//===-- PPC32CodeEmitter.cpp - JIT Code Emitter for PowerPC32 -----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PowerPC 32-bit CodeEmitter and associated machinery to // JIT-compile bytecode to native PowerPC. // //===----------------------------------------------------------------------===// #include "PPC32JITInfo.h" #include "PPC32TargetMachine.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" namespace llvm { namespace { class JITResolver { MachineCodeEmitter &MCE; // LazyCodeGenMap - Keep track of call sites for functions that are to be // lazily resolved. std::map LazyCodeGenMap; // LazyResolverMap - Keep track of the lazy resolver created for a // particular function so that we can reuse them if necessary. std::map LazyResolverMap; public: JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} unsigned getLazyResolver(Function *F); unsigned addFunctionReference(unsigned Address, Function *F); private: unsigned emitStubForFunction(Function *F); static void CompilationCallback(); unsigned resolveFunctionReference(unsigned RetAddr); }; static JITResolver &getResolver(MachineCodeEmitter &MCE) { static JITResolver *TheJITResolver = 0; if (TheJITResolver == 0) TheJITResolver = new JITResolver(MCE); return *TheJITResolver; } } unsigned JITResolver::getLazyResolver(Function *F) { std::map::iterator I = LazyResolverMap.lower_bound(F); if (I != LazyResolverMap.end() && I->first == F) return I->second; unsigned Stub = emitStubForFunction(F); LazyResolverMap.insert(I, std::make_pair(F, Stub)); return Stub; } /// addFunctionReference - This method is called when we need to emit the /// address of a function that has not yet been emitted, so we don't know the /// address. Instead, we emit a call to the CompilationCallback method, and /// keep track of where we are. /// unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::CompilationCallback; } unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { std::map::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); Function *F = I->second; LazyCodeGenMap.erase(I); return MCE.forceCompilationOf(F); } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// unsigned JITResolver::emitStubForFunction(Function *F) { std::cerr << "PPC32CodeEmitter::emitStubForFunction() unimplemented!\n"; abort(); return 0; } void JITResolver::CompilationCallback() { std::cerr << "PPC32CodeEmitter: CompilationCallback() unimplemented!"; abort(); } namespace { class PPC32CodeEmitter : public MachineFunctionPass { TargetMachine &TM; MachineCodeEmitter &MCE; // Tracks which instruction references which BasicBlock std::vector > > BBRefs; // Tracks where each BasicBlock starts std::map BBLocations; /// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr /// int64_t getMachineOpValue(MachineInstr &MI, MachineOperand &MO); unsigned getAddressOfExternalFunction(Function *F); public: PPC32CodeEmitter(TargetMachine &T, MachineCodeEmitter &M) : TM(T), MCE(M) {} const char *getPassName() const { return "PowerPC Machine Code Emitter"; } /// runOnMachineFunction - emits the given MachineFunction to memory /// bool runOnMachineFunction(MachineFunction &MF); /// emitBasicBlock - emits the given MachineBasicBlock to memory /// void emitBasicBlock(MachineBasicBlock &MBB); /// emitWord - write a 32-bit word to memory at the current PC /// void emitWord(unsigned w) { MCE.emitWord(w); } /// getValueBit - return the particular bit of Val /// unsigned getValueBit(int64_t Val, unsigned bit) { return (Val >> bit) & 1; } /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. /// unsigned getBinaryCodeForInstr(MachineInstr &MI); }; } /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get /// machine code emitted. This uses a MachineCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address /// of functions. This method should returns true if machine code emission is /// not supported. /// bool PPC32TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, MachineCodeEmitter &MCE) { // Keep as `true' until this is a functional JIT to allow llvm-gcc to build return true; // Machine code emitter pass for PowerPC PM.add(new PPC32CodeEmitter(*this, MCE)); // Delete machine code for this function after emitting it PM.add(createMachineCodeDeleter()); return false; } bool PPC32CodeEmitter::runOnMachineFunction(MachineFunction &MF) { MCE.startFunction(MF); MCE.emitConstantPool(MF.getConstantPool()); for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) emitBasicBlock(*BB); MCE.finishFunction(MF); // Resolve branches to BasicBlocks for the entire function for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location << " in instr: " << std::dec << *MI); for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { MachineOperand &op = MI->getOperand(ii); if (op.isPCRelativeDisp()) { // the instruction's branch target is made such that it branches to // PC + (branchTarget * 4), so undo that arithmetic here: // Location is the target of the branch // Ref is the location of the instruction, and hence the PC int64_t branchTarget = (Location - (long)Ref) >> 2; MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, branchTarget); unsigned fixedInstr = PPC32CodeEmitter::getBinaryCodeForInstr(*MI); MCE.emitWordAt(fixedInstr, Ref); break; } } } BBRefs.clear(); BBLocations.clear(); return false; } void PPC32CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) emitWord(getBinaryCodeForInstr(*I)); } unsigned PPC32CodeEmitter::getAddressOfExternalFunction(Function *F) { static std::map ExternalFn2Addr; std::map::iterator Addr = ExternalFn2Addr.find(F); if (Addr == ExternalFn2Addr.end()) ExternalFn2Addr[F] = MCE.forceCompilationOf(F); return ExternalFn2Addr[F]; } int64_t PPC32CodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) { int64_t rv = 0; // Return value; defaults to 0 for unhandled cases // or things that get fixed up later by the JIT. if (MO.isRegister()) { rv = MO.getReg(); } else if (MO.isImmediate()) { rv = MO.getImmedValue(); } else if (MO.isGlobalAddress()) { GlobalValue *GV = MO.getGlobal(); intptr_t Addr = (intptr_t)MCE.getGlobalValueAddress(GV); if (Addr == 0) { if (Function *F = dyn_cast(GV)) { if (F->isExternal()) rv = getAddressOfExternalFunction(F); else { // Function has not yet been code generated! getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(), F); // Delayed resolution... return (intptr_t)getResolver(MCE).getLazyResolver(F); } } else if (GlobalVariable *GVar = dyn_cast(GV)) { if (GVar->isExternal()) rv = MCE.getGlobalValueAddress(MO.getSymbolName()); else { std::cerr << "PPC32CodeEmitter: External global addr not found: " << *GVar; abort(); } } } if (MO.isPCRelative()) { // Global variable reference rv = (Addr - MCE.getCurrentPCValue()) >> 2; } } else if (MO.isMachineBasicBlock()) { const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (MO.isConstantPoolIndex()) { unsigned index = MO.getConstantPoolIndex(); rv = MCE.getConstantPoolEntryAddress(index); } else if (MO.isFrameIndex()) { std::cerr << "PPC32CodeEmitter: error: Frame index unhandled!\n"; abort(); } else { std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } return rv; } void *PPC32JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE){ return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F)); } void PPC32JITInfo::replaceMachineCodeForFunction (void *Old, void *New) { std::cerr << "PPC32JITInfo::replaceMachineCodeForFunction not implemented\n"; abort(); } #include "PPC32GenCodeEmitter.inc" } // end llvm namespace