//===-- ConstantHandling.h - Stuff for manipulating constants ----*- C++ -*--=// // // This file contains the declarations of some cool operators that allow you // to do natural things with constant pool values. // // Unfortunately we can't overload operators on pointer types (like this:) // // inline bool operator==(const ConstPoolVal *V1, const ConstPoolVal *V2) // // so we must make due with references, even though it leads to some butt ugly // looking code downstream. *sigh* (ex: ConstPoolVal *Result = *V1 + *v2; ) // //===----------------------------------------------------------------------===// // // WARNING: These operators may return a null object if I don't know how to // perform the specified operation on the specified constant types. // //===----------------------------------------------------------------------===// // // Implementation notes: // This library is implemented this way for a reason: In most cases, we do // not want to have to link the constant mucking code into an executable. // We do, however want to tie some of this into the main type system, as an // optional component. By using a mutable cache member in the Type class, we // get exactly the kind of behavior we want. // // In the end, we get performance almost exactly the same as having a virtual // function dispatch, but we don't have to put our virtual functions into the // "Type" class, and we can implement functionality with templates. Good deal. // //===----------------------------------------------------------------------===// #ifndef LLVM_OPT_CONSTANTHANDLING_H #define LLVM_OPT_CONSTANTHANDLING_H #include "llvm/ConstPoolVals.h" #include "llvm/Instruction.h" #include "llvm/Type.h" namespace opt { //===----------------------------------------------------------------------===// // Implement == and != directly... //===----------------------------------------------------------------------===// inline ConstPoolBool *operator==(const ConstPoolVal &V1, const ConstPoolVal &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstPoolBool::get(&V1 == &V2); } inline ConstPoolBool *operator!=(const ConstPoolVal &V1, const ConstPoolVal &V2) { return ConstPoolBool::get(&V1 != &V2); } //===----------------------------------------------------------------------===// // Implement all other operators indirectly through TypeRules system //===----------------------------------------------------------------------===// class ConstRules : public Annotation { protected: inline ConstRules() : Annotation(AID) {} // Can only be subclassed... public: static AnnotationID AID; // AnnotationID for this class // Unary Operators... virtual ConstPoolVal *op_not(const ConstPoolVal *V) const = 0; // Binary Operators... virtual ConstPoolVal *add(const ConstPoolVal *V1, const ConstPoolVal *V2) const = 0; virtual ConstPoolVal *sub(const ConstPoolVal *V1, const ConstPoolVal *V2) const = 0; virtual ConstPoolVal *mul(const ConstPoolVal *V1, const ConstPoolVal *V2) const = 0; virtual ConstPoolBool *lessthan(const ConstPoolVal *V1, const ConstPoolVal *V2) const = 0; // Casting operators. ick virtual ConstPoolBool *castToBool (const ConstPoolVal *V) const = 0; virtual ConstPoolSInt *castToSByte (const ConstPoolVal *V) const = 0; virtual ConstPoolUInt *castToUByte (const ConstPoolVal *V) const = 0; virtual ConstPoolSInt *castToShort (const ConstPoolVal *V) const = 0; virtual ConstPoolUInt *castToUShort(const ConstPoolVal *V) const = 0; virtual ConstPoolSInt *castToInt (const ConstPoolVal *V) const = 0; virtual ConstPoolUInt *castToUInt (const ConstPoolVal *V) const = 0; virtual ConstPoolSInt *castToLong (const ConstPoolVal *V) const = 0; virtual ConstPoolUInt *castToULong (const ConstPoolVal *V) const = 0; virtual ConstPoolFP *castToFloat (const ConstPoolVal *V) const = 0; virtual ConstPoolFP *castToDouble(const ConstPoolVal *V) const = 0; inline ConstPoolVal *castTo(const ConstPoolVal *V, const Type *Ty) const { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return castToBool(V); case Type::UByteTyID: return castToUByte(V); case Type::SByteTyID: return castToSByte(V); case Type::UShortTyID: return castToUShort(V); case Type::ShortTyID: return castToShort(V); case Type::UIntTyID: return castToUInt(V); case Type::IntTyID: return castToInt(V); case Type::ULongTyID: return castToULong(V); case Type::LongTyID: return castToLong(V); case Type::FloatTyID: return castToFloat(V); case Type::DoubleTyID: return castToDouble(V); default: return 0; } } // ConstRules::get - A type will cache its own type rules if one is needed... // we just want to make sure to hit the cache instead of doing it indirectly, // if possible... // static inline ConstRules *get(const ConstPoolVal &V) { return (ConstRules*)V.getType()->getOrCreateAnnotation(AID); } private : static Annotation *find(AnnotationID AID, const Annotable *Ty, void *); ConstRules(const ConstRules &); // Do not implement ConstRules &operator=(const ConstRules &); // Do not implement }; inline ConstPoolVal *operator!(const ConstPoolVal &V) { return ConstRules::get(V)->op_not(&V); } inline ConstPoolVal *operator+(const ConstPoolVal &V1, const ConstPoolVal &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1)->add(&V1, &V2); } inline ConstPoolVal *operator-(const ConstPoolVal &V1, const ConstPoolVal &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1)->sub(&V1, &V2); } inline ConstPoolVal *operator*(const ConstPoolVal &V1, const ConstPoolVal &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1)->mul(&V1, &V2); } inline ConstPoolBool *operator<(const ConstPoolVal &V1, const ConstPoolVal &V2) { assert(V1.getType() == V2.getType() && "Constant types must be identical!"); return ConstRules::get(V1)->lessthan(&V1, &V2); } //===----------------------------------------------------------------------===// // Implement 'derived' operators based on what we already have... //===----------------------------------------------------------------------===// inline ConstPoolBool *operator>(const ConstPoolVal &V1, const ConstPoolVal &V2) { return V2 < V1; } inline ConstPoolBool *operator>=(const ConstPoolVal &V1, const ConstPoolVal &V2) { return (V1 < V2)->inverted(); // !(V1 < V2) } inline ConstPoolBool *operator<=(const ConstPoolVal &V1, const ConstPoolVal &V2) { return (V1 > V2)->inverted(); // !(V1 > V2) } //===----------------------------------------------------------------------===// // Implement higher level instruction folding type instructions //===----------------------------------------------------------------------===// inline ConstPoolVal *ConstantFoldUnaryInstruction(unsigned Opcode, ConstPoolVal *V) { switch (Opcode) { case Instruction::Not: return !*V; } return 0; } inline ConstPoolVal *ConstantFoldBinaryInstruction(unsigned Opcode, ConstPoolVal *V1, ConstPoolVal *V2) { switch (Opcode) { case Instruction::Add: return *V1 + *V2; case Instruction::Sub: return *V1 - *V2; case Instruction::SetEQ: return *V1 == *V2; case Instruction::SetNE: return *V1 != *V2; case Instruction::SetLE: return *V1 <= *V2; case Instruction::SetGE: return *V1 >= *V2; case Instruction::SetLT: return *V1 < *V2; case Instruction::SetGT: return *V1 > *V2; } return 0; } } // end namespace opt #endif