//===-- SparcV9TargetMachine.cpp - SparcV9 Target Machine Implementation --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Primary interface to machine description for the UltraSPARC. Primarily just // initializes machine-dependent parameters in class TargetMachine, and creates // machine-dependent subclasses for classes such as TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "llvm/Function.h" #include "llvm/PassManager.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/CodeGen/InstrScheduling.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Transforms/Scalar.h" #include "MappingInfo.h" #include "MachineFunctionInfo.h" #include "MachineCodeForInstruction.h" #include "SparcV9Internals.h" #include "SparcV9TargetMachine.h" #include "SparcV9BurgISel.h" #include "llvm/Support/CommandLine.h" using namespace llvm; static const unsigned ImplicitRegUseList[] = { 0 }; /* not used yet */ // Build the MachineInstruction Description Array... const TargetInstrDescriptor llvm::SparcV9MachineInstrDesc[] = { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ { OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS, 0, \ ImplicitRegUseList, ImplicitRegUseList }, #include "SparcV9Instr.def" }; //--------------------------------------------------------------------------- // Command line options to control choice of code generation passes. //--------------------------------------------------------------------------- namespace llvm { bool EmitMappingInfo = false; } namespace { cl::opt DisableSched("disable-sched", cl::desc("Disable local scheduling pass")); cl::opt DisablePeephole("disable-peephole", cl::desc("Disable peephole optimization pass")); cl::opt EmitMappingInfoOpt("enable-maps", cl::location(EmitMappingInfo), cl::init(false), cl::desc("Emit LLVM-to-MachineCode mapping info to assembly")); cl::opt EnableModSched("enable-modsched", cl::desc("Enable modulo scheduling pass instead of local scheduling"), cl::Hidden); // Register the target. RegisterTarget X("sparcv9", " SPARC V9"); } unsigned SparcV9TargetMachine::getJITMatchQuality() { #if defined(__sparcv9) return 10; #else return 0; #endif } unsigned SparcV9TargetMachine::getModuleMatchQuality(const Module &M) { // We strongly match "sparcv9-*". std::string TT = M.getTargetTriple(); if (TT.size() >= 8 && std::string(TT.begin(), TT.begin()+8) == "sparcv9-") return 20; if (M.getEndianness() == Module::BigEndian && M.getPointerSize() == Module::Pointer64) return 10; // Weak match else if (M.getEndianness() != Module::AnyEndianness || M.getPointerSize() != Module::AnyPointerSize) return 0; // Match for some other target return getJITMatchQuality()/2; } //===---------------------------------------------------------------------===// // Code generation/destruction passes //===---------------------------------------------------------------------===// namespace { class ConstructMachineFunction : public FunctionPass { TargetMachine &Target; public: ConstructMachineFunction(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "ConstructMachineFunction"; } bool runOnFunction(Function &F) { MachineFunction::construct(&F, Target).getInfo()->CalculateArgSize(); return false; } }; struct DestroyMachineFunction : public FunctionPass { const char *getPassName() const { return "DestroyMachineFunction"; } static void freeMachineCode(Instruction &I) { MachineCodeForInstruction::destroy(&I); } bool runOnFunction(Function &F) { for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I) MachineCodeForInstruction::get(I).dropAllReferences(); for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for_each(FI->begin(), FI->end(), freeMachineCode); MachineFunction::destruct(&F); return false; } }; FunctionPass *createMachineCodeConstructionPass(TargetMachine &Target) { return new ConstructMachineFunction(Target); } } FunctionPass *llvm::createSparcV9MachineCodeDestructionPass() { return new DestroyMachineFunction(); } SparcV9TargetMachine::SparcV9TargetMachine(const Module &M, IntrinsicLowering *il) : TargetMachine("UltraSparcV9-Native", il, false), schedInfo(*this), regInfo(*this), frameInfo(*this), jitInfo(*this) { } /// addPassesToEmitAssembly - This method controls the entire code generation /// process for the ultra sparc. /// bool SparcV9TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // Replace malloc and free instructions with library calls. PM.add(createLowerAllocationsPass()); // FIXME: implement the switch instruction in the instruction selector. PM.add(createLowerSwitchPass()); // FIXME: implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // decompose multi-dimensional array references into single-dim refs PM.add(createDecomposeMultiDimRefsPass()); // Lower LLVM code to the form expected by the SPARCv9 instruction selector. PM.add(createPreSelectionPass(*this)); PM.add(createLowerSelectPass()); // If the user's trying to read the generated code, they'll need to see the // transformed input. if (PrintMachineCode) PM.add(new PrintModulePass()); // Construct and initialize the MachineFunction object for this fn. PM.add(createMachineCodeConstructionPass(*this)); // Insert empty stackslots in the stack frame of each function // so %fp+offset-8 and %fp+offset-16 are empty slots now! PM.add(createStackSlotsPass(*this)); PM.add(createSparcV9BurgInstSelector(*this)); if(PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before modulo scheduling:\n")); //Use ModuloScheduling if enabled, otherwise use local scheduling if not disabled. if(EnableModSched) PM.add(createModuloSchedulingPass(*this)); else { if (!DisableSched) PM.add(createInstructionSchedulingWithSSAPass(*this)); } if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before reg alloc:\n")); PM.add(getRegisterAllocator(*this)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "After reg alloc:\n")); PM.add(createPrologEpilogInsertionPass()); if (!DisablePeephole) PM.add(createPeepholeOptsPass(*this)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Final code:\n")); if (EmitMappingInfo) { PM.add(createInternalGlobalMapperPass()); PM.add(getMappingInfoAsmPrinterPass(Out)); } // Output assembly language to the .s file. Assembly emission is split into // two parts: Function output and Global value output. This is because // function output is pipelined with all of the rest of code generation stuff, // allowing machine code representations for functions to be free'd after the // function has been emitted. PM.add(createAsmPrinterPass(Out, *this)); // Free machine-code IR which is no longer needed: PM.add(createSparcV9MachineCodeDestructionPass()); // Emit bytecode to the assembly file into its special section next if (EmitMappingInfo) PM.add(createBytecodeAsmPrinterPass(Out)); return false; } /// addPassesToJITCompile - This method controls the JIT method of code /// generation for the UltraSparcV9. /// void SparcV9JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // Replace malloc and free instructions with library calls. PM.add(createLowerAllocationsPass()); // FIXME: implement the switch instruction in the instruction selector. PM.add(createLowerSwitchPass()); // FIXME: implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // decompose multi-dimensional array references into single-dim refs PM.add(createDecomposeMultiDimRefsPass()); // Lower LLVM code to the form expected by the SPARCv9 instruction selector. PM.add(createPreSelectionPass(TM)); PM.add(createLowerSelectPass()); // If the user's trying to read the generated code, they'll need to see the // transformed input. if (PrintMachineCode) PM.add(new PrintFunctionPass()); // Construct and initialize the MachineFunction object for this fn. PM.add(createMachineCodeConstructionPass(TM)); PM.add(createSparcV9BurgInstSelector(TM)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before reg alloc:\n")); PM.add(getRegisterAllocator(TM)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "After reg alloc:\n")); PM.add(createPrologEpilogInsertionPass()); if (!DisablePeephole) PM.add(createPeepholeOptsPass(TM)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Final code:\n")); }