//===- ARMScheduleV6.td - ARM v6 Scheduling Definitions ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the ARM v6 processors. // //===----------------------------------------------------------------------===// // Model based on ARM1176 // // Scheduling information derived from "ARM1176JZF-S Technical Reference Manual". // def ARMV6Itineraries : ProcessorItineraries<[ // // No operand cycles InstrItinData<IIC_iALUx , [InstrStage<1, [FU_Pipe0]>]>, // // Binary Instructions that produce a result InstrItinData<IIC_iALUi , [InstrStage<1, [FU_Pipe0]>], [2, 2]>, InstrItinData<IIC_iALUr , [InstrStage<1, [FU_Pipe0]>], [2, 2, 2]>, InstrItinData<IIC_iALUsi , [InstrStage<1, [FU_Pipe0]>], [2, 2, 1]>, InstrItinData<IIC_iALUsr , [InstrStage<2, [FU_Pipe0]>], [3, 3, 2, 1]>, // // Unary Instructions that produce a result InstrItinData<IIC_iUNAr , [InstrStage<1, [FU_Pipe0]>], [2, 2]>, InstrItinData<IIC_iUNAsi , [InstrStage<1, [FU_Pipe0]>], [2, 1]>, InstrItinData<IIC_iUNAsr , [InstrStage<2, [FU_Pipe0]>], [3, 2, 1]>, // // Compare instructions InstrItinData<IIC_iCMPi , [InstrStage<1, [FU_Pipe0]>], [2]>, InstrItinData<IIC_iCMPr , [InstrStage<1, [FU_Pipe0]>], [2, 2]>, InstrItinData<IIC_iCMPsi , [InstrStage<1, [FU_Pipe0]>], [2, 1]>, InstrItinData<IIC_iCMPsr , [InstrStage<2, [FU_Pipe0]>], [3, 2, 1]>, // // Move instructions, unconditional InstrItinData<IIC_iMOVi , [InstrStage<1, [FU_Pipe0]>], [2]>, InstrItinData<IIC_iMOVr , [InstrStage<1, [FU_Pipe0]>], [2, 2]>, InstrItinData<IIC_iMOVsi , [InstrStage<1, [FU_Pipe0]>], [2, 1]>, InstrItinData<IIC_iMOVsr , [InstrStage<2, [FU_Pipe0]>], [3, 2, 1]>, // // Move instructions, conditional InstrItinData<IIC_iCMOVi , [InstrStage<1, [FU_Pipe0]>], [3]>, InstrItinData<IIC_iCMOVr , [InstrStage<1, [FU_Pipe0]>], [3, 2]>, InstrItinData<IIC_iCMOVsi , [InstrStage<1, [FU_Pipe0]>], [3, 1]>, InstrItinData<IIC_iCMOVsr , [InstrStage<1, [FU_Pipe0]>], [4, 2, 1]>, // Integer multiply pipeline // InstrItinData<IIC_iMUL16 , [InstrStage<1, [FU_Pipe0]>], [4, 1, 1]>, InstrItinData<IIC_iMAC16 , [InstrStage<1, [FU_Pipe0]>], [4, 1, 1, 2]>, InstrItinData<IIC_iMUL32 , [InstrStage<2, [FU_Pipe0]>], [5, 1, 1]>, InstrItinData<IIC_iMAC32 , [InstrStage<2, [FU_Pipe0]>], [5, 1, 1, 2]>, InstrItinData<IIC_iMUL64 , [InstrStage<3, [FU_Pipe0]>], [6, 1, 1]>, InstrItinData<IIC_iMAC64 , [InstrStage<3, [FU_Pipe0]>], [6, 1, 1, 2]>, // Integer load pipeline // // Immediate offset InstrItinData<IIC_iLoadi , [InstrStage<1, [FU_Pipe0]>], [4, 1]>, // // Register offset InstrItinData<IIC_iLoadr , [InstrStage<1, [FU_Pipe0]>], [4, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData<IIC_iLoadsi , [InstrStage<2, [FU_Pipe0]>], [5, 2, 1]>, // // Immediate offset with update InstrItinData<IIC_iLoadiu , [InstrStage<1, [FU_Pipe0]>], [4, 2, 1]>, // // Register offset with update InstrItinData<IIC_iLoadru , [InstrStage<1, [FU_Pipe0]>], [4, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData<IIC_iLoadsiu , [InstrStage<2, [FU_Pipe0]>], [5, 2, 2, 1]>, // // Load multiple InstrItinData<IIC_iLoadm , [InstrStage<3, [FU_Pipe0]>]>, // Integer store pipeline // // Immediate offset InstrItinData<IIC_iStorei , [InstrStage<1, [FU_Pipe0]>], [2, 1]>, // // Register offset InstrItinData<IIC_iStorer , [InstrStage<1, [FU_Pipe0]>], [2, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData<IIC_iStoresi , [InstrStage<2, [FU_Pipe0]>], [2, 2, 1]>, // // Immediate offset with update InstrItinData<IIC_iStoreiu , [InstrStage<1, [FU_Pipe0]>], [2, 2, 1]>, // // Register offset with update InstrItinData<IIC_iStoreru , [InstrStage<1, [FU_Pipe0]>], [2, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData<IIC_iStoresiu, [InstrStage<2, [FU_Pipe0]>], [2, 2, 2, 1]>, // // Store multiple InstrItinData<IIC_iStorem , [InstrStage<3, [FU_Pipe0]>]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData<IIC_Br , [InstrStage<1, [FU_Pipe0]>]>, // VFP // Issue through integer pipeline, and execute in NEON unit. We assume // RunFast mode so that NFP pipeline is used for single-precision when // possible. // // FP Special Register to Integer Register File Move InstrItinData<IIC_fpSTAT , [InstrStage<1, [FU_Pipe0]>], [3]>, // // Single-precision FP Unary InstrItinData<IIC_fpUNA32 , [InstrStage<1, [FU_Pipe0]>], [5, 2]>, // // Double-precision FP Unary InstrItinData<IIC_fpUNA64 , [InstrStage<1, [FU_Pipe0]>], [5, 2]>, // // Single-precision FP Compare InstrItinData<IIC_fpCMP32 , [InstrStage<1, [FU_Pipe0]>], [2, 2]>, // // Double-precision FP Compare InstrItinData<IIC_fpCMP64 , [InstrStage<1, [FU_Pipe0]>], [2, 2]>, // // Single to Double FP Convert InstrItinData<IIC_fpCVTSD , [InstrStage<1, [FU_Pipe0]>], [5, 2]>, // // Double to Single FP Convert InstrItinData<IIC_fpCVTDS , [InstrStage<1, [FU_Pipe0]>], [5, 2]>, // // Single-Precision FP to Integer Convert InstrItinData<IIC_fpCVTSI , [InstrStage<1, [FU_Pipe0]>], [9, 2]>, // // Double-Precision FP to Integer Convert InstrItinData<IIC_fpCVTDI , [InstrStage<1, [FU_Pipe0]>], [9, 2]>, // // Integer to Single-Precision FP Convert InstrItinData<IIC_fpCVTIS , [InstrStage<1, [FU_Pipe0]>], [9, 2]>, // // Integer to Double-Precision FP Convert InstrItinData<IIC_fpCVTID , [InstrStage<1, [FU_Pipe0]>], [9, 2]>, // // Single-precision FP ALU InstrItinData<IIC_fpALU32 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2]>, // // Double-precision FP ALU InstrItinData<IIC_fpALU64 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2]>, // // Single-precision FP Multiply InstrItinData<IIC_fpMUL32 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2]>, // // Double-precision FP Multiply InstrItinData<IIC_fpMUL64 , [InstrStage<2, [FU_Pipe0]>], [9, 2, 2]>, // // Single-precision FP MAC InstrItinData<IIC_fpMAC32 , [InstrStage<1, [FU_Pipe0]>], [9, 2, 2, 2]>, // // Double-precision FP MAC InstrItinData<IIC_fpMAC64 , [InstrStage<2, [FU_Pipe0]>], [9, 2, 2, 2]>, // // Single-precision FP DIV InstrItinData<IIC_fpDIV32 , [InstrStage<15, [FU_Pipe0]>], [20, 2, 2]>, // // Double-precision FP DIV InstrItinData<IIC_fpDIV64 , [InstrStage<29, [FU_Pipe0]>], [34, 2, 2]>, // // Single-precision FP SQRT InstrItinData<IIC_fpSQRT32 , [InstrStage<15, [FU_Pipe0]>], [20, 2, 2]>, // // Double-precision FP SQRT InstrItinData<IIC_fpSQRT64 , [InstrStage<29, [FU_Pipe0]>], [34, 2, 2]>, // // Single-precision FP Load InstrItinData<IIC_fpLoad32 , [InstrStage<1, [FU_Pipe0]>], [5, 2, 2]>, // // Double-precision FP Load InstrItinData<IIC_fpLoad64 , [InstrStage<1, [FU_Pipe0]>], [5, 2, 2]>, // // FP Load Multiple InstrItinData<IIC_fpLoadm , [InstrStage<3, [FU_Pipe0]>]>, // // Single-precision FP Store InstrItinData<IIC_fpStore32 , [InstrStage<1, [FU_Pipe0]>], [2, 2, 2]>, // // Double-precision FP Store // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData<IIC_fpStore64 , [InstrStage<1, [FU_Pipe0]>], [2, 2, 2]>, // // FP Store Multiple InstrItinData<IIC_fpStorem , [InstrStage<3, [FU_Pipe0]>]> ]>;