//===- Pass.cpp - LLVM Pass Infrastructure Impementation ------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "PassManagerT.h" // PassManagerT implementation #include "llvm/Module.h" #include "Support/STLExtras.h" #include "Support/CommandLine.h" #include "Support/TypeInfo.h" #include #include #include #include //===----------------------------------------------------------------------===// // AnalysisID Class Implementation // static std::vector CFGOnlyAnalyses; #if 0 // Source of unique analysis ID #'s. unsigned AnalysisID::NextID = 0; AnalysisID::AnalysisID(const AnalysisID &AID, bool DependsOnlyOnCFG) { ID = AID.ID; // Implement the copy ctor part... Constructor = AID.Constructor; // If this analysis only depends on the CFG of the function, add it to the CFG // only list... if (DependsOnlyOnCFG) CFGOnlyAnalyses.push_back(AID); } #endif //===----------------------------------------------------------------------===// // AnalysisResolver Class Implementation // void AnalysisResolver::setAnalysisResolver(Pass *P, AnalysisResolver *AR) { assert(P->Resolver == 0 && "Pass already in a PassManager!"); P->Resolver = AR; } //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // // preservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::preservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) // Preserved.insert(Preserved.end(), CFGOnlyAnalyses.begin(), CFGOnlyAnalyses.end()); } //===----------------------------------------------------------------------===// // PassManager implementation - The PassManager class is a simple Pimpl class // that wraps the PassManagerT template. // PassManager::PassManager() : PM(new PassManagerT()) {} PassManager::~PassManager() { delete PM; } void PassManager::add(Pass *P) { PM->add(P); } bool PassManager::run(Module &M) { return PM->run(M); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // static cl::opt EnableTiming("time-passes", cl::desc("Time each pass, printing elapsed time for each on exit")); static double getTime() { struct timeval T; gettimeofday(&T, 0); return T.tv_sec + T.tv_usec/1000000.0; } // Create method. If Timing is enabled, this creates and returns a new timing // object, otherwise it returns null. // TimingInfo *TimingInfo::create() { return EnableTiming ? new TimingInfo() : 0; } void TimingInfo::passStarted(Pass *P) { TimingData[P] -= getTime(); } void TimingInfo::passEnded(Pass *P) { TimingData[P] += getTime(); } // TimingDtor - Print out information about timing information TimingInfo::~TimingInfo() { // Iterate over all of the data, converting it into the dual of the data map, // so that the data is sorted by amount of time taken, instead of pointer. // std::vector > Data; double TotalTime = 0; for (std::map::iterator I = TimingData.begin(), E = TimingData.end(); I != E; ++I) // Throw out results for "grouping" pass managers... if (!dynamic_cast(I->first)) { Data.push_back(std::make_pair(I->second, I->first)); TotalTime += I->second; } // Sort the data by time as the primary key, in reverse order... std::sort(Data.begin(), Data.end(), std::greater >()); // Print out timing header... std::cerr << std::string(79, '=') << "\n" << " ... Pass execution timing report ...\n" << std::string(79, '=') << "\n Total Execution Time: " << TotalTime << " seconds\n\n % Time: Seconds:\tPass Name:\n"; // Loop through all of the timing data, printing it out... for (unsigned i = 0, e = Data.size(); i != e; ++i) { fprintf(stderr, " %6.2f%% %fs\t%s\n", Data[i].first*100 / TotalTime, Data[i].first, Data[i].second->getPassName()); } std::cerr << " 100.00% " << TotalTime << "s\tTOTAL\n" << std::string(79, '=') << "\n"; } //===----------------------------------------------------------------------===// // Pass debugging information. Often it is useful to find out what pass is // running when a crash occurs in a utility. When this library is compiled with // debugging on, a command line option (--debug-pass) is enabled that causes the // pass name to be printed before it executes. // // Different debug levels that can be enabled... enum PassDebugLevel { None, Structure, Executions, Details }; static cl::opt PassDebugging("debug-pass", cl::Hidden, cl::desc("Print PassManager debugging information"), cl::values( clEnumVal(None , "disable debug output"), // TODO: add option to print out pass names "PassOptions" clEnumVal(Structure , "print pass structure before run()"), clEnumVal(Executions, "print pass name before it is executed"), clEnumVal(Details , "print pass details when it is executed"), 0)); void PMDebug::PrintPassStructure(Pass *P) { if (PassDebugging >= Structure) P->dumpPassStructure(); } void PMDebug::PrintPassInformation(unsigned Depth, const char *Action, Pass *P, Annotable *V) { if (PassDebugging >= Executions) { std::cerr << (void*)P << std::string(Depth*2+1, ' ') << Action << " '" << P->getPassName(); if (V) { std::cerr << "' on "; if (dynamic_cast(V)) { std::cerr << "Module\n"; return; } else if (Function *F = dynamic_cast(V)) std::cerr << "Function '" << F->getName(); else if (BasicBlock *BB = dynamic_cast(V)) std::cerr << "BasicBlock '" << BB->getName(); else if (Value *Val = dynamic_cast(V)) std::cerr << typeid(*Val).name() << " '" << Val->getName(); } std::cerr << "'...\n"; } } void PMDebug::PrintAnalysisSetInfo(unsigned Depth, const char *Msg, Pass *P, const std::vector &Set){ if (PassDebugging >= Details && !Set.empty()) { std::cerr << (void*)P << std::string(Depth*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { // FIXME: This can use the local pass map! Pass *P = Set[i]->createPass(); // Good thing this is just debug code... std::cerr << " " << P->getPassName(); delete P; } std::cerr << "\n"; } } // dumpPassStructure - Implement the -debug-passes=Structure option void Pass::dumpPassStructure(unsigned Offset) { std::cerr << std::string(Offset*2, ' ') << getPassName() << "\n"; } //===----------------------------------------------------------------------===// // Pass Implementation // void Pass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } // getPassName - Use C++ RTTI to get a SOMEWHAT intelligable name for the pass. // const char *Pass::getPassName() const { return typeid(*this).name(); } // print - Print out the internal state of the pass. This is called by Analyse // to print out the contents of an analysis. Otherwise it is not neccesary to // implement this method. // void Pass::print(std::ostream &O) const { O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; } // dump - call print(std::cerr); void Pass::dump() const { print(std::cerr, 0); } //===----------------------------------------------------------------------===// // FunctionPass Implementation // // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::run(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function &F) { if (F.isExternal()) return false;// Passes are not run on external functions! return doInitialization(*F.getParent()) | runOnFunction(F) | doFinalization(*F.getParent()); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void FunctionPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed; } // To run directly on the basic block, we initialize, runOnBasicBlock, then // finalize. // bool BasicBlockPass::run(BasicBlock &BB) { Module &M = *BB.getParent()->getParent(); return doInitialization(M) | runOnBasicBlock(BB) | doFinalization(M); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } void BasicBlockPass::addToPassManager(PassManagerT *PM, AnalysisUsage &AU) { PM->addPass(this, AU); } //===----------------------------------------------------------------------===// // Pass Registration mechanism // static std::map *PassInfoMap = 0; static std::vector *Listeners = 0; // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... const PassInfo *Pass::getPassInfo() const { assert(PassInfoMap && "PassInfoMap not constructed yet??"); std::map::iterator I = PassInfoMap->find(typeid(*this)); assert(I != PassInfoMap->end() && "Pass has not been registered!"); return I->second; } void RegisterPassBase::registerPass(PassInfo *PI) { if (PassInfoMap == 0) PassInfoMap = new std::map(); assert(PassInfoMap->find(PI->getTypeInfo()) == PassInfoMap->end() && "Pass already registered!"); PIObj = PI; PassInfoMap->insert(std::make_pair(TypeInfo(PI->getTypeInfo()), PI)); // Notify any listeners... if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passRegistered(PI); } RegisterPassBase::~RegisterPassBase() { assert(PassInfoMap && "Pass registered but not in map!"); std::map::iterator I = PassInfoMap->find(PIObj->getTypeInfo()); assert(I != PassInfoMap->end() && "Pass registered but not in map!"); // Remove pass from the map... PassInfoMap->erase(I); if (PassInfoMap->empty()) { delete PassInfoMap; PassInfoMap = 0; } // Notify any listeners... if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passUnregistered(PIObj); // Delete the PassInfo object itself... delete PIObj; } //===----------------------------------------------------------------------===// // PassRegistrationListener implementation // // PassRegistrationListener ctor - Add the current object to the list of // PassRegistrationListeners... PassRegistrationListener::PassRegistrationListener() { if (!Listeners) Listeners = new std::vector(); Listeners->push_back(this); } // dtor - Remove object from list of listeners... PassRegistrationListener::~PassRegistrationListener() { std::vector::iterator I = std::find(Listeners->begin(), Listeners->end(), this); assert(Listeners && I != Listeners->end() && "PassRegistrationListener not registered!"); Listeners->erase(I); if (Listeners->empty()) { delete Listeners; Listeners = 0; } } // enumeratePasses - Iterate over the registered passes, calling the // passEnumerate callback on each PassInfo object. // void PassRegistrationListener::enumeratePasses() { if (PassInfoMap) for (std::map::iterator I = PassInfoMap->begin(), E = PassInfoMap->end(); I != E; ++I) passEnumerate(I->second); }