//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "liveintervals" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "VirtRegMap.h" #include "llvm/Value.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include #include using namespace llvm; namespace { RegisterPass X("liveintervals", "Live Interval Analysis"); static Statistic<> numIntervals ("liveintervals", "Number of original intervals"); static Statistic<> numIntervalsAfter ("liveintervals", "Number of intervals after coalescing"); static Statistic<> numJoins ("liveintervals", "Number of interval joins performed"); static Statistic<> numPeep ("liveintervals", "Number of identity moves eliminated after coalescing"); static Statistic<> numFolded ("liveintervals", "Number of loads/stores folded into instructions"); static cl::opt EnableJoining("join-liveintervals", cl::desc("Join compatible live intervals"), cl::init(true)); } void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreservedID(PHIEliminationID); AU.addRequiredID(PHIEliminationID); AU.addRequiredID(TwoAddressInstructionPassID); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } void LiveIntervals::releaseMemory() { mi2iMap_.clear(); i2miMap_.clear(); r2iMap_.clear(); r2rMap_.clear(); } static bool isZeroLengthInterval(LiveInterval *li) { for (LiveInterval::Ranges::const_iterator i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i) if (i->end - i->start > LiveIntervals::InstrSlots::NUM) return false; return true; } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); lv_ = &getAnalysis(); allocatableRegs_ = mri_->getAllocatableSet(fn); r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg()); // If this function has any live ins, insert a dummy instruction at the // beginning of the function that we will pretend "defines" the values. This // is to make the interval analysis simpler by providing a number. if (fn.livein_begin() != fn.livein_end()) { unsigned FirstLiveIn = fn.livein_begin()->first; // Find a reg class that contains this live in. const TargetRegisterClass *RC = 0; for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(), E = mri_->regclass_end(); RCI != E; ++RCI) if ((*RCI)->contains(FirstLiveIn)) { RC = *RCI; break; } MachineInstr *OldFirstMI = fn.begin()->begin(); mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(), FirstLiveIn, FirstLiveIn, RC); assert(OldFirstMI != fn.begin()->begin() && "copyRetToReg didn't insert anything!"); } // number MachineInstrs unsigned miIndex = 0; for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end(); mbb != mbbEnd; ++mbb) for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); mi != miEnd; ++mi) { bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second; assert(inserted && "multiple MachineInstr -> index mappings"); i2miMap_.push_back(mi); miIndex += InstrSlots::NUM; } // Note intervals due to live-in values. if (fn.livein_begin() != fn.livein_end()) { MachineBasicBlock *Entry = fn.begin(); for (MachineFunction::livein_iterator I = fn.livein_begin(), E = fn.livein_end(); I != E; ++I) { handlePhysicalRegisterDef(Entry, Entry->begin(), 0, getOrCreateInterval(I->first), 0); for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS) handlePhysicalRegisterDef(Entry, Entry->begin(), 0, getOrCreateInterval(*AS), 0); } } computeIntervals(); numIntervals += getNumIntervals(); DEBUG(std::cerr << "********** INTERVALS **********\n"; for (iterator I = begin(), E = end(); I != E; ++I) { I->second.print(std::cerr, mri_); std::cerr << "\n"; }); // join intervals if requested if (EnableJoining) joinIntervals(); numIntervalsAfter += getNumIntervals(); // perform a final pass over the instructions and compute spill // weights, coalesce virtual registers and remove identity moves. const LoopInfo& loopInfo = getAnalysis(); for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { MachineBasicBlock* mbb = mbbi; unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock()); for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end(); mii != mie; ) { // if the move will be an identity move delete it unsigned srcReg, dstReg, RegRep; if (tii_->isMoveInstr(*mii, srcReg, dstReg) && (RegRep = rep(srcReg)) == rep(dstReg)) { // remove from def list LiveInterval &interval = getOrCreateInterval(RegRep); RemoveMachineInstrFromMaps(mii); mii = mbbi->erase(mii); ++numPeep; } else { for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) { const MachineOperand &mop = mii->getOperand(i); if (mop.isRegister() && mop.getReg() && MRegisterInfo::isVirtualRegister(mop.getReg())) { // replace register with representative register unsigned reg = rep(mop.getReg()); mii->getOperand(i).setReg(reg); LiveInterval &RegInt = getInterval(reg); RegInt.weight += (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth); } } ++mii; } } } for (iterator I = begin(), E = end(); I != E; ++I) { LiveInterval &li = I->second; if (MRegisterInfo::isVirtualRegister(li.reg)) { // If the live interval length is essentially zero, i.e. in every live // range the use follows def immediately, it doesn't make sense to spill // it and hope it will be easier to allocate for this li. if (isZeroLengthInterval(&li)) li.weight = float(HUGE_VAL); } } DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(std::ostream &O, const Module* ) const { O << "********** INTERVALS **********\n"; for (const_iterator I = begin(), E = end(); I != E; ++I) { I->second.print(std::cerr, mri_); std::cerr << "\n"; } O << "********** MACHINEINSTRS **********\n"; for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end(); mbbi != mbbe; ++mbbi) { O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n"; for (MachineBasicBlock::iterator mii = mbbi->begin(), mie = mbbi->end(); mii != mie; ++mii) { O << getInstructionIndex(mii) << '\t' << *mii; } } } std::vector LiveIntervals:: addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { // since this is called after the analysis is done we don't know if // LiveVariables is available lv_ = getAnalysisToUpdate(); std::vector added; assert(li.weight != HUGE_VAL && "attempt to spill already spilled interval!"); DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "; li.print(std::cerr, mri_); std::cerr << '\n'); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg); for (LiveInterval::Ranges::const_iterator i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) { unsigned index = getBaseIndex(i->start); unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM; for (; index != end; index += InstrSlots::NUM) { // skip deleted instructions while (index != end && !getInstructionFromIndex(index)) index += InstrSlots::NUM; if (index == end) break; MachineInstr *MI = getInstructionFromIndex(index); RestartInstruction: for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& mop = MI->getOperand(i); if (mop.isRegister() && mop.getReg() == li.reg) { if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) { // Attempt to fold the memory reference into the instruction. If we // can do this, we don't need to insert spill code. if (lv_) lv_->instructionChanged(MI, fmi); MachineBasicBlock &MBB = *MI->getParent(); vrm.virtFolded(li.reg, MI, i, fmi); mi2iMap_.erase(MI); i2miMap_[index/InstrSlots::NUM] = fmi; mi2iMap_[fmi] = index; MI = MBB.insert(MBB.erase(MI), fmi); ++numFolded; // Folding the load/store can completely change the instruction in // unpredictable ways, rescan it from the beginning. goto RestartInstruction; } else { // Create a new virtual register for the spill interval. unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc); // Scan all of the operands of this instruction rewriting operands // to use NewVReg instead of li.reg as appropriate. We do this for // two reasons: // // 1. If the instr reads the same spilled vreg multiple times, we // want to reuse the NewVReg. // 2. If the instr is a two-addr instruction, we are required to // keep the src/dst regs pinned. // // Keep track of whether we replace a use and/or def so that we can // create the spill interval with the appropriate range. mop.setReg(NewVReg); bool HasUse = mop.isUse(); bool HasDef = mop.isDef(); for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { if (MI->getOperand(j).isReg() && MI->getOperand(j).getReg() == li.reg) { MI->getOperand(j).setReg(NewVReg); HasUse |= MI->getOperand(j).isUse(); HasDef |= MI->getOperand(j).isDef(); } } // create a new register for this spill vrm.grow(); vrm.assignVirt2StackSlot(NewVReg, slot); LiveInterval &nI = getOrCreateInterval(NewVReg); assert(nI.empty()); // the spill weight is now infinity as it // cannot be spilled again nI.weight = float(HUGE_VAL); if (HasUse) { LiveRange LR(getLoadIndex(index), getUseIndex(index), nI.getNextValue(~0U, 0)); DEBUG(std::cerr << " +" << LR); nI.addRange(LR); } if (HasDef) { LiveRange LR(getDefIndex(index), getStoreIndex(index), nI.getNextValue(~0U, 0)); DEBUG(std::cerr << " +" << LR); nI.addRange(LR); } added.push_back(&nI); // update live variables if it is available if (lv_) lv_->addVirtualRegisterKilled(NewVReg, MI); DEBUG(std::cerr << "\t\t\t\tadded new interval: "; nI.print(std::cerr, mri_); std::cerr << '\n'); } } } } } return added; } void LiveIntervals::printRegName(unsigned reg) const { if (MRegisterInfo::isPhysicalRegister(reg)) std::cerr << mri_->getName(reg); else std::cerr << "%reg" << reg; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, unsigned MIIdx, LiveInterval &interval) { DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. if (interval.empty()) { // Get the Idx of the defining instructions. unsigned defIndex = getDefIndex(MIIdx); unsigned ValNum; unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*mi, SrcReg, DstReg)) ValNum = interval.getNextValue(~0U, 0); else ValNum = interval.getNextValue(defIndex, SrcReg); assert(ValNum == 0 && "First value in interval is not 0?"); ValNum = 0; // Clue in the optimizer. // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? unsigned killIdx; if (vi.Kills[0] != mi) killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1; else killIdx = defIndex+1; // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); DEBUG(std::cerr << " +" << NewLR); interval.addRange(NewLR); // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) { if (vi.AliveBlocks[i]) { MachineBasicBlock* mbb = mf_->getBlockNumbered(i); if (!mbb->empty()) { LiveRange LR(getInstructionIndex(&mbb->front()), getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR); } } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; LiveRange LR(getInstructionIndex(Kill->getParent()->begin()), getUseIndex(getInstructionIndex(Kill))+1, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR); } } else { // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is the first // operand, and is a def-and-use. if (mi->getOperand(0).isRegister() && mi->getOperand(0).getReg() == interval.reg && mi->getNumOperands() > 1 && mi->getOperand(1).isRegister() && mi->getOperand(1).getReg() == interval.reg && mi->getOperand(0).isDef() && mi->getOperand(1).isUse()) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst)); unsigned RedefIndex = getDefIndex(MIIdx); // Delete the initial value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // Two-address vregs should always only be redefined once. This means // that at this point, there should be exactly one value number in it. assert(interval.containsOneValue() && "Unexpected 2-addr liveint!"); // The new value number (#1) is defined by the instruction we claimed // defined value #0. unsigned ValNo = interval.getNextValue(0, 0); interval.setValueNumberInfo(1, interval.getValNumInfo(0)); // Value#0 is now defined by the 2-addr instruction. interval.setValueNumberInfo(0, std::make_pair(~0U, 0U)); // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(std::cerr << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (lv_->RegisterDefIsDead(mi, interval.reg)) interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0)); DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_)); } else { // Otherwise, this must be because of phi elimination. If this is the // first redefinition of the vreg that we have seen, go back and change // the live range in the PHI block to be a different value number. if (interval.containsOneValue()) { assert(vi.Kills.size() == 1 && "PHI elimination vreg should have one kill, the PHI itself!"); // Remove the old range that we now know has an incorrect number. MachineInstr *Killer = vi.Kills[0]; unsigned Start = getInstructionIndex(Killer->getParent()->begin()); unsigned End = getUseIndex(getInstructionIndex(Killer))+1; DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "; interval.print(std::cerr, mri_); std::cerr << "\n"); interval.removeRange(Start, End); DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_)); // Replace the interval with one of a NEW value number. Note that this // value number isn't actually defined by an instruction, weird huh? :) LiveRange LR(Start, End, interval.getNextValue(~0U, 0)); DEBUG(std::cerr << " replace range with " << LR); interval.addRange(LR); DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_)); } // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. unsigned defIndex = getDefIndex(MIIdx); unsigned ValNum; unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*mi, SrcReg, DstReg)) ValNum = interval.getNextValue(~0U, 0); else ValNum = interval.getNextValue(defIndex, SrcReg); LiveRange LR(defIndex, getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum); interval.addRange(LR); DEBUG(std::cerr << " +" << LR); } } DEBUG(std::cerr << '\n'); } void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator mi, unsigned MIIdx, LiveInterval &interval, unsigned SrcReg) { // A physical register cannot be live across basic block, so its // lifetime must end somewhere in its defining basic block. DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg)); typedef LiveVariables::killed_iterator KillIter; unsigned baseIndex = MIIdx; unsigned start = getDefIndex(baseIndex); unsigned end = start; // If it is not used after definition, it is considered dead at // the instruction defining it. Hence its interval is: // [defSlot(def), defSlot(def)+1) if (lv_->RegisterDefIsDead(mi, interval.reg)) { DEBUG(std::cerr << " dead"); end = getDefIndex(start) + 1; goto exit; } // If it is not dead on definition, it must be killed by a // subsequent instruction. Hence its interval is: // [defSlot(def), useSlot(kill)+1) while (++mi != MBB->end()) { baseIndex += InstrSlots::NUM; if (lv_->KillsRegister(mi, interval.reg)) { DEBUG(std::cerr << " killed"); end = getUseIndex(baseIndex) + 1; goto exit; } } // The only case we should have a dead physreg here without a killing or // instruction where we know it's dead is if it is live-in to the function // and never used. assert(!SrcReg && "physreg was not killed in defining block!"); end = getDefIndex(start) + 1; // It's dead. exit: assert(start < end && "did not find end of interval?"); LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U, SrcReg)); interval.addRange(LR); DEBUG(std::cerr << " +" << LR << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, unsigned MIIdx, unsigned reg) { if (MRegisterInfo::isVirtualRegister(reg)) handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg)); else if (allocatableRegs_[reg]) { unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*MI, SrcReg, DstReg)) SrcReg = 0; handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg); for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS) handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0); } } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n"); DEBUG(std::cerr << "********** Function: " << ((Value*)mf_->getFunction())->getName() << '\n'); bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end(); // Track the index of the current machine instr. unsigned MIIndex = 0; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) { MachineBasicBlock* mbb = I; DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n"); MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end(); if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; MIIndex += InstrSlots::NUM; } for (; mi != miEnd; ++mi) { const TargetInstrDescriptor& tid = tm_->getInstrInfo()->get(mi->getOpcode()); DEBUG(std::cerr << MIIndex << "\t" << *mi); // handle implicit defs if (tid.ImplicitDefs) { for (const unsigned* id = tid.ImplicitDefs; *id; ++id) handleRegisterDef(mbb, mi, MIIndex, *id); } // handle explicit defs for (int i = mi->getNumOperands() - 1; i >= 0; --i) { MachineOperand& mop = mi->getOperand(i); // handle register defs - build intervals if (mop.isRegister() && mop.getReg() && mop.isDef()) handleRegisterDef(mbb, mi, MIIndex, mop.getReg()); } MIIndex += InstrSlots::NUM; } } } /// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA /// being the source and IntB being the dest, thus this defines a value number /// in IntB. If the source value number (in IntA) is defined by a copy from B, /// see if we can merge these two pieces of B into a single value number, /// eliminating a copy. For example: /// /// A3 = B0 /// ... /// B1 = A3 <- this copy /// /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1 /// value number to be replaced with B0 (which simplifies the B liveinterval). /// /// This returns true if an interval was modified. /// bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB, MachineInstr *CopyMI) { unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI)); // BValNo is a value number in B that is defined by a copy from A. 'B3' in // the example above. LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx); unsigned BValNo = BLR->ValId; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo); if (BValNoDefIdx == ~0U) return false; assert(BValNoDefIdx == CopyIdx && "Copy doesn't define the value?"); // AValNo is the value number in A that defines the copy, A0 in the example. LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1); unsigned AValNo = AValLR->ValId; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. unsigned SrcReg = IntA.getSrcRegForValNum(AValNo); if (!SrcReg) return false; // Not defined by a copy. // If the value number is not defined by a copy instruction, ignore it. // If the source register comes from an interval other than IntB, we can't // handle this. if (rep(SrcReg) != IntB.reg) return false; // Get the LiveRange in IntB that this value number starts with. unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo); LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1); // Make sure that the end of the live range is inside the same block as // CopyMI. MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1); if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValLR ends in the same block that the CopyMI // live-range starts. If there are no intervening live ranges between them in // IntB, we can merge them. if (ValLR+1 != BLR) return false; DEBUG(std::cerr << "\nExtending: "; IntB.print(std::cerr, mri_)); // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0)); // Okay, we can merge them. We need to insert a new liverange: // [ValLR.end, BLR.begin) of either value number, then we merge the // two value numbers. unsigned FillerStart = ValLR->end, FillerEnd = BLR->start; IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo)); // If the IntB live range is assigned to a physical register, and if that // physreg has aliases, if (MRegisterInfo::isPhysicalRegister(IntB.reg)) { for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) { LiveInterval &AliasLI = getInterval(*AS); AliasLI.addRange(LiveRange(FillerStart, FillerEnd, AliasLI.getNextValue(~0U, 0))); } } // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValLR->ValId) IntB.MergeValueNumberInto(BValNo, ValLR->ValId); DEBUG(std::cerr << " result = "; IntB.print(std::cerr, mri_); std::cerr << "\n"); // Finally, delete the copy instruction. RemoveMachineInstrFromMaps(CopyMI); CopyMI->eraseFromParent(); ++numPeep; return true; } /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg, /// which are the src/dst of the copy instruction CopyMI. This returns true /// if the copy was successfully coallesced away, or if it is never possible /// to coallesce these this copy, due to register constraints. It returns /// false if it is not currently possible to coallesce this interval, but /// it may be possible if other things get coallesced. bool LiveIntervals::JoinCopy(MachineInstr *CopyMI, unsigned SrcReg, unsigned DstReg) { DEBUG(std::cerr << getInstructionIndex(CopyMI) << '\t' << *CopyMI); // Get representative registers. SrcReg = rep(SrcReg); DstReg = rep(DstReg); // If they are already joined we continue. if (SrcReg == DstReg) { DEBUG(std::cerr << "\tCopy already coallesced.\n"); return true; // Not coallescable. } // If they are both physical registers, we cannot join them. if (MRegisterInfo::isPhysicalRegister(SrcReg) && MRegisterInfo::isPhysicalRegister(DstReg)) { DEBUG(std::cerr << "\tCan not coallesce physregs.\n"); return true; // Not coallescable. } // We only join virtual registers with allocatable physical registers. if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){ DEBUG(std::cerr << "\tSrc reg is unallocatable physreg.\n"); return true; // Not coallescable. } if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){ DEBUG(std::cerr << "\tDst reg is unallocatable physreg.\n"); return true; // Not coallescable. } // If they are not of the same register class, we cannot join them. if (differingRegisterClasses(SrcReg, DstReg)) { DEBUG(std::cerr << "\tSrc/Dest are different register classes.\n"); return true; // Not coallescable. } LiveInterval &SrcInt = getInterval(SrcReg); LiveInterval &DestInt = getInterval(DstReg); assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg && "Register mapping is horribly broken!"); DEBUG(std::cerr << "\t\tInspecting "; SrcInt.print(std::cerr, mri_); std::cerr << " and "; DestInt.print(std::cerr, mri_); std::cerr << ": "); // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DestInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. if (!JoinIntervals(DestInt, SrcInt)) { // Coallescing failed. // If we can eliminate the copy without merging the live ranges, do so now. if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI)) return true; // Otherwise, we are unable to join the intervals. DEBUG(std::cerr << "Interference!\n"); return false; } bool Swapped = SrcReg == DestInt.reg; if (Swapped) std::swap(SrcReg, DstReg); assert(MRegisterInfo::isVirtualRegister(SrcReg) && "LiveInterval::join didn't work right!"); // If we're about to merge live ranges into a physical register live range, // we have to update any aliased register's live ranges to indicate that they // have clobbered values for this range. if (MRegisterInfo::isPhysicalRegister(DstReg)) { for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS) getInterval(*AS).MergeInClobberRanges(SrcInt); } DEBUG(std::cerr << "\n\t\tJoined. Result = "; DestInt.print(std::cerr, mri_); std::cerr << "\n"); // If the intervals were swapped by Join, swap them back so that the register // mapping (in the r2i map) is correct. if (Swapped) SrcInt.swap(DestInt); r2iMap_.erase(SrcReg); r2rMap_[SrcReg] = DstReg; // Finally, delete the copy instruction. RemoveMachineInstrFromMaps(CopyMI); CopyMI->eraseFromParent(); ++numPeep; ++numJoins; return true; } /// ComputeUltimateVN - Assuming we are going to join two live intervals, /// compute what the resultant value numbers for each value in the input two /// ranges will be. This is complicated by copies between the two which can /// and will commonly cause multiple value numbers to be merged into one. /// /// VN is the value number that we're trying to resolve. InstDefiningValue /// keeps track of the new InstDefiningValue assignment for the result /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of /// whether a value in this or other is a copy from the opposite set. /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have /// already been assigned. /// /// ThisFromOther[x] - If x is defined as a copy from the other interval, this /// contains the value number the copy is from. /// static unsigned ComputeUltimateVN(unsigned VN, SmallVector, 16> &ValueNumberInfo, SmallVector &ThisFromOther, SmallVector &OtherFromThis, SmallVector &ThisValNoAssignments, SmallVector &OtherValNoAssignments, LiveInterval &ThisLI, LiveInterval &OtherLI) { // If the VN has already been computed, just return it. if (ThisValNoAssignments[VN] >= 0) return ThisValNoAssignments[VN]; // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?"); // If this val is not a copy from the other val, then it must be a new value // number in the destination. int OtherValNo = ThisFromOther[VN]; if (OtherValNo == -1) { ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN)); return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1; } // Otherwise, this *is* a copy from the RHS. If the other side has already // been computed, return it. if (OtherValNoAssignments[OtherValNo] >= 0) return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo]; // Mark this value number as currently being computed, then ask what the // ultimate value # of the other value is. ThisValNoAssignments[VN] = -2; unsigned UltimateVN = ComputeUltimateVN(OtherValNo, ValueNumberInfo, OtherFromThis, ThisFromOther, OtherValNoAssignments, ThisValNoAssignments, OtherLI, ThisLI); return ThisValNoAssignments[VN] = UltimateVN; } static bool InVector(unsigned Val, const SmallVector &V) { return std::find(V.begin(), V.end(), Val) != V.end(); } /// SimpleJoin - Attempt to joint the specified interval into this one. The /// caller of this method must guarantee that the RHS only contains a single /// value number and that the RHS is not defined by a copy from this /// interval. This returns false if the intervals are not joinable, or it /// joins them and returns true. bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) { assert(RHS.containsOneValue()); // Some number (potentially more than one) value numbers in the current // interval may be defined as copies from the RHS. Scan the overlapping // portions of the LHS and RHS, keeping track of this and looking for // overlapping live ranges that are NOT defined as copies. If these exist, we // cannot coallesce. LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end(); LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end(); if (LHSIt->start < RHSIt->start) { LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start); if (LHSIt != LHS.begin()) --LHSIt; } else if (RHSIt->start < LHSIt->start) { RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start); if (RHSIt != RHS.begin()) --RHSIt; } SmallVector EliminatedLHSVals; while (1) { // Determine if these live intervals overlap. bool Overlaps = false; if (LHSIt->start <= RHSIt->start) Overlaps = LHSIt->end > RHSIt->start; else Overlaps = RHSIt->end > LHSIt->start; // If the live intervals overlap, there are two interesting cases: if the // LHS interval is defined by a copy from the RHS, it's ok and we record // that the LHS value # is the same as the RHS. If it's not, then we cannot // coallesce these live ranges and we bail out. if (Overlaps) { // If we haven't already recorded that this value # is safe, check it. if (!InVector(LHSIt->ValId, EliminatedLHSVals)) { // Copy from the RHS? unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId); if (rep(SrcReg) != RHS.reg) return false; // Nope, bail out. EliminatedLHSVals.push_back(LHSIt->ValId); } // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; continue; } if (LHSIt->end < RHSIt->end) { if (++LHSIt == LHSEnd) break; } else { // One interesting case to check here. It's possible that we have // something like "X3 = Y" which defines a new value number in the LHS, // and is the last use of this liverange of the RHS. In this case, we // want to notice this copy (so that it gets coallesced away) even though // the live ranges don't actually overlap. if (LHSIt->start == RHSIt->end) { if (InVector(LHSIt->ValId, EliminatedLHSVals)) { // We already know that this value number is going to be merged in // if coallescing succeeds. Just skip the liverange. if (++LHSIt == LHSEnd) break; } else { // Otherwise, if this is a copy from the RHS, mark it as being merged // in. if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) { EliminatedLHSVals.push_back(LHSIt->ValId); // We know this entire LHS live range is okay, so skip it now. if (++LHSIt == LHSEnd) break; } } } if (++RHSIt == RHSEnd) break; } } // If we got here, we know that the coallescing will be successful and that // the value numbers in EliminatedLHSVals will all be merged together. Since // the most common case is that EliminatedLHSVals has a single number, we // optimize for it: if there is more than one value, we merge them all into // the lowest numbered one, then handle the interval as if we were merging // with one value number. unsigned LHSValNo; if (EliminatedLHSVals.size() > 1) { // Loop through all the equal value numbers merging them into the smallest // one. unsigned Smallest = EliminatedLHSVals[0]; for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) { if (EliminatedLHSVals[i] < Smallest) { // Merge the current notion of the smallest into the smaller one. LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]); Smallest = EliminatedLHSVals[i]; } else { // Merge into the smallest. LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest); } } LHSValNo = Smallest; } else { assert(!EliminatedLHSVals.empty() && "No copies from the RHS?"); LHSValNo = EliminatedLHSVals[0]; } // Okay, now that there is a single LHS value number that we're merging the // RHS into, update the value number info for the LHS to indicate that the // value number is defined where the RHS value number was. LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0)); // Okay, the final step is to loop over the RHS live intervals, adding them to // the LHS. LHS.MergeRangesInAsValue(RHS, LHSValNo); LHS.weight += RHS.weight; return true; } /// JoinIntervals - Attempt to join these two intervals. On failure, this /// returns false. Otherwise, if one of the intervals being joined is a /// physreg, this method always canonicalizes LHS to be it. The output /// "RHS" will not have been modified, so we can use this information /// below to update aliases. bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) { // Compute the final value assignment, assuming that the live ranges can be // coallesced. SmallVector LHSValNoAssignments; SmallVector RHSValNoAssignments; SmallVector, 16> ValueNumberInfo; // Compute ultimate value numbers for the LHS and RHS values. if (RHS.containsOneValue()) { // Copies from a liveinterval with a single value are simple to handle and // very common, handle the special case here. This is important, because // often RHS is small and LHS is large (e.g. a physreg). // Find out if the RHS is defined as a copy from some value in the LHS. int RHSValID = -1; std::pair RHSValNoInfo; unsigned RHSSrcReg = RHS.getSrcRegForValNum(0); if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) { // If RHS is not defined as a copy from the LHS, we can use simpler and // faster checks to see if the live ranges are coallescable. This joiner // can't swap the LHS/RHS intervals though. if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) { return SimpleJoin(LHS, RHS); } else { RHSValNoInfo = RHS.getValNumInfo(0); } } else { // It was defined as a copy from the LHS, find out what value # it is. unsigned ValInst = RHS.getInstForValNum(0); RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId; RHSValNoInfo = LHS.getValNumInfo(RHSValID); } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); ValueNumberInfo.resize(LHS.getNumValNums()); // Okay, *all* of the values in LHS that are defined as a copy from RHS // should now get updated. for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) { if (rep(LHSSrcReg) != RHS.reg) { // If this is not a copy from the RHS, its value number will be // unmodified by the coallescing. ValueNumberInfo[VN] = LHS.getValNumInfo(VN); LHSValNoAssignments[VN] = VN; } else if (RHSValID == -1) { // Otherwise, it is a copy from the RHS, and we don't already have a // value# for it. Keep the current value number, but remember it. LHSValNoAssignments[VN] = RHSValID = VN; ValueNumberInfo[VN] = RHSValNoInfo; } else { // Otherwise, use the specified value #. LHSValNoAssignments[VN] = RHSValID; if (VN != (unsigned)RHSValID) ValueNumberInfo[VN].first = ~1U; else ValueNumberInfo[VN] = RHSValNoInfo; } } else { ValueNumberInfo[VN] = LHS.getValNumInfo(VN); LHSValNoAssignments[VN] = VN; } } assert(RHSValID != -1 && "Didn't find value #?"); RHSValNoAssignments[0] = RHSValID; } else { // Loop over the value numbers of the LHS, seeing if any are defined from // the RHS. SmallVector LHSValsDefinedFromRHS; LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1); for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { unsigned ValSrcReg = LHS.getSrcRegForValNum(VN); if (ValSrcReg == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the LHS interval. If the src is // from the RHS interval, we can use its value #. if (rep(ValSrcReg) != RHS.reg) continue; // Figure out the value # from the RHS. unsigned ValInst = LHS.getInstForValNum(VN); LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId; } // Loop over the value numbers of the RHS, seeing if any are defined from // the LHS. SmallVector RHSValsDefinedFromLHS; RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1); for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) { unsigned ValSrcReg = RHS.getSrcRegForValNum(VN); if (ValSrcReg == 0) // Src not defined by a copy? continue; // DstReg is known to be a register in the RHS interval. If the src is // from the LHS interval, we can use its value #. if (rep(ValSrcReg) != LHS.reg) continue; // Figure out the value # from the LHS. unsigned ValInst = RHS.getInstForValNum(VN); RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId; } LHSValNoAssignments.resize(LHS.getNumValNums(), -1); RHSValNoAssignments.resize(RHS.getNumValNums(), -1); ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums()); for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) { if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U) continue; ComputeUltimateVN(VN, ValueNumberInfo, LHSValsDefinedFromRHS, RHSValsDefinedFromLHS, LHSValNoAssignments, RHSValNoAssignments, LHS, RHS); } for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) { if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U) continue; // If this value number isn't a copy from the LHS, it's a new number. if (RHSValsDefinedFromLHS[VN] == -1) { ValueNumberInfo.push_back(RHS.getValNumInfo(VN)); RHSValNoAssignments[VN] = ValueNumberInfo.size()-1; continue; } ComputeUltimateVN(VN, ValueNumberInfo, RHSValsDefinedFromLHS, LHSValsDefinedFromRHS, RHSValNoAssignments, LHSValNoAssignments, RHS, LHS); } } // Armed with the mappings of LHS/RHS values to ultimate values, walk the // interval lists to see if these intervals are coallescable. LiveInterval::const_iterator I = LHS.begin(); LiveInterval::const_iterator IE = LHS.end(); LiveInterval::const_iterator J = RHS.begin(); LiveInterval::const_iterator JE = RHS.end(); // Skip ahead until the first place of potential sharing. if (I->start < J->start) { I = std::upper_bound(I, IE, J->start); if (I != LHS.begin()) --I; } else if (J->start < I->start) { J = std::upper_bound(J, JE, I->start); if (J != RHS.begin()) --J; } while (1) { // Determine if these two live ranges overlap. bool Overlaps; if (I->start < J->start) { Overlaps = I->end > J->start; } else { Overlaps = J->end > I->start; } // If so, check value # info to determine if they are really different. if (Overlaps) { // If the live range overlap will map to the same value number in the // result liverange, we can still coallesce them. If not, we can't. if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId]) return false; } if (I->end < J->end) { ++I; if (I == IE) break; } else { ++J; if (J == JE) break; } } // If we get here, we know that we can coallesce the live ranges. Ask the // intervals to coallesce themselves now. LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], ValueNumberInfo); return true; } namespace { // DepthMBBCompare - Comparison predicate that sort first based on the loop // depth of the basic block (the unsigned), and then on the MBB number. struct DepthMBBCompare { typedef std::pair DepthMBBPair; bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const { if (LHS.first > RHS.first) return true; // Deeper loops first return LHS.first == RHS.first && LHS.second->getNumber() < RHS.second->getNumber(); } }; } void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB, std::vector &TryAgain) { DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n"); for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E;) { MachineInstr *Inst = MII++; // If this isn't a copy, we can't join intervals. unsigned SrcReg, DstReg; if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue; if (!JoinCopy(Inst, SrcReg, DstReg)) TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg)); } } void LiveIntervals::joinIntervals() { DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n"); std::vector TryAgainList; const LoopInfo &LI = getAnalysis(); if (LI.begin() == LI.end()) { // If there are no loops in the function, join intervals in function order. for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) CopyCoallesceInMBB(I, TryAgainList); } else { // Otherwise, join intervals in inner loops before other intervals. // Unfortunately we can't just iterate over loop hierarchy here because // there may be more MBB's than BB's. Collect MBB's for sorting. std::vector > MBBs; for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E; ++I) MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I)); // Sort by loop depth. std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare()); // Finally, join intervals in loop nest order. for (unsigned i = 0, e = MBBs.size(); i != e; ++i) CopyCoallesceInMBB(MBBs[i].second, TryAgainList); } // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. bool ProgressMade = true; while (ProgressMade) { ProgressMade = false; for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) { CopyRec &TheCopy = TryAgainList[i]; if (TheCopy.MI && JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) { TheCopy.MI = 0; // Mark this one as done. ProgressMade = true; } } } DEBUG(std::cerr << "*** Register mapping ***\n"); DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i) if (r2rMap_[i]) { std::cerr << " reg " << i << " -> "; printRegName(r2rMap_[i]); std::cerr << "\n"; }); } /// Return true if the two specified registers belong to different register /// classes. The registers may be either phys or virt regs. bool LiveIntervals::differingRegisterClasses(unsigned RegA, unsigned RegB) const { // Get the register classes for the first reg. if (MRegisterInfo::isPhysicalRegister(RegA)) { assert(MRegisterInfo::isVirtualRegister(RegB) && "Shouldn't consider two physregs!"); return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA); } // Compare against the regclass for the second reg. const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA); if (MRegisterInfo::isVirtualRegister(RegB)) return RegClass != mf_->getSSARegMap()->getRegClass(RegB); else return !RegClass->contains(RegB); } LiveInterval LiveIntervals::createInterval(unsigned reg) { float Weight = MRegisterInfo::isPhysicalRegister(reg) ? (float)HUGE_VAL : 0.0F; return LiveInterval(reg, Weight); }