//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This pass implements the Bottom Up SLP vectorizer. It detects consecutive // stores that can be put together into vector-stores. Next, it attempts to // construct vectorizable tree using the use-def chains. If a profitable tree // was found, the SLP vectorizer performs vectorization on the tree. // // The pass is inspired by the work described in the paper: // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. // //===----------------------------------------------------------------------===// #define SV_NAME "slp-vectorizer" #define DEBUG_TYPE "SLP" #include "llvm/Transforms/Vectorize.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; static cl::opt SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, cl::desc("Only vectorize if you gain more than this " "number ")); static cl::opt ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, cl::desc("Attempt to vectorize horizontal reductions")); static cl::opt ShouldStartVectorizeHorAtStore( "slp-vectorize-hor-store", cl::init(false), cl::Hidden, cl::desc( "Attempt to vectorize horizontal reductions feeding into a store")); namespace { static const unsigned MinVecRegSize = 128; static const unsigned RecursionMaxDepth = 12; /// A helper class for numbering instructions in multiple blocks. /// Numbers start at zero for each basic block. struct BlockNumbering { BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {} BlockNumbering() : BB(0), Valid(false) {} void numberInstructions() { unsigned Loc = 0; InstrIdx.clear(); InstrVec.clear(); // Number the instructions in the block. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { InstrIdx[it] = Loc++; InstrVec.push_back(it); assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation"); } Valid = true; } int getIndex(Instruction *I) { assert(I->getParent() == BB && "Invalid instruction"); if (!Valid) numberInstructions(); assert(InstrIdx.count(I) && "Unknown instruction"); return InstrIdx[I]; } Instruction *getInstruction(unsigned loc) { if (!Valid) numberInstructions(); assert(InstrVec.size() > loc && "Invalid Index"); return InstrVec[loc]; } void forget() { Valid = false; } private: /// The block we are numbering. BasicBlock *BB; /// Is the block numbered. bool Valid; /// Maps instructions to numbers and back. SmallDenseMap InstrIdx; /// Maps integers to Instructions. SmallVector InstrVec; }; /// \returns the parent basic block if all of the instructions in \p VL /// are in the same block or null otherwise. static BasicBlock *getSameBlock(ArrayRef VL) { Instruction *I0 = dyn_cast(VL[0]); if (!I0) return 0; BasicBlock *BB = I0->getParent(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast(VL[i]); if (!I) return 0; if (BB != I->getParent()) return 0; } return BB; } /// \returns True if all of the values in \p VL are constants. static bool allConstant(ArrayRef VL) { for (unsigned i = 0, e = VL.size(); i < e; ++i) if (!isa(VL[i])) return false; return true; } /// \returns True if all of the values in \p VL are identical. static bool isSplat(ArrayRef VL) { for (unsigned i = 1, e = VL.size(); i < e; ++i) if (VL[i] != VL[0]) return false; return true; } /// \returns The opcode if all of the Instructions in \p VL have the same /// opcode, or zero. static unsigned getSameOpcode(ArrayRef VL) { Instruction *I0 = dyn_cast(VL[0]); if (!I0) return 0; unsigned Opcode = I0->getOpcode(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast(VL[i]); if (!I || Opcode != I->getOpcode()) return 0; } return Opcode; } /// \returns \p I after propagating metadata from \p VL. static Instruction *propagateMetadata(Instruction *I, ArrayRef VL) { Instruction *I0 = cast(VL[0]); SmallVector, 4> Metadata; I0->getAllMetadataOtherThanDebugLoc(Metadata); for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { unsigned Kind = Metadata[i].first; MDNode *MD = Metadata[i].second; for (int i = 1, e = VL.size(); MD && i != e; i++) { Instruction *I = cast(VL[i]); MDNode *IMD = I->getMetadata(Kind); switch (Kind) { default: MD = 0; // Remove unknown metadata break; case LLVMContext::MD_tbaa: MD = MDNode::getMostGenericTBAA(MD, IMD); break; case LLVMContext::MD_fpmath: MD = MDNode::getMostGenericFPMath(MD, IMD); break; } } I->setMetadata(Kind, MD); } return I; } /// \returns The type that all of the values in \p VL have or null if there /// are different types. static Type* getSameType(ArrayRef VL) { Type *Ty = VL[0]->getType(); for (int i = 1, e = VL.size(); i < e; i++) if (VL[i]->getType() != Ty) return 0; return Ty; } /// \returns True if the ExtractElement instructions in VL can be vectorized /// to use the original vector. static bool CanReuseExtract(ArrayRef VL) { assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); // Check if all of the extracts come from the same vector and from the // correct offset. Value *VL0 = VL[0]; ExtractElementInst *E0 = cast(VL0); Value *Vec = E0->getOperand(0); // We have to extract from the same vector type. unsigned NElts = Vec->getType()->getVectorNumElements(); if (NElts != VL.size()) return false; // Check that all of the indices extract from the correct offset. ConstantInt *CI = dyn_cast(E0->getOperand(1)); if (!CI || CI->getZExtValue()) return false; for (unsigned i = 1, e = VL.size(); i < e; ++i) { ExtractElementInst *E = cast(VL[i]); ConstantInt *CI = dyn_cast(E->getOperand(1)); if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) return false; } return true; } static void reorderInputsAccordingToOpcode(ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right) { SmallVector OrigLeft, OrigRight; bool AllSameOpcodeLeft = true; bool AllSameOpcodeRight = true; for (unsigned i = 0, e = VL.size(); i != e; ++i) { Instruction *I = cast(VL[i]); Value *V0 = I->getOperand(0); Value *V1 = I->getOperand(1); OrigLeft.push_back(V0); OrigRight.push_back(V1); Instruction *I0 = dyn_cast(V0); Instruction *I1 = dyn_cast(V1); // Check whether all operands on one side have the same opcode. In this case // we want to preserve the original order and not make things worse by // reordering. AllSameOpcodeLeft = I0; AllSameOpcodeRight = I1; if (i && AllSameOpcodeLeft) { if(Instruction *P0 = dyn_cast(OrigLeft[i-1])) { if(P0->getOpcode() != I0->getOpcode()) AllSameOpcodeLeft = false; } else AllSameOpcodeLeft = false; } if (i && AllSameOpcodeRight) { if(Instruction *P1 = dyn_cast(OrigRight[i-1])) { if(P1->getOpcode() != I1->getOpcode()) AllSameOpcodeRight = false; } else AllSameOpcodeRight = false; } // Sort two opcodes. In the code below we try to preserve the ability to use // broadcast of values instead of individual inserts. // vl1 = load // vl2 = phi // vr1 = load // vr2 = vr2 // = vl1 x vr1 // = vl2 x vr2 // If we just sorted according to opcode we would leave the first line in // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). // = vl1 x vr1 // = vr2 x vl2 // Because vr2 and vr1 are from the same load we loose the opportunity of a // broadcast for the packed right side in the backend: we have [vr1, vl2] // instead of [vr1, vr2=vr1]. if (I0 && I1) { if(!i && I0->getOpcode() > I1->getOpcode()) { Left.push_back(I1); Right.push_back(I0); } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { // Try not to destroy a broad cast for no apparent benefit. Left.push_back(I1); Right.push_back(I0); } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { // Try preserve broadcasts. Left.push_back(I1); Right.push_back(I0); } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { // Try preserve broadcasts. Left.push_back(I1); Right.push_back(I0); } else { Left.push_back(I0); Right.push_back(I1); } continue; } // One opcode, put the instruction on the right. if (I0) { Left.push_back(V1); Right.push_back(I0); continue; } Left.push_back(V0); Right.push_back(V1); } bool LeftBroadcast = isSplat(Left); bool RightBroadcast = isSplat(Right); // Don't reorder if the operands where good to begin with. if (!(LeftBroadcast || RightBroadcast) && (AllSameOpcodeRight || AllSameOpcodeLeft)) { Left = OrigLeft; Right = OrigRight; } } /// Bottom Up SLP Vectorizer. class BoUpSLP { public: typedef SmallVector ValueList; typedef SmallVector InstrList; typedef SmallPtrSet ValueSet; typedef SmallVector StoreList; BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl, TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li, DominatorTree *Dt) : F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt), Builder(Se->getContext()) { // Setup the block numbering utility for all of the blocks in the // function. for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { BasicBlock *BB = it; BlocksNumbers[BB] = BlockNumbering(BB); } } /// \brief Vectorize the tree that starts with the elements in \p VL. /// Returns the vectorized root. Value *vectorizeTree(); /// \returns the vectorization cost of the subtree that starts at \p VL. /// A negative number means that this is profitable. int getTreeCost(); /// Construct a vectorizable tree that starts at \p Roots and is possibly /// used by a reduction of \p RdxOps. void buildTree(ArrayRef Roots, ValueSet *RdxOps = 0); /// Clear the internal data structures that are created by 'buildTree'. void deleteTree() { RdxOps = 0; VectorizableTree.clear(); ScalarToTreeEntry.clear(); MustGather.clear(); ExternalUses.clear(); MemBarrierIgnoreList.clear(); } /// \returns true if the memory operations A and B are consecutive. bool isConsecutiveAccess(Value *A, Value *B); /// \brief Perform LICM and CSE on the newly generated gather sequences. void optimizeGatherSequence(); private: struct TreeEntry; /// \returns the cost of the vectorizable entry. int getEntryCost(TreeEntry *E); /// This is the recursive part of buildTree. void buildTree_rec(ArrayRef Roots, unsigned Depth); /// Vectorize a single entry in the tree. Value *vectorizeTree(TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef VL); /// \returns the pointer to the vectorized value if \p VL is already /// vectorized, or NULL. They may happen in cycles. Value *alreadyVectorized(ArrayRef VL) const; /// \brief Take the pointer operand from the Load/Store instruction. /// \returns NULL if this is not a valid Load/Store instruction. static Value *getPointerOperand(Value *I); /// \brief Take the address space operand from the Load/Store instruction. /// \returns -1 if this is not a valid Load/Store instruction. static unsigned getAddressSpaceOperand(Value *I); /// \returns the scalarization cost for this type. Scalarization in this /// context means the creation of vectors from a group of scalars. int getGatherCost(Type *Ty); /// \returns the scalarization cost for this list of values. Assuming that /// this subtree gets vectorized, we may need to extract the values from the /// roots. This method calculates the cost of extracting the values. int getGatherCost(ArrayRef VL); /// \returns the AA location that is being access by the instruction. AliasAnalysis::Location getLocation(Instruction *I); /// \brief Checks if it is possible to sink an instruction from /// \p Src to \p Dst. /// \returns the pointer to the barrier instruction if we can't sink. Value *getSinkBarrier(Instruction *Src, Instruction *Dst); /// \returns the index of the last instruction in the BB from \p VL. int getLastIndex(ArrayRef VL); /// \returns the Instruction in the bundle \p VL. Instruction *getLastInstruction(ArrayRef VL); /// \brief Set the Builder insert point to one after the last instruction in /// the bundle void setInsertPointAfterBundle(ArrayRef VL); /// \returns a vector from a collection of scalars in \p VL. Value *Gather(ArrayRef VL, VectorType *Ty); /// \returns whether the VectorizableTree is fully vectoriable and will /// be beneficial even the tree height is tiny. bool isFullyVectorizableTinyTree(); struct TreeEntry { TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0), NeedToGather(0) {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef VL) const { assert(VL.size() == Scalars.size() && "Invalid size"); return std::equal(VL.begin(), VL.end(), Scalars.begin()); } /// A vector of scalars. ValueList Scalars; /// The Scalars are vectorized into this value. It is initialized to Null. Value *VectorizedValue; /// The index in the basic block of the last scalar. int LastScalarIndex; /// Do we need to gather this sequence ? bool NeedToGather; }; /// Create a new VectorizableTree entry. TreeEntry *newTreeEntry(ArrayRef VL, bool Vectorized) { VectorizableTree.push_back(TreeEntry()); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; if (Vectorized) { Last->LastScalarIndex = getLastIndex(VL); for (int i = 0, e = VL.size(); i != e; ++i) { assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); ScalarToTreeEntry[VL[i]] = idx; } } else { Last->LastScalarIndex = 0; MustGather.insert(VL.begin(), VL.end()); } return Last; } /// -- Vectorization State -- /// Holds all of the tree entries. std::vector VectorizableTree; /// Maps a specific scalar to its tree entry. SmallDenseMap ScalarToTreeEntry; /// A list of scalars that we found that we need to keep as scalars. ValueSet MustGather; /// This POD struct describes one external user in the vectorized tree. struct ExternalUser { ExternalUser (Value *S, llvm::User *U, int L) : Scalar(S), User(U), Lane(L){}; // Which scalar in our function. Value *Scalar; // Which user that uses the scalar. llvm::User *User; // Which lane does the scalar belong to. int Lane; }; typedef SmallVector UserList; /// A list of values that need to extracted out of the tree. /// This list holds pairs of (Internal Scalar : External User). UserList ExternalUses; /// A list of instructions to ignore while sinking /// memory instructions. This map must be reset between runs of getCost. ValueSet MemBarrierIgnoreList; /// Holds all of the instructions that we gathered. SetVector GatherSeq; /// A list of blocks that we are going to CSE. SetVector CSEBlocks; /// Numbers instructions in different blocks. DenseMap BlocksNumbers; /// Reduction operators. ValueSet *RdxOps; // Analysis and block reference. Function *F; ScalarEvolution *SE; DataLayout *DL; TargetTransformInfo *TTI; AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; /// Instruction builder to construct the vectorized tree. IRBuilder<> Builder; }; void BoUpSLP::buildTree(ArrayRef Roots, ValueSet *Rdx) { deleteTree(); RdxOps = Rdx; if (!getSameType(Roots)) return; buildTree_rec(Roots, 0); // Collect the values that we need to extract from the tree. for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { TreeEntry *Entry = &VectorizableTree[EIdx]; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; for (Value::use_iterator User = Scalar->use_begin(), UE = Scalar->use_end(); User != UE; ++User) { DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n"); // Skip in-tree scalars that become vectors. if (ScalarToTreeEntry.count(*User)) { DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << **User << ".\n"); int Idx = ScalarToTreeEntry[*User]; (void) Idx; assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); continue; } Instruction *UserInst = dyn_cast(*User); if (!UserInst) continue; // Ignore uses that are part of the reduction. if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end()) continue; DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.push_back(ExternalUser(Scalar, *User, Lane)); } } } } void BoUpSLP::buildTree_rec(ArrayRef VL, unsigned Depth) { bool SameTy = getSameType(VL); (void)SameTy; assert(SameTy && "Invalid types!"); if (Depth == RecursionMaxDepth) { DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); newTreeEntry(VL, false); return; } // Don't handle vectors. if (VL[0]->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); newTreeEntry(VL, false); return; } if (StoreInst *SI = dyn_cast(VL[0])) if (SI->getValueOperand()->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); newTreeEntry(VL, false); return; } // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !getSameOpcode(VL)) { DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); newTreeEntry(VL, false); return; } // We now know that this is a vector of instructions of the same type from // the same block. // Check if this is a duplicate of another entry. if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; for (unsigned i = 0, e = VL.size(); i != e; ++i) { DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); if (E->Scalars[i] != VL[i]) { DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); newTreeEntry(VL, false); return; } } DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); return; } // Check that none of the instructions in the bundle are already in the tree. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (ScalarToTreeEntry.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); newTreeEntry(VL, false); return; } } // If any of the scalars appears in the table OR it is marked as a value that // needs to stat scalar then we need to gather the scalars. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); newTreeEntry(VL, false); return; } } // Check that all of the users of the scalars that we want to vectorize are // schedulable. Instruction *VL0 = cast(VL[0]); int MyLastIndex = getLastIndex(VL); BasicBlock *BB = cast(VL0)->getParent(); for (unsigned i = 0, e = VL.size(); i != e; ++i) { Instruction *Scalar = cast(VL[i]); DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n"); for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end(); U != UE; ++U) { DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n"); Instruction *User = dyn_cast(*U); if (!User) { DEBUG(dbgs() << "SLP: Gathering due unknown user. \n"); newTreeEntry(VL, false); return; } // We don't care if the user is in a different basic block. BasicBlock *UserBlock = User->getParent(); if (UserBlock != BB) { DEBUG(dbgs() << "SLP: User from a different basic block " << *User << ". \n"); continue; } // If this is a PHINode within this basic block then we can place the // extract wherever we want. if (isa(*User)) { DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n"); continue; } // Check if this is a safe in-tree user. if (ScalarToTreeEntry.count(User)) { int Idx = ScalarToTreeEntry[User]; int VecLocation = VectorizableTree[Idx].LastScalarIndex; if (VecLocation <= MyLastIndex) { DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n"); newTreeEntry(VL, false); return; } DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" << VecLocation << " vector value (" << *Scalar << ") at #" << MyLastIndex << ".\n"); continue; } // This user is part of the reduction. if (RdxOps && RdxOps->count(User)) continue; // Make sure that we can schedule this unknown user. BlockNumbering &BN = BlocksNumbers[BB]; int UserIndex = BN.getIndex(User); if (UserIndex < MyLastIndex) { DEBUG(dbgs() << "SLP: Can't schedule extractelement for " << *User << ". \n"); newTreeEntry(VL, false); return; } } } // Check that every instructions appears once in this bundle. for (unsigned i = 0, e = VL.size(); i < e; ++i) for (unsigned j = i+1; j < e; ++j) if (VL[i] == VL[j]) { DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); newTreeEntry(VL, false); return; } // Check that instructions in this bundle don't reference other instructions. // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4. for (unsigned i = 0, e = VL.size(); i < e; ++i) { for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end(); U != UE; ++U) { for (unsigned j = 0; j < e; ++j) { if (i != j && *U == VL[j]) { DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n"); newTreeEntry(VL, false); return; } } } } DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); unsigned Opcode = getSameOpcode(VL); // Check if it is safe to sink the loads or the stores. if (Opcode == Instruction::Load || Opcode == Instruction::Store) { Instruction *Last = getLastInstruction(VL); for (unsigned i = 0, e = VL.size(); i < e; ++i) { if (VL[i] == Last) continue; Value *Barrier = getSinkBarrier(cast(VL[i]), Last); if (Barrier) { DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last << "\n because of " << *Barrier << ". Gathering.\n"); newTreeEntry(VL, false); return; } } } switch (Opcode) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); // Check for terminator values (e.g. invoke). for (unsigned j = 0; j < VL.size(); ++j) for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { TerminatorInst *Term = dyn_cast(cast(VL[j])->getIncomingValue(i)); if (Term) { DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); newTreeEntry(VL, false); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getIncomingValue(i)); buildTree_rec(Operands, Depth + 1); } return; } case Instruction::ExtractElement: { bool Reuse = CanReuseExtract(VL); if (Reuse) { DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); } newTreeEntry(VL, Reuse); return; } case Instruction::Load: { // Check if the loads are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { LoadInst *L = cast(VL[i]); if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Need to swizzle loads.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of loads.\n"); return; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); for (unsigned i = 0; i < VL.size(); ++i) { Type *Ty = cast(VL[i])->getOperand(0)->getType(); if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::ICmp: case Instruction::FCmp: { // Check that all of the compares have the same predicate. CmpInst::Predicate P0 = dyn_cast(VL0)->getPredicate(); Type *ComparedTy = cast(VL[0])->getOperand(0)->getType(); for (unsigned i = 1, e = VL.size(); i < e; ++i) { CmpInst *Cmp = cast(VL[i]); if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::Select: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); // Sort operands of the instructions so that each side is more likely to // have the same opcode. if (isa(VL0) && VL0->isCommutative()) { ValueList Left, Right; reorderInputsAccordingToOpcode(VL, Left, Right); buildTree_rec(Left, Depth + 1); buildTree_rec(Right, Depth + 1); return; } for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::Store: { // Check if the stores are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1])) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(0)); // We can ignore these values because we are sinking them down. MemBarrierIgnoreList.insert(VL.begin(), VL.end()); buildTree_rec(Operands, Depth + 1); return; } default: newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } } int BoUpSLP::getEntryCost(TreeEntry *E) { ArrayRef VL = E->Scalars; Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); if (E->NeedToGather) { if (allConstant(VL)) return 0; if (isSplat(VL)) { return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); } return getGatherCost(E->Scalars); } assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); Instruction *VL0 = cast(VL[0]); unsigned Opcode = VL0->getOpcode(); switch (Opcode) { case Instruction::PHI: { return 0; } case Instruction::ExtractElement: { if (CanReuseExtract(VL)) return 0; return getGatherCost(VecTy); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); // Calculate the cost of this instruction. int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), VL0->getType(), SrcTy); VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); return VecCost - ScalarCost; } case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Calculate the cost of this instruction. int ScalarCost = 0; int VecCost = 0; if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || Opcode == Instruction::Select) { VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); ScalarCost = VecTy->getNumElements() * TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); } else { // Certain instructions can be cheaper to vectorize if they have a // constant second vector operand. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; // Check whether all second operands are constant. for (unsigned i = 0; i < VL.size(); ++i) if (!isa(cast(VL[i])->getOperand(1))) { Op2VK = TargetTransformInfo::OK_AnyValue; break; } ScalarCost = VecTy->getNumElements() * TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK); VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK); } return VecCost - ScalarCost; } case Instruction::Load: { // Cost of wide load - cost of scalar loads. int ScalarLdCost = VecTy->getNumElements() * TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); return VecLdCost - ScalarLdCost; } case Instruction::Store: { // We know that we can merge the stores. Calculate the cost. int ScalarStCost = VecTy->getNumElements() * TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); return VecStCost - ScalarStCost; } default: llvm_unreachable("Unknown instruction"); } } bool BoUpSLP::isFullyVectorizableTinyTree() { DEBUG(dbgs() << "SLP: Check whether the tree with height " << VectorizableTree.size() << " is fully vectorizable .\n"); // We only handle trees of height 2. if (VectorizableTree.size() != 2) return false; // Gathering cost would be too much for tiny trees. if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) return false; return true; } int BoUpSLP::getTreeCost() { int Cost = 0; DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << VectorizableTree.size() << ".\n"); // We only vectorize tiny trees if it is fully vectorizable. if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { if (!VectorizableTree.size()) { assert(!ExternalUses.size() && "We should not have any external users"); } return INT_MAX; } unsigned BundleWidth = VectorizableTree[0].Scalars.size(); for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { int C = getEntryCost(&VectorizableTree[i]); DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " << *VectorizableTree[i].Scalars[0] << " .\n"); Cost += C; } SmallSet ExtractCostCalculated; int ExtractCost = 0; for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); I != E; ++I) { // We only add extract cost once for the same scalar. if (!ExtractCostCalculated.insert(I->Scalar)) continue; VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I->Lane); } DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); return Cost + ExtractCost; } int BoUpSLP::getGatherCost(Type *Ty) { int Cost = 0; for (unsigned i = 0, e = cast(Ty)->getNumElements(); i < e; ++i) Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); return Cost; } int BoUpSLP::getGatherCost(ArrayRef VL) { // Find the type of the operands in VL. Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); // Find the cost of inserting/extracting values from the vector. return getGatherCost(VecTy); } AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) { if (StoreInst *SI = dyn_cast(I)) return AA->getLocation(SI); if (LoadInst *LI = dyn_cast(I)) return AA->getLocation(LI); return AliasAnalysis::Location(); } Value *BoUpSLP::getPointerOperand(Value *I) { if (LoadInst *LI = dyn_cast(I)) return LI->getPointerOperand(); if (StoreInst *SI = dyn_cast(I)) return SI->getPointerOperand(); return 0; } unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { if (LoadInst *L = dyn_cast(I)) return L->getPointerAddressSpace(); if (StoreInst *S = dyn_cast(I)) return S->getPointerAddressSpace(); return -1; } bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { Value *PtrA = getPointerOperand(A); Value *PtrB = getPointerOperand(B); unsigned ASA = getAddressSpaceOperand(A); unsigned ASB = getAddressSpaceOperand(B); // Check that the address spaces match and that the pointers are valid. if (!PtrA || !PtrB || (ASA != ASB)) return false; // Make sure that A and B are different pointers of the same type. if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) return false; unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); Type *Ty = cast(PtrA->getType())->getElementType(); APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); APInt OffsetDelta = OffsetB - OffsetA; // Check if they are based on the same pointer. That makes the offsets // sufficient. if (PtrA == PtrB) return OffsetDelta == Size; // Compute the necessary base pointer delta to have the necessary final delta // equal to the size. APInt BaseDelta = Size - OffsetDelta; // Otherwise compute the distance with SCEV between the base pointers. const SCEV *PtrSCEVA = SE->getSCEV(PtrA); const SCEV *PtrSCEVB = SE->getSCEV(PtrB); const SCEV *C = SE->getConstant(BaseDelta); const SCEV *X = SE->getAddExpr(PtrSCEVA, C); return X == PtrSCEVB; } Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) { assert(Src->getParent() == Dst->getParent() && "Not the same BB"); BasicBlock::iterator I = Src, E = Dst; /// Scan all of the instruction from SRC to DST and check if /// the source may alias. for (++I; I != E; ++I) { // Ignore store instructions that are marked as 'ignore'. if (MemBarrierIgnoreList.count(I)) continue; if (Src->mayWriteToMemory()) /* Write */ { if (!I->mayReadOrWriteMemory()) continue; } else /* Read */ { if (!I->mayWriteToMemory()) continue; } AliasAnalysis::Location A = getLocation(&*I); AliasAnalysis::Location B = getLocation(Src); if (!A.Ptr || !B.Ptr || AA->alias(A, B)) return I; } return 0; } int BoUpSLP::getLastIndex(ArrayRef VL) { BasicBlock *BB = cast(VL[0])->getParent(); assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); BlockNumbering &BN = BlocksNumbers[BB]; int MaxIdx = BN.getIndex(BB->getFirstNonPHI()); for (unsigned i = 0, e = VL.size(); i < e; ++i) MaxIdx = std::max(MaxIdx, BN.getIndex(cast(VL[i]))); return MaxIdx; } Instruction *BoUpSLP::getLastInstruction(ArrayRef VL) { BasicBlock *BB = cast(VL[0])->getParent(); assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); BlockNumbering &BN = BlocksNumbers[BB]; int MaxIdx = BN.getIndex(cast(VL[0])); for (unsigned i = 1, e = VL.size(); i < e; ++i) MaxIdx = std::max(MaxIdx, BN.getIndex(cast(VL[i]))); Instruction *I = BN.getInstruction(MaxIdx); assert(I && "bad location"); return I; } void BoUpSLP::setInsertPointAfterBundle(ArrayRef VL) { Instruction *VL0 = cast(VL[0]); Instruction *LastInst = getLastInstruction(VL); BasicBlock::iterator NextInst = LastInst; ++NextInst; Builder.SetInsertPoint(VL0->getParent(), NextInst); Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); } Value *BoUpSLP::Gather(ArrayRef VL, VectorType *Ty) { Value *Vec = UndefValue::get(Ty); // Generate the 'InsertElement' instruction. for (unsigned i = 0; i < Ty->getNumElements(); ++i) { Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); if (Instruction *Insrt = dyn_cast(Vec)) { GatherSeq.insert(Insrt); CSEBlocks.insert(Insrt->getParent()); // Add to our 'need-to-extract' list. if (ScalarToTreeEntry.count(VL[i])) { int Idx = ScalarToTreeEntry[VL[i]]; TreeEntry *E = &VectorizableTree[Idx]; // Find which lane we need to extract. int FoundLane = -1; for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { // Is this the lane of the scalar that we are looking for ? if (E->Scalars[Lane] == VL[i]) { FoundLane = Lane; break; } } assert(FoundLane >= 0 && "Could not find the correct lane"); ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); } } } return Vec; } Value *BoUpSLP::alreadyVectorized(ArrayRef VL) const { SmallDenseMap::const_iterator Entry = ScalarToTreeEntry.find(VL[0]); if (Entry != ScalarToTreeEntry.end()) { int Idx = Entry->second; const TreeEntry *En = &VectorizableTree[Idx]; if (En->isSame(VL) && En->VectorizedValue) return En->VectorizedValue; } return 0; } Value *BoUpSLP::vectorizeTree(ArrayRef VL) { if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; if (E->isSame(VL)) return vectorizeTree(E); } Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); return Gather(VL, VecTy); } Value *BoUpSLP::vectorizeTree(TreeEntry *E) { IRBuilder<>::InsertPointGuard Guard(Builder); if (E->VectorizedValue) { DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } Instruction *VL0 = cast(E->Scalars[0]); Type *ScalarTy = VL0->getType(); if (StoreInst *SI = dyn_cast(VL0)) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); if (E->NeedToGather) { setInsertPointAfterBundle(E->Scalars); return Gather(E->Scalars, VecTy); } unsigned Opcode = VL0->getOpcode(); assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode"); switch (Opcode) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); E->VectorizedValue = NewPhi; // PHINodes may have multiple entries from the same block. We want to // visit every block once. SmallSet VisitedBBs; for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; BasicBlock *IBB = PH->getIncomingBlock(i); if (!VisitedBBs.insert(IBB)) { NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); continue; } // Prepare the operand vector. for (unsigned j = 0; j < E->Scalars.size(); ++j) Operands.push_back(cast(E->Scalars[j])-> getIncomingValueForBlock(IBB)); Builder.SetInsertPoint(IBB->getTerminator()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); Value *Vec = vectorizeTree(Operands); NewPhi->addIncoming(Vec, IBB); } assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && "Invalid number of incoming values"); return NewPhi; } case Instruction::ExtractElement: { if (CanReuseExtract(E->Scalars)) { Value *V = VL0->getOperand(0); E->VectorizedValue = V; return V; } return Gather(E->Scalars, VecTy); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { ValueList INVL; for (int i = 0, e = E->Scalars.size(); i < e; ++i) INVL.push_back(cast(E->Scalars[i])->getOperand(0)); setInsertPointAfterBundle(E->Scalars); Value *InVec = vectorizeTree(INVL); if (Value *V = alreadyVectorized(E->Scalars)) return V; CastInst *CI = dyn_cast(VL0); Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); E->VectorizedValue = V; return V; } case Instruction::FCmp: case Instruction::ICmp: { ValueList LHSV, RHSV; for (int i = 0, e = E->Scalars.size(); i < e; ++i) { LHSV.push_back(cast(E->Scalars[i])->getOperand(0)); RHSV.push_back(cast(E->Scalars[i])->getOperand(1)); } setInsertPointAfterBundle(E->Scalars); Value *L = vectorizeTree(LHSV); Value *R = vectorizeTree(RHSV); if (Value *V = alreadyVectorized(E->Scalars)) return V; CmpInst::Predicate P0 = dyn_cast(VL0)->getPredicate(); Value *V; if (Opcode == Instruction::FCmp) V = Builder.CreateFCmp(P0, L, R); else V = Builder.CreateICmp(P0, L, R); E->VectorizedValue = V; return V; } case Instruction::Select: { ValueList TrueVec, FalseVec, CondVec; for (int i = 0, e = E->Scalars.size(); i < e; ++i) { CondVec.push_back(cast(E->Scalars[i])->getOperand(0)); TrueVec.push_back(cast(E->Scalars[i])->getOperand(1)); FalseVec.push_back(cast(E->Scalars[i])->getOperand(2)); } setInsertPointAfterBundle(E->Scalars); Value *Cond = vectorizeTree(CondVec); Value *True = vectorizeTree(TrueVec); Value *False = vectorizeTree(FalseVec); if (Value *V = alreadyVectorized(E->Scalars)) return V; Value *V = Builder.CreateSelect(Cond, True, False); E->VectorizedValue = V; return V; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { ValueList LHSVL, RHSVL; if (isa(VL0) && VL0->isCommutative()) reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); else for (int i = 0, e = E->Scalars.size(); i < e; ++i) { LHSVL.push_back(cast(E->Scalars[i])->getOperand(0)); RHSVL.push_back(cast(E->Scalars[i])->getOperand(1)); } setInsertPointAfterBundle(E->Scalars); Value *LHS = vectorizeTree(LHSVL); Value *RHS = vectorizeTree(RHSVL); if (LHS == RHS && isa(LHS)) { assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); } if (Value *V = alreadyVectorized(E->Scalars)) return V; BinaryOperator *BinOp = cast(VL0); Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); E->VectorizedValue = V; if (Instruction *I = dyn_cast(V)) return propagateMetadata(I, E->Scalars); return V; } case Instruction::Load: { // Loads are inserted at the head of the tree because we don't want to // sink them all the way down past store instructions. setInsertPointAfterBundle(E->Scalars); LoadInst *LI = cast(VL0); unsigned AS = LI->getPointerAddressSpace(); Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo(AS)); unsigned Alignment = LI->getAlignment(); LI = Builder.CreateLoad(VecPtr); LI->setAlignment(Alignment); E->VectorizedValue = LI; return propagateMetadata(LI, E->Scalars); } case Instruction::Store: { StoreInst *SI = cast(VL0); unsigned Alignment = SI->getAlignment(); unsigned AS = SI->getPointerAddressSpace(); ValueList ValueOp; for (int i = 0, e = E->Scalars.size(); i < e; ++i) ValueOp.push_back(cast(E->Scalars[i])->getValueOperand()); setInsertPointAfterBundle(E->Scalars); Value *VecValue = vectorizeTree(ValueOp); Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo(AS)); StoreInst *S = Builder.CreateStore(VecValue, VecPtr); S->setAlignment(Alignment); E->VectorizedValue = S; return propagateMetadata(S, E->Scalars); } default: llvm_unreachable("unknown inst"); } return 0; } Value *BoUpSLP::vectorizeTree() { Builder.SetInsertPoint(F->getEntryBlock().begin()); vectorizeTree(&VectorizableTree[0]); DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); // Extract all of the elements with the external uses. for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); it != e; ++it) { Value *Scalar = it->Scalar; llvm::User *User = it->User; // Skip users that we already RAUW. This happens when one instruction // has multiple uses of the same value. if (std::find(Scalar->use_begin(), Scalar->use_end(), User) == Scalar->use_end()) continue; assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); int Idx = ScalarToTreeEntry[Scalar]; TreeEntry *E = &VectorizableTree[Idx]; assert(!E->NeedToGather && "Extracting from a gather list"); Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); Value *Lane = Builder.getInt32(it->Lane); // Generate extracts for out-of-tree users. // Find the insertion point for the extractelement lane. if (PHINode *PN = dyn_cast(Vec)) { Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); CSEBlocks.insert(PN->getParent()); User->replaceUsesOfWith(Scalar, Ex); } else if (isa(Vec)){ if (PHINode *PH = dyn_cast(User)) { for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { if (PH->getIncomingValue(i) == Scalar) { Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); CSEBlocks.insert(PH->getIncomingBlock(i)); PH->setOperand(i, Ex); } } } else { Builder.SetInsertPoint(cast(User)); Value *Ex = Builder.CreateExtractElement(Vec, Lane); CSEBlocks.insert(cast(User)->getParent()); User->replaceUsesOfWith(Scalar, Ex); } } else { Builder.SetInsertPoint(F->getEntryBlock().begin()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); CSEBlocks.insert(&F->getEntryBlock()); User->replaceUsesOfWith(Scalar, Ex); } DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); } // For each vectorized value: for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { TreeEntry *Entry = &VectorizableTree[EIdx]; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; assert(Entry->VectorizedValue && "Can't find vectorizable value"); Type *Ty = Scalar->getType(); if (!Ty->isVoidTy()) { for (Value::use_iterator User = Scalar->use_begin(), UE = Scalar->use_end(); User != UE; ++User) { DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n"); assert((ScalarToTreeEntry.count(*User) || // It is legal to replace the reduction users by undef. (RdxOps && RdxOps->count(*User))) && "Replacing out-of-tree value with undef"); } Value *Undef = UndefValue::get(Ty); Scalar->replaceAllUsesWith(Undef); } DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); cast(Scalar)->eraseFromParent(); } } for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { BlocksNumbers[it].forget(); } Builder.ClearInsertionPoint(); return VectorizableTree[0].VectorizedValue; } class DTCmp { const DominatorTree *DT; public: DTCmp(const DominatorTree *DT) : DT(DT) {} bool operator()(const BasicBlock *A, const BasicBlock *B) const { return DT->properlyDominates(A, B); } }; void BoUpSLP::optimizeGatherSequence() { DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() << " gather sequences instructions.\n"); // LICM InsertElementInst sequences. for (SetVector::iterator it = GatherSeq.begin(), e = GatherSeq.end(); it != e; ++it) { InsertElementInst *Insert = dyn_cast(*it); if (!Insert) continue; // Check if this block is inside a loop. Loop *L = LI->getLoopFor(Insert->getParent()); if (!L) continue; // Check if it has a preheader. BasicBlock *PreHeader = L->getLoopPreheader(); if (!PreHeader) continue; // If the vector or the element that we insert into it are // instructions that are defined in this basic block then we can't // hoist this instruction. Instruction *CurrVec = dyn_cast(Insert->getOperand(0)); Instruction *NewElem = dyn_cast(Insert->getOperand(1)); if (CurrVec && L->contains(CurrVec)) continue; if (NewElem && L->contains(NewElem)) continue; // We can hoist this instruction. Move it to the pre-header. Insert->moveBefore(PreHeader->getTerminator()); } // Sort blocks by domination. This ensures we visit a block after all blocks // dominating it are visited. SmallVector CSEWorkList(CSEBlocks.begin(), CSEBlocks.end()); std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT)); // Perform O(N^2) search over the gather sequences and merge identical // instructions. TODO: We can further optimize this scan if we split the // instructions into different buckets based on the insert lane. SmallVector Visited; for (SmallVectorImpl::iterator I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) && "Worklist not sorted properly!"); BasicBlock *BB = *I; // For all instructions in blocks containing gather sequences: for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { Instruction *In = it++; if (!isa(In) && !isa(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. for (SmallVectorImpl::iterator v = Visited.begin(), ve = Visited.end(); v != ve; ++v) { if (In->isIdenticalTo(*v) && DT->dominates((*v)->getParent(), In->getParent())) { In->replaceAllUsesWith(*v); In->eraseFromParent(); In = 0; break; } } if (In) { assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); Visited.push_back(In); } } } CSEBlocks.clear(); GatherSeq.clear(); } /// The SLPVectorizer Pass. struct SLPVectorizer : public FunctionPass { typedef SmallVector StoreList; typedef MapVector StoreListMap; /// Pass identification, replacement for typeid static char ID; explicit SLPVectorizer() : FunctionPass(ID) { initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; DataLayout *DL; TargetTransformInfo *TTI; AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; virtual bool runOnFunction(Function &F) { SE = &getAnalysis(); DL = getAnalysisIfAvailable(); TTI = &getAnalysis(); AA = &getAnalysis(); LI = &getAnalysis(); DT = &getAnalysis().getDomTree(); StoreRefs.clear(); bool Changed = false; // If the target claims to have no vector registers don't attempt // vectorization. if (!TTI->getNumberOfRegisters(true)) return false; // Must have DataLayout. We can't require it because some tests run w/o // triple. if (!DL) return false; // Don't vectorize when the attribute NoImplicitFloat is used. if (F.hasFnAttribute(Attribute::NoImplicitFloat)) return false; DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); // Use the bollom up slp vectorizer to construct chains that start with // he store instructions. BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT); // Scan the blocks in the function in post order. for (po_iterator it = po_begin(&F.getEntryBlock()), e = po_end(&F.getEntryBlock()); it != e; ++it) { BasicBlock *BB = *it; // Vectorize trees that end at stores. if (unsigned count = collectStores(BB, R)) { (void)count; DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); Changed |= vectorizeStoreChains(R); } // Vectorize trees that end at reductions. Changed |= vectorizeChainsInBlock(BB, R); } if (Changed) { R.optimizeGatherSequence(); DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); DEBUG(verifyFunction(F)); } return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } private: /// \brief Collect memory references and sort them according to their base /// object. We sort the stores to their base objects to reduce the cost of the /// quadratic search on the stores. TODO: We can further reduce this cost /// if we flush the chain creation every time we run into a memory barrier. unsigned collectStores(BasicBlock *BB, BoUpSLP &R); /// \brief Try to vectorize a chain that starts at two arithmetic instrs. bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); /// \brief Try to vectorize a list of operands. /// \returns true if a value was vectorized. bool tryToVectorizeList(ArrayRef VL, BoUpSLP &R); /// \brief Try to vectorize a chain that may start at the operands of \V; bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); /// \brief Vectorize the stores that were collected in StoreRefs. bool vectorizeStoreChains(BoUpSLP &R); /// \brief Scan the basic block and look for patterns that are likely to start /// a vectorization chain. bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); bool vectorizeStoreChain(ArrayRef Chain, int CostThreshold, BoUpSLP &R); bool vectorizeStores(ArrayRef Stores, int costThreshold, BoUpSLP &R); private: StoreListMap StoreRefs; }; /// \brief Check that the Values in the slice in VL array are still existant in /// the WeakVH array. /// Vectorization of part of the VL array may cause later values in the VL array /// to become invalid. We track when this has happened in the WeakVH array. static bool hasValueBeenRAUWed(ArrayRef &VL, SmallVectorImpl &VH, unsigned SliceBegin, unsigned SliceSize) { for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) if (VH[i] != VL[i]) return true; return false; } bool SLPVectorizer::vectorizeStoreChain(ArrayRef Chain, int CostThreshold, BoUpSLP &R) { unsigned ChainLen = Chain.size(); DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen << "\n"); Type *StoreTy = cast(Chain[0])->getValueOperand()->getType(); unsigned Sz = DL->getTypeSizeInBits(StoreTy); unsigned VF = MinVecRegSize / Sz; if (!isPowerOf2_32(Sz) || VF < 2) return false; // Keep track of values that were delete by vectorizing in the loop below. SmallVector TrackValues(Chain.begin(), Chain.end()); bool Changed = false; // Look for profitable vectorizable trees at all offsets, starting at zero. for (unsigned i = 0, e = ChainLen; i < e; ++i) { if (i + VF > e) break; // Check that a previous iteration of this loop did not delete the Value. if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) continue; DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i << "\n"); ArrayRef Operands = Chain.slice(i, VF); R.buildTree(Operands); int Cost = R.getTreeCost(); DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); if (Cost < CostThreshold) { DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); R.vectorizeTree(); // Move to the next bundle. i += VF - 1; Changed = true; } } return Changed; } bool SLPVectorizer::vectorizeStores(ArrayRef Stores, int costThreshold, BoUpSLP &R) { SetVector Heads, Tails; SmallDenseMap ConsecutiveChain; // We may run into multiple chains that merge into a single chain. We mark the // stores that we vectorized so that we don't visit the same store twice. BoUpSLP::ValueSet VectorizedStores; bool Changed = false; // Do a quadratic search on all of the given stores and find // all of the pairs of stores that follow each other. for (unsigned i = 0, e = Stores.size(); i < e; ++i) { for (unsigned j = 0; j < e; ++j) { if (i == j) continue; if (R.isConsecutiveAccess(Stores[i], Stores[j])) { Tails.insert(Stores[j]); Heads.insert(Stores[i]); ConsecutiveChain[Stores[i]] = Stores[j]; } } } // For stores that start but don't end a link in the chain: for (SetVector::iterator it = Heads.begin(), e = Heads.end(); it != e; ++it) { if (Tails.count(*it)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to vectorize it. BoUpSLP::ValueList Operands; Value *I = *it; // Collect the chain into a list. while (Tails.count(I) || Heads.count(I)) { if (VectorizedStores.count(I)) break; Operands.push_back(I); // Move to the next value in the chain. I = ConsecutiveChain[I]; } bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); // Mark the vectorized stores so that we don't vectorize them again. if (Vectorized) VectorizedStores.insert(Operands.begin(), Operands.end()); Changed |= Vectorized; } return Changed; } unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { unsigned count = 0; StoreRefs.clear(); for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { StoreInst *SI = dyn_cast(it); if (!SI) continue; // Don't touch volatile stores. if (!SI->isSimple()) continue; // Check that the pointer points to scalars. Type *Ty = SI->getValueOperand()->getType(); if (Ty->isAggregateType() || Ty->isVectorTy()) return 0; // Find the base pointer. Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); // Save the store locations. StoreRefs[Ptr].push_back(SI); count++; } return count; } bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { if (!A || !B) return false; Value *VL[] = { A, B }; return tryToVectorizeList(VL, R); } bool SLPVectorizer::tryToVectorizeList(ArrayRef VL, BoUpSLP &R) { if (VL.size() < 2) return false; DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); // Check that all of the parts are scalar instructions of the same type. Instruction *I0 = dyn_cast(VL[0]); if (!I0) return false; unsigned Opcode0 = I0->getOpcode(); Type *Ty0 = I0->getType(); unsigned Sz = DL->getTypeSizeInBits(Ty0); unsigned VF = MinVecRegSize / Sz; for (int i = 0, e = VL.size(); i < e; ++i) { Type *Ty = VL[i]->getType(); if (Ty->isAggregateType() || Ty->isVectorTy()) return false; Instruction *Inst = dyn_cast(VL[i]); if (!Inst || Inst->getOpcode() != Opcode0) return false; } bool Changed = false; // Keep track of values that were delete by vectorizing in the loop below. SmallVector TrackValues(VL.begin(), VL.end()); for (unsigned i = 0, e = VL.size(); i < e; ++i) { unsigned OpsWidth = 0; if (i + VF > e) OpsWidth = e - i; else OpsWidth = VF; if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) break; // Check that a previous iteration of this loop did not delete the Value. if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) continue; DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " << "\n"); ArrayRef Ops = VL.slice(i, OpsWidth); R.buildTree(Ops); int Cost = R.getTreeCost(); if (Cost < -SLPCostThreshold) { DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n"); R.vectorizeTree(); // Move to the next bundle. i += VF - 1; Changed = true; } } return Changed; } bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { if (!V) return false; // Try to vectorize V. if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) return true; BinaryOperator *A = dyn_cast(V->getOperand(0)); BinaryOperator *B = dyn_cast(V->getOperand(1)); // Try to skip B. if (B && B->hasOneUse()) { BinaryOperator *B0 = dyn_cast(B->getOperand(0)); BinaryOperator *B1 = dyn_cast(B->getOperand(1)); if (tryToVectorizePair(A, B0, R)) { B->moveBefore(V); return true; } if (tryToVectorizePair(A, B1, R)) { B->moveBefore(V); return true; } } // Try to skip A. if (A && A->hasOneUse()) { BinaryOperator *A0 = dyn_cast(A->getOperand(0)); BinaryOperator *A1 = dyn_cast(A->getOperand(1)); if (tryToVectorizePair(A0, B, R)) { A->moveBefore(V); return true; } if (tryToVectorizePair(A1, B, R)) { A->moveBefore(V); return true; } } return 0; } /// \brief Generate a shuffle mask to be used in a reduction tree. /// /// \param VecLen The length of the vector to be reduced. /// \param NumEltsToRdx The number of elements that should be reduced in the /// vector. /// \param IsPairwise Whether the reduction is a pairwise or splitting /// reduction. A pairwise reduction will generate a mask of /// <0,2,...> or <1,3,..> while a splitting reduction will generate /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. /// \param IsLeft True will generate a mask of even elements, odd otherwise. static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, bool IsPairwise, bool IsLeft, IRBuilder<> &Builder) { assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); SmallVector ShuffleMask( VecLen, UndefValue::get(Builder.getInt32Ty())); if (IsPairwise) // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). for (unsigned i = 0; i != NumEltsToRdx; ++i) ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); else // Move the upper half of the vector to the lower half. for (unsigned i = 0; i != NumEltsToRdx; ++i) ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); return ConstantVector::get(ShuffleMask); } /// Model horizontal reductions. /// /// A horizontal reduction is a tree of reduction operations (currently add and /// fadd) that has operations that can be put into a vector as its leaf. /// For example, this tree: /// /// mul mul mul mul /// \ / \ / /// + + /// \ / /// + /// This tree has "mul" as its reduced values and "+" as its reduction /// operations. A reduction might be feeding into a store or a binary operation /// feeding a phi. /// ... /// \ / /// + /// | /// phi += /// /// Or: /// ... /// \ / /// + /// | /// *p = /// class HorizontalReduction { SmallPtrSet ReductionOps; SmallVector ReducedVals; BinaryOperator *ReductionRoot; PHINode *ReductionPHI; /// The opcode of the reduction. unsigned ReductionOpcode; /// The opcode of the values we perform a reduction on. unsigned ReducedValueOpcode; /// The width of one full horizontal reduction operation. unsigned ReduxWidth; /// Should we model this reduction as a pairwise reduction tree or a tree that /// splits the vector in halves and adds those halves. bool IsPairwiseReduction; public: HorizontalReduction() : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0), ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} /// \brief Try to find a reduction tree. bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, DataLayout *DL) { assert((!Phi || std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && "Thi phi needs to use the binary operator"); // We could have a initial reductions that is not an add. // r *= v1 + v2 + v3 + v4 // In such a case start looking for a tree rooted in the first '+'. if (Phi) { if (B->getOperand(0) == Phi) { Phi = 0; B = dyn_cast(B->getOperand(1)); } else if (B->getOperand(1) == Phi) { Phi = 0; B = dyn_cast(B->getOperand(0)); } } if (!B) return false; Type *Ty = B->getType(); if (Ty->isVectorTy()) return false; ReductionOpcode = B->getOpcode(); ReducedValueOpcode = 0; ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); ReductionRoot = B; ReductionPHI = Phi; if (ReduxWidth < 4) return false; // We currently only support adds. if (ReductionOpcode != Instruction::Add && ReductionOpcode != Instruction::FAdd) return false; // Post order traverse the reduction tree starting at B. We only handle true // trees containing only binary operators. SmallVector, 32> Stack; Stack.push_back(std::make_pair(B, 0)); while (!Stack.empty()) { BinaryOperator *TreeN = Stack.back().first; unsigned EdgeToVist = Stack.back().second++; bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; // Only handle trees in the current basic block. if (TreeN->getParent() != B->getParent()) return false; // Each tree node needs to have one user except for the ultimate // reduction. if (!TreeN->hasOneUse() && TreeN != B) return false; // Postorder vist. if (EdgeToVist == 2 || IsReducedValue) { if (IsReducedValue) { // Make sure that the opcodes of the operations that we are going to // reduce match. if (!ReducedValueOpcode) ReducedValueOpcode = TreeN->getOpcode(); else if (ReducedValueOpcode != TreeN->getOpcode()) return false; ReducedVals.push_back(TreeN); } else { // We need to be able to reassociate the adds. if (!TreeN->isAssociative()) return false; ReductionOps.insert(TreeN); } // Retract. Stack.pop_back(); continue; } // Visit left or right. Value *NextV = TreeN->getOperand(EdgeToVist); BinaryOperator *Next = dyn_cast(NextV); if (Next) Stack.push_back(std::make_pair(Next, 0)); else if (NextV != Phi) return false; } return true; } /// \brief Attempt to vectorize the tree found by /// matchAssociativeReduction. bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { if (ReducedVals.empty()) return false; unsigned NumReducedVals = ReducedVals.size(); if (NumReducedVals < ReduxWidth) return false; Value *VectorizedTree = 0; IRBuilder<> Builder(ReductionRoot); FastMathFlags Unsafe; Unsafe.setUnsafeAlgebra(); Builder.SetFastMathFlags(Unsafe); unsigned i = 0; for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { ArrayRef ValsToReduce(&ReducedVals[i], ReduxWidth); V.buildTree(ValsToReduce, &ReductionOps); // Estimate cost. int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); if (Cost >= -SLPCostThreshold) break; DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost << ". (HorRdx)\n"); // Vectorize a tree. DebugLoc Loc = cast(ReducedVals[i])->getDebugLoc(); Value *VectorizedRoot = V.vectorizeTree(); // Emit a reduction. Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); if (VectorizedTree) { Builder.SetCurrentDebugLocation(Loc); VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, ReducedSubTree, "bin.rdx"); } else VectorizedTree = ReducedSubTree; } if (VectorizedTree) { // Finish the reduction. for (; i < NumReducedVals; ++i) { Builder.SetCurrentDebugLocation( cast(ReducedVals[i])->getDebugLoc()); VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, ReducedVals[i]); } // Update users. if (ReductionPHI) { assert(ReductionRoot != NULL && "Need a reduction operation"); ReductionRoot->setOperand(0, VectorizedTree); ReductionRoot->setOperand(1, ReductionPHI); } else ReductionRoot->replaceAllUsesWith(VectorizedTree); } return VectorizedTree != 0; } private: /// \brief Calcuate the cost of a reduction. int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { Type *ScalarTy = FirstReducedVal->getType(); Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; int ScalarReduxCost = ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost << " for reduction that starts with " << *FirstReducedVal << " (It is a " << (IsPairwiseReduction ? "pairwise" : "splitting") << " reduction)\n"); return VecReduxCost - ScalarReduxCost; } static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, Value *R, const Twine &Name = "") { if (Opcode == Instruction::FAdd) return Builder.CreateFAdd(L, R, Name); return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); } /// \brief Emit a horizontal reduction of the vectorized value. Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { assert(VectorizedValue && "Need to have a vectorized tree node"); Instruction *ValToReduce = dyn_cast(VectorizedValue); assert(isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"); Value *TmpVec = ValToReduce; for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { if (IsPairwiseReduction) { Value *LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true, Builder); Value *RightMask = createRdxShuffleMask(ReduxWidth, i, true, false, Builder); Value *LeftShuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); Value *RightShuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), "rdx.shuf.r"); TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, "bin.rdx"); } else { Value *UpperHalf = createRdxShuffleMask(ReduxWidth, i, false, false, Builder); Value *Shuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); } } // The result is in the first element of the vector. return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); } }; /// \brief Recognize construction of vectors like /// %ra = insertelement <4 x float> undef, float %s0, i32 0 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 /// /// Returns true if it matches /// static bool findBuildVector(InsertElementInst *IE, SmallVectorImpl &Ops) { if (!isa(IE->getOperand(0))) return false; while (true) { Ops.push_back(IE->getOperand(1)); if (IE->use_empty()) return false; InsertElementInst *NextUse = dyn_cast(IE->use_back()); if (!NextUse) return true; // If this isn't the final use, make sure the next insertelement is the only // use. It's OK if the final constructed vector is used multiple times if (!IE->hasOneUse()) return false; IE = NextUse; } return false; } static bool PhiTypeSorterFunc(Value *V, Value *V2) { return V->getType() < V2->getType(); } bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { bool Changed = false; SmallVector Incoming; SmallSet VisitedInstrs; bool HaveVectorizedPhiNodes = true; while (HaveVectorizedPhiNodes) { HaveVectorizedPhiNodes = false; // Collect the incoming values from the PHIs. Incoming.clear(); for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; ++instr) { PHINode *P = dyn_cast(instr); if (!P) break; if (!VisitedInstrs.count(P)) Incoming.push_back(P); } // Sort by type. std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); // Try to vectorize elements base on their type. for (SmallVector::iterator IncIt = Incoming.begin(), E = Incoming.end(); IncIt != E;) { // Look for the next elements with the same type. SmallVector::iterator SameTypeIt = IncIt; while (SameTypeIt != E && (*SameTypeIt)->getType() == (*IncIt)->getType()) { VisitedInstrs.insert(*SameTypeIt); ++SameTypeIt; } // Try to vectorize them. unsigned NumElts = (SameTypeIt - IncIt); DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); if (NumElts > 1 && tryToVectorizeList(ArrayRef(IncIt, NumElts), R)) { // Success start over because instructions might have been changed. HaveVectorizedPhiNodes = true; Changed = true; break; } // Start over at the next instruction of a differnt type (or the end). IncIt = SameTypeIt; } } VisitedInstrs.clear(); for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { // We may go through BB multiple times so skip the one we have checked. if (!VisitedInstrs.insert(it)) continue; if (isa(it)) continue; // Try to vectorize reductions that use PHINodes. if (PHINode *P = dyn_cast(it)) { // Check that the PHI is a reduction PHI. if (P->getNumIncomingValues() != 2) return Changed; Value *Rdx = (P->getIncomingBlock(0) == BB ? (P->getIncomingValue(0)) : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0)); // Check if this is a Binary Operator. BinaryOperator *BI = dyn_cast_or_null(Rdx); if (!BI) continue; // Try to match and vectorize a horizontal reduction. HorizontalReduction HorRdx; if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI, DL) && HorRdx.tryToReduce(R, TTI)) { Changed = true; it = BB->begin(); e = BB->end(); continue; } Value *Inst = BI->getOperand(0); if (Inst == P) Inst = BI->getOperand(1); if (tryToVectorize(dyn_cast(Inst), R)) { // We would like to start over since some instructions are deleted // and the iterator may become invalid value. Changed = true; it = BB->begin(); e = BB->end(); continue; } continue; } // Try to vectorize horizontal reductions feeding into a store. if (ShouldStartVectorizeHorAtStore) if (StoreInst *SI = dyn_cast(it)) if (BinaryOperator *BinOp = dyn_cast(SI->getValueOperand())) { HorizontalReduction HorRdx; if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) && HorRdx.tryToReduce(R, TTI)) || tryToVectorize(BinOp, R))) { Changed = true; it = BB->begin(); e = BB->end(); continue; } } // Try to vectorize trees that start at compare instructions. if (CmpInst *CI = dyn_cast(it)) { if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { Changed = true; // We would like to start over since some instructions are deleted // and the iterator may become invalid value. it = BB->begin(); e = BB->end(); continue; } for (int i = 0; i < 2; ++i) { if (BinaryOperator *BI = dyn_cast(CI->getOperand(i))) { if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { Changed = true; // We would like to start over since some instructions are deleted // and the iterator may become invalid value. it = BB->begin(); e = BB->end(); } } } continue; } // Try to vectorize trees that start at insertelement instructions. if (InsertElementInst *IE = dyn_cast(it)) { SmallVector Ops; if (!findBuildVector(IE, Ops)) continue; if (tryToVectorizeList(Ops, R)) { Changed = true; it = BB->begin(); e = BB->end(); } continue; } } return Changed; } bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { bool Changed = false; // Attempt to sort and vectorize each of the store-groups. for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); it != e; ++it) { if (it->second.size() < 2) continue; DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << it->second.size() << ".\n"); // Process the stores in chunks of 16. for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { unsigned Len = std::min(CE - CI, 16); ArrayRef Chunk(&it->second[CI], Len); Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); } } return Changed; } } // end anonymous namespace char SLPVectorizer::ID = 0; static const char lv_name[] = "SLP Vectorizer"; INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) namespace llvm { Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } }