//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DenseMap class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_DENSEMAP_H #define LLVM_ADT_DENSEMAP_H #include "llvm/Support/DataTypes.h" #include "llvm/Support/MathExtras.h" #include #include namespace llvm { template struct DenseMapKeyInfo { //static inline T getEmptyKey(); //static inline T getTombstoneKey(); //static unsigned getHashValue(const T &Val); //static bool isPod() }; // Provide DenseMapKeyInfo for all pointers. template struct DenseMapKeyInfo { static inline T* getEmptyKey() { return (T*)-1; } static inline T* getTombstoneKey() { return (T*)-2; } static unsigned getHashValue(const T *PtrVal) { return (unsigned)((uintptr_t)PtrVal >> 4) ^ (unsigned)((uintptr_t)PtrVal >> 9); } static bool isPod() { return true; } }; template > class DenseMapIterator; template > class DenseMapConstIterator; template > class DenseMap { typedef std::pair BucketT; unsigned NumBuckets; BucketT *Buckets; unsigned NumEntries; unsigned NumTombstones; DenseMap(const DenseMap &); // not implemented. public: explicit DenseMap(unsigned NumInitBuckets = 64) { init(NumInitBuckets); } ~DenseMap() { const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { if (P->first != EmptyKey && P->first != TombstoneKey) P->second.~ValueT(); P->first.~KeyT(); } delete[] (char*)Buckets; } typedef DenseMapIterator iterator; typedef DenseMapConstIterator const_iterator; inline iterator begin() { return iterator(Buckets, Buckets+NumBuckets); } inline iterator end() { return iterator(Buckets+NumBuckets, Buckets+NumBuckets); } inline const_iterator begin() const { return const_iterator(Buckets, Buckets+NumBuckets); } inline const_iterator end() const { return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets); } bool empty() const { return NumEntries == 0; } unsigned size() const { return NumEntries; } void clear() { if (NumEntries * 4 < NumBuckets && NumBuckets > 64) { shrink_and_clear(); return; } const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) { if (P->first != EmptyKey && P->first != TombstoneKey) { P->first = EmptyKey; P->second.~ValueT(); --NumEntries; } } assert(NumEntries == 0 && "Node count imbalance!"); NumTombstones = 0; } /// count - Return true if the specified key is in the map. bool count(const KeyT &Val) const { BucketT *TheBucket; return LookupBucketFor(Val, TheBucket); } iterator find(const KeyT &Val) { BucketT *TheBucket; if (LookupBucketFor(Val, TheBucket)) return iterator(TheBucket, Buckets+NumBuckets); return end(); } const_iterator find(const KeyT &Val) const { BucketT *TheBucket; if (LookupBucketFor(Val, TheBucket)) return const_iterator(TheBucket, Buckets+NumBuckets); return end(); } bool insert(const std::pair &KV) { BucketT *TheBucket; if (LookupBucketFor(KV.first, TheBucket)) return false; // Already in map. // Otherwise, insert the new element. InsertIntoBucket(KV.first, KV.second, TheBucket); return true; } bool erase(const KeyT &Val) { BucketT *TheBucket; if (!LookupBucketFor(Val, TheBucket)) return false; // not in map. TheBucket->second.~ValueT(); TheBucket->first = getTombstoneKey(); --NumEntries; ++NumTombstones; return true; } bool erase(iterator I) { BucketT *TheBucket = &*I; TheBucket->second.~ValueT(); TheBucket->first = getTombstoneKey(); --NumEntries; ++NumTombstones; return true; } ValueT &operator[](const KeyT &Key) { BucketT *TheBucket; if (LookupBucketFor(Key, TheBucket)) return TheBucket->second; return InsertIntoBucket(Key, ValueT(), TheBucket)->second; } private: BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value, BucketT *TheBucket) { // If the load of the hash table is more than 3/4, or if fewer than 1/8 of // the buckets are empty (meaning that many are filled with tombstones), // grow the table. // // The later case is tricky. For example, if we had one empty bucket with // tons of tombstones, failing lookups (e.g. for insertion) would have to // probe almost the entire table until it found the empty bucket. If the // table completely filled with tombstones, no lookup would ever succeed, // causing infinite loops in lookup. if (NumEntries*4 >= NumBuckets*3 || NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) { this->grow(); LookupBucketFor(Key, TheBucket); } ++NumEntries; // If we are writing over a tombstone, remember this. if (TheBucket->first != getEmptyKey()) --NumTombstones; TheBucket->first = Key; new (&TheBucket->second) ValueT(Value); return TheBucket; } static unsigned getHashValue(const KeyT &Val) { return KeyInfoT::getHashValue(Val); } static const KeyT getEmptyKey() { return KeyInfoT::getEmptyKey(); } static const KeyT getTombstoneKey() { return KeyInfoT::getTombstoneKey(); } /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in /// FoundBucket. If the bucket contains the key and a value, this returns /// true, otherwise it returns a bucket with an empty marker or tombstone and /// returns false. bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const { unsigned BucketNo = getHashValue(Val); unsigned ProbeAmt = 1; BucketT *BucketsPtr = Buckets; // FoundTombstone - Keep track of whether we find a tombstone while probing. BucketT *FoundTombstone = 0; const KeyT EmptyKey = getEmptyKey(); const KeyT TombstoneKey = getTombstoneKey(); assert(Val != EmptyKey && Val != TombstoneKey && "Empty/Tombstone value shouldn't be inserted into map!"); while (1) { BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1)); // Found Val's bucket? If so, return it. if (ThisBucket->first == Val) { FoundBucket = ThisBucket; return true; } // If we found an empty bucket, the key doesn't exist in the set. // Insert it and return the default value. if (ThisBucket->first == EmptyKey) { // If we've already seen a tombstone while probing, fill it in instead // of the empty bucket we eventually probed to. if (FoundTombstone) ThisBucket = FoundTombstone; FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; return false; } // If this is a tombstone, remember it. If Val ends up not in the map, we // prefer to return it than something that would require more probing. if (ThisBucket->first == TombstoneKey && !FoundTombstone) FoundTombstone = ThisBucket; // Remember the first tombstone found. // Otherwise, it's a hash collision or a tombstone, continue quadratic // probing. BucketNo += ProbeAmt++; } } void init(unsigned InitBuckets) { NumEntries = 0; NumTombstones = 0; NumBuckets = InitBuckets; assert(InitBuckets && (InitBuckets & InitBuckets-1) == 0 && "# initial buckets must be a power of two!"); Buckets = (BucketT*)new char[sizeof(BucketT)*InitBuckets]; // Initialize all the keys to EmptyKey. const KeyT EmptyKey = getEmptyKey(); for (unsigned i = 0; i != InitBuckets; ++i) new (&Buckets[i].first) KeyT(EmptyKey); } void grow() { unsigned OldNumBuckets = NumBuckets; BucketT *OldBuckets = Buckets; // Double the number of buckets. NumBuckets <<= 1; NumTombstones = 0; Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets]; // Initialize all the keys to EmptyKey. const KeyT EmptyKey = getEmptyKey(); for (unsigned i = 0, e = NumBuckets; i != e; ++i) new (&Buckets[i].first) KeyT(EmptyKey); // Insert all the old elements. const KeyT TombstoneKey = getTombstoneKey(); for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) { if (B->first != EmptyKey && B->first != TombstoneKey) { // Insert the key/value into the new table. BucketT *DestBucket; bool FoundVal = LookupBucketFor(B->first, DestBucket); FoundVal = FoundVal; // silence warning. assert(!FoundVal && "Key already in new map?"); DestBucket->first = B->first; new (&DestBucket->second) ValueT(B->second); // Free the value. B->second.~ValueT(); } B->first.~KeyT(); } // Free the old table. delete[] (char*)OldBuckets; } void shrink_and_clear() { unsigned OldNumBuckets = NumBuckets; BucketT *OldBuckets = Buckets; // Reduce the number of buckets. NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1) : 64; NumTombstones = 0; Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets]; // Initialize all the keys to EmptyKey. const KeyT EmptyKey = getEmptyKey(); for (unsigned i = 0, e = NumBuckets; i != e; ++i) new (&Buckets[i].first) KeyT(EmptyKey); // Free the old buckets. const KeyT TombstoneKey = getTombstoneKey(); for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) { if (B->first != EmptyKey && B->first != TombstoneKey) { // Free the value. B->second.~ValueT(); } B->first.~KeyT(); } // Free the old table. delete[] (char*)OldBuckets; NumEntries = 0; } }; template class DenseMapIterator { typedef std::pair BucketT; protected: const BucketT *Ptr, *End; public: DenseMapIterator(const BucketT *Pos, const BucketT *E) : Ptr(Pos), End(E) { AdvancePastEmptyBuckets(); } std::pair &operator*() const { return *const_cast(Ptr); } std::pair *operator->() const { return const_cast(Ptr); } bool operator==(const DenseMapIterator &RHS) const { return Ptr == RHS.Ptr; } bool operator!=(const DenseMapIterator &RHS) const { return Ptr != RHS.Ptr; } inline DenseMapIterator& operator++() { // Preincrement ++Ptr; AdvancePastEmptyBuckets(); return *this; } DenseMapIterator operator++(int) { // Postincrement DenseMapIterator tmp = *this; ++*this; return tmp; } private: void AdvancePastEmptyBuckets() { const KeyT Empty = KeyInfoT::getEmptyKey(); const KeyT Tombstone = KeyInfoT::getTombstoneKey(); while (Ptr != End && (Ptr->first == Empty || Ptr->first == Tombstone)) ++Ptr; } }; template class DenseMapConstIterator : public DenseMapIterator { public: DenseMapConstIterator(const std::pair *Pos, const std::pair *E) : DenseMapIterator(Pos, E) { } const std::pair &operator*() const { return *this->Ptr; } const std::pair *operator->() const { return this->Ptr; } }; } // end namespace llvm #endif