Replace all uses of the old call with the new cast which has the // correct type. CI->replaceAllUsesWith(RetCast); } // Clean up the old call now that it has been completely upgraded. CI->eraseFromParent(); } break; case Intrinsic::eh_selector: case Intrinsic::eh_typeid_for: { // Only the return type changed. SmallVector Operands(CI->op_begin() + 1, CI->op_end()); CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), "upgraded." + CI->getName(), CI); NewCI->setTailCall(CI->isTailCall()); NewCI->setCallingConv(CI->getCallingConv()); // Handle any uses of the old CallInst. if (!CI->use_empty()) { // Construct an appropriate cast from the new return type to the old. CastInst *RetCast = CastInst::Create(CastInst::getCastOpcode(NewCI, true, F->getReturnType(), true), NewCI, F->getReturnType(), NewCI->getName(), CI); CI->replaceAllUsesWith(RetCast); } CI->eraseFromParent(); } break; } } // This tests each Function to determine if it needs upgrading. When we find // one we are interested in, we then upgrade all calls to reflect the new // function. void llvm::UpgradeCallsToIntrinsic(Function* F) { assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); // Upgrade the function and check if it is a totaly new function. Function* NewFn; if (UpgradeIntrinsicFunction(F, NewFn)) { if (NewFn != F) { // Replace all uses to the old function with the new one if necessary. for (Value::use_iterator UI = F->use_begin(), UE = F->use_end(); UI != UE; ) { if (CallInst* CI = dyn_cast(*UI++)) UpgradeIntrinsicCall(CI, NewFn); } // Remove old function, no longer used, from the module. F->eraseFromParent(); } } } /// This function strips all debug info intrinsics, except for llvm.dbg.declare. /// If an llvm.dbg.declare intrinsic is invalid, then this function simply /// strips that use. void llvm::CheckDebugInfoIntrinsics(Module *M) { if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) { while (!FuncStart->use_empty()) { CallInst *CI = cast(FuncStart->use_back()); CI->eraseFromParent(); } FuncStart->eraseFromParent(); } if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) { while (!StopPoint->use_empty()) { CallInst *CI = cast(StopPoint->use_back()); CI->eraseFromParent(); } StopPoint->eraseFromParent(); } if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) { while (!RegionStart->use_empty()) { CallInst *CI = cast(RegionStart->use_back()); CI->eraseFromParent(); } RegionStart->eraseFromParent(); } if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) { while (!RegionEnd->use_empty()) { CallInst *CI = cast(RegionEnd->use_back()); CI->eraseFromParent(); } RegionEnd->eraseFromParent(); } if (Function *Declare = M->getFunction("llvm.dbg.declare")) { if (!Declare->use_empty()) { DbgDeclareInst *DDI = cast(Declare->use_back()); if (!isa(DDI->getOperand(1)) ||!isa(DDI->getOperand(2))) { while (!Declare->use_empty()) { CallInst *CI = cast(Declare->use_back()); CI->eraseFromParent(); } Declare->eraseFromParent(); } } } }