//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops // and generates target-independent LLVM-IR. // The vectorizer uses the TargetTransformInfo analysis to estimate the costs // of instructions in order to estimate the profitability of vectorization. // // The loop vectorizer combines consecutive loop iterations into a single // 'wide' iteration. After this transformation the index is incremented // by the SIMD vector width, and not by one. // // This pass has three parts: // 1. The main loop pass that drives the different parts. // 2. LoopVectorizationLegality - A unit that checks for the legality // of the vectorization. // 3. InnerLoopVectorizer - A unit that performs the actual // widening of instructions. // 4. LoopVectorizationCostModel - A unit that checks for the profitability // of vectorization. It decides on the optimal vector width, which // can be one, if vectorization is not profitable. // //===----------------------------------------------------------------------===// // // The reduction-variable vectorization is based on the paper: // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. // // Variable uniformity checks are inspired by: // Karrenberg, R. and Hack, S. Whole Function Vectorization. // // Other ideas/concepts are from: // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. // // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of // Vectorizing Compilers. // //===----------------------------------------------------------------------===// #define LV_NAME "loop-vectorize" #define DEBUG_TYPE LV_NAME #include "llvm/Transforms/Vectorize.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/Verifier.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; using namespace llvm::PatternMatch; static cl::opt VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect.")); static cl::opt VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, cl::desc("Sets the vectorization unroll count. " "Zero is autoselect.")); static cl::opt EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization.")); /// We don't vectorize loops with a known constant trip count below this number. static cl::opt TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Don't vectorize loops with a constant " "trip count that is smaller than this " "value.")); /// We don't unroll loops with a known constant trip count below this number. static const unsigned TinyTripCountUnrollThreshold = 128; /// When performing memory disambiguation checks at runtime do not make more /// than this number of comparisons. static const unsigned RuntimeMemoryCheckThreshold = 8; /// We use a metadata with this name to indicate that a scalar loop was /// vectorized and that we don't need to re-vectorize it if we run into it /// again. static const char* AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized"; namespace { // Forward declarations. class LoopVectorizationLegality; class LoopVectorizationCostModel; /// InnerLoopVectorizer vectorizes loops which contain only one basic /// block to a specified vectorization factor (VF). /// This class performs the widening of scalars into vectors, or multiple /// scalars. This class also implements the following features: /// * It inserts an epilogue loop for handling loops that don't have iteration /// counts that are known to be a multiple of the vectorization factor. /// * It handles the code generation for reduction variables. /// * Scalarization (implementation using scalars) of un-vectorizable /// instructions. /// InnerLoopVectorizer does not perform any vectorization-legality /// checks, and relies on the caller to check for the different legality /// aspects. The InnerLoopVectorizer relies on the /// LoopVectorizationLegality class to provide information about the induction /// and reduction variables that were found to a given vectorization factor. class InnerLoopVectorizer { public: InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, DataLayout *DL, const TargetLibraryInfo *TLI, unsigned VecWidth, unsigned UnrollFactor) : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0), OldInduction(0), WidenMap(UnrollFactor) {} // Perform the actual loop widening (vectorization). void vectorize(LoopVectorizationLegality *Legal) { // Create a new empty loop. Unlink the old loop and connect the new one. createEmptyLoop(Legal); // Widen each instruction in the old loop to a new one in the new loop. // Use the Legality module to find the induction and reduction variables. vectorizeLoop(Legal); // Register the new loop and update the analysis passes. updateAnalysis(); } private: /// A small list of PHINodes. typedef SmallVector PhiVector; /// When we unroll loops we have multiple vector values for each scalar. /// This data structure holds the unrolled and vectorized values that /// originated from one scalar instruction. typedef SmallVector VectorParts; /// Add code that checks at runtime if the accessed arrays overlap. /// Returns the comparator value or NULL if no check is needed. Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal, Instruction *Loc); /// Create an empty loop, based on the loop ranges of the old loop. void createEmptyLoop(LoopVectorizationLegality *Legal); /// Copy and widen the instructions from the old loop. void vectorizeLoop(LoopVectorizationLegality *Legal); /// A helper function that computes the predicate of the block BB, assuming /// that the header block of the loop is set to True. It returns the *entry* /// mask for the block BB. VectorParts createBlockInMask(BasicBlock *BB); /// A helper function that computes the predicate of the edge between SRC /// and DST. VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); /// A helper function to vectorize a single BB within the innermost loop. void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, PhiVector *PV); /// Insert the new loop to the loop hierarchy and pass manager /// and update the analysis passes. void updateAnalysis(); /// This instruction is un-vectorizable. Implement it as a sequence /// of scalars. void scalarizeInstruction(Instruction *Instr); /// Vectorize Load and Store instructions, void vectorizeMemoryInstruction(Instruction *Instr, LoopVectorizationLegality *Legal); /// Create a broadcast instruction. This method generates a broadcast /// instruction (shuffle) for loop invariant values and for the induction /// value. If this is the induction variable then we extend it to N, N+1, ... /// this is needed because each iteration in the loop corresponds to a SIMD /// element. Value *getBroadcastInstrs(Value *V); /// This function adds 0, 1, 2 ... to each vector element, starting at zero. /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). /// The sequence starts at StartIndex. Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); /// When we go over instructions in the basic block we rely on previous /// values within the current basic block or on loop invariant values. /// When we widen (vectorize) values we place them in the map. If the values /// are not within the map, they have to be loop invariant, so we simply /// broadcast them into a vector. VectorParts &getVectorValue(Value *V); /// Generate a shuffle sequence that will reverse the vector Vec. Value *reverseVector(Value *Vec); /// This is a helper class that holds the vectorizer state. It maps scalar /// instructions to vector instructions. When the code is 'unrolled' then /// then a single scalar value is mapped to multiple vector parts. The parts /// are stored in the VectorPart type. struct ValueMap { /// C'tor. UnrollFactor controls the number of vectors ('parts') that /// are mapped. ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} /// \return True if 'Key' is saved in the Value Map. bool has(Value *Key) const { return MapStorage.count(Key); } /// Initializes a new entry in the map. Sets all of the vector parts to the /// save value in 'Val'. /// \return A reference to a vector with splat values. VectorParts &splat(Value *Key, Value *Val) { VectorParts &Entry = MapStorage[Key]; Entry.assign(UF, Val); return Entry; } ///\return A reference to the value that is stored at 'Key'. VectorParts &get(Value *Key) { VectorParts &Entry = MapStorage[Key]; if (Entry.empty()) Entry.resize(UF); assert(Entry.size() == UF); return Entry; } private: /// The unroll factor. Each entry in the map stores this number of vector /// elements. unsigned UF; /// Map storage. We use std::map and not DenseMap because insertions to a /// dense map invalidates its iterators. std::map MapStorage; }; /// The original loop. Loop *OrigLoop; /// Scev analysis to use. ScalarEvolution *SE; /// Loop Info. LoopInfo *LI; /// Dominator Tree. DominatorTree *DT; /// Data Layout. DataLayout *DL; /// Target Library Info. const TargetLibraryInfo *TLI; /// The vectorization SIMD factor to use. Each vector will have this many /// vector elements. unsigned VF; /// The vectorization unroll factor to use. Each scalar is vectorized to this /// many different vector instructions. unsigned UF; /// The builder that we use IRBuilder<> Builder; // --- Vectorization state --- /// The vector-loop preheader. BasicBlock *LoopVectorPreHeader; /// The scalar-loop preheader. BasicBlock *LoopScalarPreHeader; /// Middle Block between the vector and the scalar. BasicBlock *LoopMiddleBlock; ///The ExitBlock of the scalar loop. BasicBlock *LoopExitBlock; ///The vector loop body. BasicBlock *LoopVectorBody; ///The scalar loop body. BasicBlock *LoopScalarBody; /// A list of all bypass blocks. The first block is the entry of the loop. SmallVector LoopBypassBlocks; /// The new Induction variable which was added to the new block. PHINode *Induction; /// The induction variable of the old basic block. PHINode *OldInduction; /// Maps scalars to widened vectors. ValueMap WidenMap; }; /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and /// to what vectorization factor. /// This class does not look at the profitability of vectorization, only the /// legality. This class has two main kinds of checks: /// * Memory checks - The code in canVectorizeMemory checks if vectorization /// will change the order of memory accesses in a way that will change the /// correctness of the program. /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory /// checks for a number of different conditions, such as the availability of a /// single induction variable, that all types are supported and vectorize-able, /// etc. This code reflects the capabilities of InnerLoopVectorizer. /// This class is also used by InnerLoopVectorizer for identifying /// induction variable and the different reduction variables. class LoopVectorizationLegality { public: LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, DominatorTree *DT, TargetTransformInfo* TTI, AliasAnalysis *AA, TargetLibraryInfo *TLI) : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI), Induction(0), HasFunNoNaNAttr(false) {} /// This enum represents the kinds of reductions that we support. enum ReductionKind { RK_NoReduction, ///< Not a reduction. RK_IntegerAdd, ///< Sum of integers. RK_IntegerMult, ///< Product of integers. RK_IntegerOr, ///< Bitwise or logical OR of numbers. RK_IntegerAnd, ///< Bitwise or logical AND of numbers. RK_IntegerXor, ///< Bitwise or logical XOR of numbers. RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). RK_FloatAdd, ///< Sum of floats. RK_FloatMult, ///< Product of floats. RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). }; /// This enum represents the kinds of inductions that we support. enum InductionKind { IK_NoInduction, ///< Not an induction variable. IK_IntInduction, ///< Integer induction variable. Step = 1. IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). }; // This enum represents the kind of minmax reduction. enum MinMaxReductionKind { MRK_Invalid, MRK_UIntMin, MRK_UIntMax, MRK_SIntMin, MRK_SIntMax, MRK_FloatMin, MRK_FloatMax }; /// This POD struct holds information about reduction variables. struct ReductionDescriptor { ReductionDescriptor() : StartValue(0), LoopExitInstr(0), Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, MinMaxReductionKind MK) : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} // The starting value of the reduction. // It does not have to be zero! Value *StartValue; // The instruction who's value is used outside the loop. Instruction *LoopExitInstr; // The kind of the reduction. ReductionKind Kind; // If this a min/max reduction the kind of reduction. MinMaxReductionKind MinMaxKind; }; /// This POD struct holds information about a potential reduction operation. struct ReductionInstDesc { ReductionInstDesc(bool IsRedux, Instruction *I) : IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} // Is this instruction a reduction candidate. bool IsReduction; // The last instruction in a min/max pattern (select of the select(icmp()) // pattern), or the current reduction instruction otherwise. Instruction *PatternLastInst; // If this is a min/max pattern the comparison predicate. MinMaxReductionKind MinMaxKind; }; // This POD struct holds information about the memory runtime legality // check that a group of pointers do not overlap. struct RuntimePointerCheck { RuntimePointerCheck() : Need(false) {} /// Reset the state of the pointer runtime information. void reset() { Need = false; Pointers.clear(); Starts.clear(); Ends.clear(); } /// Insert a pointer and calculate the start and end SCEVs. void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr); /// This flag indicates if we need to add the runtime check. bool Need; /// Holds the pointers that we need to check. SmallVector Pointers; /// Holds the pointer value at the beginning of the loop. SmallVector Starts; /// Holds the pointer value at the end of the loop. SmallVector Ends; /// Holds the information if this pointer is used for writing to memory. SmallVector IsWritePtr; }; /// A POD for saving information about induction variables. struct InductionInfo { InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} InductionInfo() : StartValue(0), IK(IK_NoInduction) {} /// Start value. Value *StartValue; /// Induction kind. InductionKind IK; }; /// ReductionList contains the reduction descriptors for all /// of the reductions that were found in the loop. typedef DenseMap ReductionList; /// InductionList saves induction variables and maps them to the /// induction descriptor. typedef MapVector InductionList; /// Alias(Multi)Map stores the values (GEPs or underlying objects and their /// respective Store/Load instruction(s) to calculate aliasing. typedef MapVector AliasMap; typedef DenseMap > AliasMultiMap; /// Returns true if it is legal to vectorize this loop. /// This does not mean that it is profitable to vectorize this /// loop, only that it is legal to do so. bool canVectorize(); /// Returns the Induction variable. PHINode *getInduction() { return Induction; } /// Returns the reduction variables found in the loop. ReductionList *getReductionVars() { return &Reductions; } /// Returns the induction variables found in the loop. InductionList *getInductionVars() { return &Inductions; } /// Returns True if V is an induction variable in this loop. bool isInductionVariable(const Value *V); /// Return true if the block BB needs to be predicated in order for the loop /// to be vectorized. bool blockNeedsPredication(BasicBlock *BB); /// Check if this pointer is consecutive when vectorizing. This happens /// when the last index of the GEP is the induction variable, or that the /// pointer itself is an induction variable. /// This check allows us to vectorize A[idx] into a wide load/store. /// Returns: /// 0 - Stride is unknown or non consecutive. /// 1 - Address is consecutive. /// -1 - Address is consecutive, and decreasing. int isConsecutivePtr(Value *Ptr); /// Returns true if the value V is uniform within the loop. bool isUniform(Value *V); /// Returns true if this instruction will remain scalar after vectorization. bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } /// Returns the information that we collected about runtime memory check. RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } /// This function returns the identity element (or neutral element) for /// the operation K. static Constant *getReductionIdentity(ReductionKind K, Type *Tp); private: /// Check if a single basic block loop is vectorizable. /// At this point we know that this is a loop with a constant trip count /// and we only need to check individual instructions. bool canVectorizeInstrs(); /// When we vectorize loops we may change the order in which /// we read and write from memory. This method checks if it is /// legal to vectorize the code, considering only memory constrains. /// Returns true if the loop is vectorizable bool canVectorizeMemory(); /// Return true if we can vectorize this loop using the IF-conversion /// transformation. bool canVectorizeWithIfConvert(); /// Collect the variables that need to stay uniform after vectorization. void collectLoopUniforms(); /// Return true if all of the instructions in the block can be speculatively /// executed. bool blockCanBePredicated(BasicBlock *BB); /// Returns True, if 'Phi' is the kind of reduction variable for type /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. bool AddReductionVar(PHINode *Phi, ReductionKind Kind); /// Returns a struct describing if the instruction 'I' can be a reduction /// variable of type 'Kind'. If the reduction is a min/max pattern of /// select(icmp()) this function advances the instruction pointer 'I' from the /// compare instruction to the select instruction and stores this pointer in /// 'PatternLastInst' member of the returned struct. ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, ReductionInstDesc &Desc); /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev); /// Returns the induction kind of Phi. This function may return NoInduction /// if the PHI is not an induction variable. InductionKind isInductionVariable(PHINode *Phi); /// Return true if can compute the address bounds of Ptr within the loop. bool hasComputableBounds(Value *Ptr); /// Return true if there is the chance of write reorder. bool hasPossibleGlobalWriteReorder(Value *Object, Instruction *Inst, AliasMultiMap &WriteObjects, unsigned MaxByteWidth); /// Return the AA location for a load or a store. AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst); /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// DataLayout analysis. DataLayout *DL; /// Dominators. DominatorTree *DT; /// Target Info. TargetTransformInfo *TTI; /// Alias Analysis. AliasAnalysis *AA; /// Target Library Info. TargetLibraryInfo *TLI; // --- vectorization state --- // /// Holds the integer induction variable. This is the counter of the /// loop. PHINode *Induction; /// Holds the reduction variables. ReductionList Reductions; /// Holds all of the induction variables that we found in the loop. /// Notice that inductions don't need to start at zero and that induction /// variables can be pointers. InductionList Inductions; /// Allowed outside users. This holds the reduction /// vars which can be accessed from outside the loop. SmallPtrSet AllowedExit; /// This set holds the variables which are known to be uniform after /// vectorization. SmallPtrSet Uniforms; /// We need to check that all of the pointers in this list are disjoint /// at runtime. RuntimePointerCheck PtrRtCheck; /// Can we assume the absence of NaNs. bool HasFunNoNaNAttr; }; /// LoopVectorizationCostModel - estimates the expected speedups due to /// vectorization. /// In many cases vectorization is not profitable. This can happen because of /// a number of reasons. In this class we mainly attempt to predict the /// expected speedup/slowdowns due to the supported instruction set. We use the /// TargetTransformInfo to query the different backends for the cost of /// different operations. class LoopVectorizationCostModel { public: LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, DataLayout *DL, const TargetLibraryInfo *TLI) : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} /// Information about vectorization costs struct VectorizationFactor { unsigned Width; // Vector width with best cost unsigned Cost; // Cost of the loop with that width }; /// \return The most profitable vectorization factor and the cost of that VF. /// This method checks every power of two up to VF. If UserVF is not ZERO /// then this vectorization factor will be selected if vectorization is /// possible. VectorizationFactor selectVectorizationFactor(bool OptForSize, unsigned UserVF); /// \return The size (in bits) of the widest type in the code that /// needs to be vectorized. We ignore values that remain scalar such as /// 64 bit loop indices. unsigned getWidestType(); /// \return The most profitable unroll factor. /// If UserUF is non-zero then this method finds the best unroll-factor /// based on register pressure and other parameters. /// VF and LoopCost are the selected vectorization factor and the cost of the /// selected VF. unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, unsigned LoopCost); /// \brief A struct that represents some properties of the register usage /// of a loop. struct RegisterUsage { /// Holds the number of loop invariant values that are used in the loop. unsigned LoopInvariantRegs; /// Holds the maximum number of concurrent live intervals in the loop. unsigned MaxLocalUsers; /// Holds the number of instructions in the loop. unsigned NumInstructions; }; /// \return information about the register usage of the loop. RegisterUsage calculateRegisterUsage(); private: /// Returns the expected execution cost. The unit of the cost does /// not matter because we use the 'cost' units to compare different /// vector widths. The cost that is returned is *not* normalized by /// the factor width. unsigned expectedCost(unsigned VF); /// Returns the execution time cost of an instruction for a given vector /// width. Vector width of one means scalar. unsigned getInstructionCost(Instruction *I, unsigned VF); /// A helper function for converting Scalar types to vector types. /// If the incoming type is void, we return void. If the VF is 1, we return /// the scalar type. static Type* ToVectorTy(Type *Scalar, unsigned VF); /// Returns whether the instruction is a load or store and will be a emitted /// as a vector operation. bool isConsecutiveLoadOrStore(Instruction *I); /// The loop that we evaluate. Loop *TheLoop; /// Scev analysis. ScalarEvolution *SE; /// Loop Info analysis. LoopInfo *LI; /// Vectorization legality. LoopVectorizationLegality *Legal; /// Vector target information. const TargetTransformInfo &TTI; /// Target data layout information. DataLayout *DL; /// Target Library Info. const TargetLibraryInfo *TLI; }; /// The LoopVectorize Pass. struct LoopVectorize : public LoopPass { /// Pass identification, replacement for typeid static char ID; explicit LoopVectorize() : LoopPass(ID) { initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; DataLayout *DL; LoopInfo *LI; TargetTransformInfo *TTI; DominatorTree *DT; AliasAnalysis *AA; TargetLibraryInfo *TLI; virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { // We only vectorize innermost loops. if (!L->empty()) return false; SE = &getAnalysis(); DL = getAnalysisIfAvailable(); LI = &getAnalysis(); TTI = &getAnalysis(); DT = &getAnalysis(); AA = getAnalysisIfAvailable(); TLI = getAnalysisIfAvailable(); if (DL == NULL) { DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout"); return false; } DEBUG(dbgs() << "LV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"); // Check if it is legal to vectorize the loop. LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI); if (!LVL.canVectorize()) { DEBUG(dbgs() << "LV: Not vectorizing.\n"); return false; } // Use the cost model. LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); // Check the function attributes to find out if this function should be // optimized for size. Function *F = L->getHeader()->getParent(); Attribute::AttrKind SzAttr = Attribute::OptimizeForSize; Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat; unsigned FnIndex = AttributeSet::FunctionIndex; bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr); bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr); if (NoFloat) { DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" "attribute is used.\n"); return false; } // Select the optimal vectorization factor. LoopVectorizationCostModel::VectorizationFactor VF; VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor); // Select the unroll factor. unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll, VF.Width, VF.Cost); if (VF.Width == 1) { DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); return false; } DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<< F->getParent()->getModuleIdentifier()<<"\n"); DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n"); // If we decided that it is *legal* to vectorize the loop then do it. InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); LB.vectorize(&LVL); DEBUG(verifyFunction(*L->getHeader()->getParent())); return true; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { LoopPass::getAnalysisUsage(AU); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and // LoopVectorizationCostModel. //===----------------------------------------------------------------------===// void LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr) { const SCEV *Sc = SE->getSCEV(Ptr); const SCEVAddRecExpr *AR = dyn_cast(Sc); assert(AR && "Invalid addrec expression"); const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch()); const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); Pointers.push_back(Ptr); Starts.push_back(AR->getStart()); Ends.push_back(ScEnd); IsWritePtr.push_back(WritePtr); } Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { // Save the current insertion location. Instruction *Loc = Builder.GetInsertPoint(); // We need to place the broadcast of invariant variables outside the loop. Instruction *Instr = dyn_cast(V); bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; // Place the code for broadcasting invariant variables in the new preheader. if (Invariant) Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); // Restore the builder insertion point. if (Invariant) Builder.SetInsertPoint(Loc); return Shuf; } Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, bool Negate) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); // Create the types. Type *ITy = Val->getType()->getScalarType(); VectorType *Ty = cast(Val->getType()); int VLen = Ty->getNumElements(); SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (int i = 0; i < VLen; ++i) { int64_t Idx = Negate ? (-i) : i; Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); } // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); return Builder.CreateAdd(Val, Cv, "induction"); } int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr"); // Make sure that the pointer does not point to structs. if (cast(Ptr->getType())->getElementType()->isAggregateType()) return 0; // If this value is a pointer induction variable we know it is consecutive. PHINode *Phi = dyn_cast_or_null(Ptr); if (Phi && Inductions.count(Phi)) { InductionInfo II = Inductions[Phi]; if (IK_PtrInduction == II.IK) return 1; else if (IK_ReversePtrInduction == II.IK) return -1; } GetElementPtrInst *Gep = dyn_cast_or_null(Ptr); if (!Gep) return 0; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = Gep->getOperand(NumOperands - 1); Value *GpPtr = Gep->getPointerOperand(); // If this GEP value is a consecutive pointer induction variable and all of // the indices are constant then we know it is consecutive. We can Phi = dyn_cast(GpPtr); if (Phi && Inductions.count(Phi)) { // Make sure that the pointer does not point to structs. PointerType *GepPtrType = cast(GpPtr->getType()); if (GepPtrType->getElementType()->isAggregateType()) return 0; // Make sure that all of the index operands are loop invariant. for (unsigned i = 1; i < NumOperands; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) return 0; InductionInfo II = Inductions[Phi]; if (IK_PtrInduction == II.IK) return 1; else if (IK_ReversePtrInduction == II.IK) return -1; } // Check that all of the gep indices are uniform except for the last. for (unsigned i = 0; i < NumOperands - 1; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) return 0; // We can emit wide load/stores only if the last index is the induction // variable. const SCEV *Last = SE->getSCEV(LastIndex); if (const SCEVAddRecExpr *AR = dyn_cast(Last)) { const SCEV *Step = AR->getStepRecurrence(*SE); // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) return 1; if (Step->isAllOnesValue()) return -1; } return 0; } bool LoopVectorizationLegality::isUniform(Value *V) { return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); } InnerLoopVectorizer::VectorParts& InnerLoopVectorizer::getVectorValue(Value *V) { assert(V != Induction && "The new induction variable should not be used."); assert(!V->getType()->isVectorTy() && "Can't widen a vector"); // If we have this scalar in the map, return it. if (WidenMap.has(V)) return WidenMap.get(V); // If this scalar is unknown, assume that it is a constant or that it is // loop invariant. Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); return WidenMap.splat(V, B); } Value *InnerLoopVectorizer::reverseVector(Value *Vec) { assert(Vec->getType()->isVectorTy() && "Invalid type"); SmallVector ShuffleMask; for (unsigned i = 0; i < VF; ++i) ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), ConstantVector::get(ShuffleMask), "reverse"); } void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, LoopVectorizationLegality *Legal) { // Attempt to issue a wide load. LoadInst *LI = dyn_cast(Instr); StoreInst *SI = dyn_cast(Instr); assert((LI || SI) && "Invalid Load/Store instruction"); Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); Type *DataTy = VectorType::get(ScalarDataTy, VF); Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; if (ScalarAllocatedSize != VectorElementSize) return scalarizeInstruction(Instr); // If the pointer is loop invariant or if it is non consecutive, // scalarize the load. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool Reverse = ConsecutiveStride < 0; bool UniformLoad = LI && Legal->isUniform(Ptr); if (!ConsecutiveStride || UniformLoad) return scalarizeInstruction(Instr); Constant *Zero = Builder.getInt32(0); VectorParts &Entry = WidenMap.get(Instr); // Handle consecutive loads/stores. GetElementPtrInst *Gep = dyn_cast(Ptr); if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { Value *PtrOperand = Gep->getPointerOperand(); Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(0, FirstBasePtr); Gep2->setName("gep.indvar.base"); Ptr = Builder.Insert(Gep2); } else if (Gep) { assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), OrigLoop) && "Base ptr must be invariant"); // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); Value *LastGepOperand = Gep->getOperand(NumOperands - 1); VectorParts &GEPParts = getVectorValue(LastGepOperand); Value *LastIndex = GEPParts[0]; LastIndex = Builder.CreateExtractElement(LastIndex, Zero); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(NumOperands - 1, LastIndex); Gep2->setName("gep.indvar.idx"); Ptr = Builder.Insert(Gep2); } else { // Use the induction element ptr. assert(isa(Ptr) && "Invalid induction ptr"); VectorParts &PtrVal = getVectorValue(Ptr); Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); } // Handle Stores: if (SI) { assert(!Legal->isUniform(SI->getPointerOperand()) && "We do not allow storing to uniform addresses"); VectorParts &StoredVal = getVectorValue(SI->getValueOperand()); for (unsigned Part = 0; Part < UF; ++Part) { // Calculate the pointer for the specific unroll-part. Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); if (Reverse) { // If we store to reverse consecutive memory locations then we need // to reverse the order of elements in the stored value. StoredVal[Part] = reverseVector(StoredVal[Part]); // If the address is consecutive but reversed, then the // wide store needs to start at the last vector element. PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); } Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo()); Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); } } for (unsigned Part = 0; Part < UF; ++Part) { // Calculate the pointer for the specific unroll-part. Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); if (Reverse) { // If the address is consecutive but reversed, then the // wide store needs to start at the last vector element. PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); } Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo()); Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); cast(LI)->setAlignment(Alignment); Entry[Part] = Reverse ? reverseVector(LI) : LI; } } void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *SrcOp = Instr->getOperand(op); // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getVectorValue(SrcOp)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && OrigLoop->contains(SrcInst)) { assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap.get(SrcInst)); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. VectorParts Scalars; Scalars.append(UF, SrcOp); Params.push_back(Scalars); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *UndefVec = IsVoidRetTy ? 0 : UndefValue::get(VectorType::get(Instr->getType(), VF)); // Create a new entry in the WidenMap and initialize it to Undef or Null. VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); // For each vector unroll 'part': for (unsigned Part = 0; Part < UF; ++Part) { // For each scalar that we create: for (unsigned Width = 0; Width < VF; ++Width) { Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instrucions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op][Part]; // Param is a vector. Need to extract the right lane. if (Op->getType()->isVectorTy()) Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, Builder.getInt32(Width)); } } } Instruction * InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal, Instruction *Loc) { LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = Legal->getRuntimePointerCheck(); if (!PtrRtCheck->Need) return NULL; Instruction *MemoryRuntimeCheck = 0; unsigned NumPointers = PtrRtCheck->Pointers.size(); SmallVector Starts; SmallVector Ends; SCEVExpander Exp(*SE, "induction"); // Use this type for pointer arithmetic. Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0); for (unsigned i = 0; i < NumPointers; ++i) { Value *Ptr = PtrRtCheck->Pointers[i]; const SCEV *Sc = SE->getSCEV(Ptr); if (SE->isLoopInvariant(Sc, OrigLoop)) { DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << *Ptr <<"\n"); Starts.push_back(Ptr); Ends.push_back(Ptr); } else { DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n"); Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); Starts.push_back(Start); Ends.push_back(End); } } IRBuilder<> ChkBuilder(Loc); for (unsigned i = 0; i < NumPointers; ++i) { for (unsigned j = i+1; j < NumPointers; ++j) { // No need to check if two readonly pointers intersect. if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) continue; Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc"); Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc"); Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy, "bc"); Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy, "bc"); Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); if (MemoryRuntimeCheck) IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); MemoryRuntimeCheck = cast(IsConflict); } } return MemoryRuntimeCheck; } void InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { /* In this function we generate a new loop. The new loop will contain the vectorized instructions while the old loop will continue to run the scalar remainder. [ ] <-- vector loop bypass (may consist of multiple blocks). / | / v | [ ] <-- vector pre header. | | | v | [ ] \ | [ ]_| <-- vector loop. | | \ v >[ ] <--- middle-block. / | / v | [ ] <--- new preheader. | | | v | [ ] \ | [ ]_| <-- old scalar loop to handle remainder. \ | \ v >[ ] <-- exit block. ... */ BasicBlock *OldBasicBlock = OrigLoop->getHeader(); BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); BasicBlock *ExitBlock = OrigLoop->getExitBlock(); assert(ExitBlock && "Must have an exit block"); // Mark the old scalar loop with metadata that tells us not to vectorize this // loop again if we run into it. MDNode *MD = MDNode::get(OldBasicBlock->getContext(), None); OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD); // Some loops have a single integer induction variable, while other loops // don't. One example is c++ iterators that often have multiple pointer // induction variables. In the code below we also support a case where we // don't have a single induction variable. OldInduction = Legal->getInduction(); Type *IdxTy = OldInduction ? OldInduction->getType() : DL->getIntPtrType(SE->getContext()); // Find the loop boundaries. const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch()); assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); // Get the total trip count from the count by adding 1. ExitCount = SE->getAddExpr(ExitCount, SE->getConstant(ExitCount->getType(), 1)); // Expand the trip count and place the new instructions in the preheader. // Notice that the pre-header does not change, only the loop body. SCEVExpander Exp(*SE, "induction"); // Count holds the overall loop count (N). Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), BypassBlock->getTerminator()); // The loop index does not have to start at Zero. Find the original start // value from the induction PHI node. If we don't have an induction variable // then we know that it starts at zero. Value *StartIdx = OldInduction ? OldInduction->getIncomingValueForBlock(BypassBlock): ConstantInt::get(IdxTy, 0); assert(BypassBlock && "Invalid loop structure"); LoopBypassBlocks.push_back(BypassBlock); // Split the single block loop into the two loop structure described above. BasicBlock *VectorPH = BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); BasicBlock *ScalarPH = MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); // Use this IR builder to create the loop instructions (Phi, Br, Cmp) // inside the loop. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Generate the induction variable. Induction = Builder.CreatePHI(IdxTy, 2, "index"); // The loop step is equal to the vectorization factor (num of SIMD elements) // times the unroll factor (num of SIMD instructions). Constant *Step = ConstantInt::get(IdxTy, VF * UF); // This is the IR builder that we use to add all of the logic for bypassing // the new vector loop. IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); // We may need to extend the index in case there is a type mismatch. // We know that the count starts at zero and does not overflow. if (Count->getType() != IdxTy) { // The exit count can be of pointer type. Convert it to the correct // integer type. if (ExitCount->getType()->isPointerTy()) Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); else Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); } // Add the start index to the loop count to get the new end index. Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); // Now we need to generate the expression for N - (N % VF), which is // the part that the vectorized body will execute. Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, "end.idx.rnd.down"); // Now, compare the new count to zero. If it is zero skip the vector loop and // jump to the scalar loop. Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); BasicBlock *LastBypassBlock = BypassBlock; // Generate the code that checks in runtime if arrays overlap. We put the // checks into a separate block to make the more common case of few elements // faster. Instruction *MemRuntimeCheck = addRuntimeCheck(Legal, BypassBlock->getTerminator()); if (MemRuntimeCheck) { // Create a new block containing the memory check. BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); LoopBypassBlocks.push_back(CheckBlock); // Replace the branch into the memory check block with a conditional branch // for the "few elements case". Instruction *OldTerm = BypassBlock->getTerminator(); BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); OldTerm->eraseFromParent(); Cmp = MemRuntimeCheck; LastBypassBlock = CheckBlock; } LastBypassBlock->getTerminator()->eraseFromParent(); BranchInst::Create(MiddleBlock, VectorPH, Cmp, LastBypassBlock); // We are going to resume the execution of the scalar loop. // Go over all of the induction variables that we found and fix the // PHIs that are left in the scalar version of the loop. // The starting values of PHI nodes depend on the counter of the last // iteration in the vectorized loop. // If we come from a bypass edge then we need to start from the original // start value. // This variable saves the new starting index for the scalar loop. PHINode *ResumeIndex = 0; LoopVectorizationLegality::InductionList::iterator I, E; LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); for (I = List->begin(), E = List->end(); I != E; ++I) { PHINode *OrigPhi = I->first; LoopVectorizationLegality::InductionInfo II = I->second; PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val", MiddleBlock->getTerminator()); Value *EndValue = 0; switch (II.IK) { case LoopVectorizationLegality::IK_NoInduction: llvm_unreachable("Unknown induction"); case LoopVectorizationLegality::IK_IntInduction: { // Handle the integer induction counter: assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); assert(OrigPhi == OldInduction && "Unknown integer PHI"); // We know what the end value is. EndValue = IdxEndRoundDown; // We also know which PHI node holds it. ResumeIndex = ResumeVal; break; } case LoopVectorizationLegality::IK_ReverseIntInduction: { // Convert the CountRoundDown variable to the PHI size. unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits(); unsigned IISize = II.StartValue->getType()->getScalarSizeInBits(); Value *CRD = CountRoundDown; if (CRDSize > IISize) CRD = CastInst::Create(Instruction::Trunc, CountRoundDown, II.StartValue->getType(), "tr.crd", LoopBypassBlocks.back()->getTerminator()); else if (CRDSize < IISize) CRD = CastInst::Create(Instruction::SExt, CountRoundDown, II.StartValue->getType(), "sext.crd", LoopBypassBlocks.back()->getTerminator()); // Handle reverse integer induction counter: EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end", LoopBypassBlocks.back()->getTerminator()); break; } case LoopVectorizationLegality::IK_PtrInduction: { // For pointer induction variables, calculate the offset using // the end index. EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end", LoopBypassBlocks.back()->getTerminator()); break; } case LoopVectorizationLegality::IK_ReversePtrInduction: { // The value at the end of the loop for the reverse pointer is calculated // by creating a GEP with a negative index starting from the start value. Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown, "rev.ind.end", LoopBypassBlocks.back()->getTerminator()); EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx, "rev.ptr.ind.end", LoopBypassBlocks.back()->getTerminator()); break; } }// end of case // The new PHI merges the original incoming value, in case of a bypass, // or the value at the end of the vectorized loop. for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); ResumeVal->addIncoming(EndValue, VecBody); // Fix the scalar body counter (PHI node). unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); OrigPhi->setIncomingValue(BlockIdx, ResumeVal); } // If we are generating a new induction variable then we also need to // generate the code that calculates the exit value. This value is not // simply the end of the counter because we may skip the vectorized body // in case of a runtime check. if (!OldInduction){ assert(!ResumeIndex && "Unexpected resume value found"); ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", MiddleBlock->getTerminator()); for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); } // Make sure that we found the index where scalar loop needs to continue. assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && "Invalid resume Index"); // Add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. // If (N - N%VF) == N, then we *don't* need to run the remainder. Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, ResumeIndex, "cmp.n", MiddleBlock->getTerminator()); BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); // Remove the old terminator. MiddleBlock->getTerminator()->eraseFromParent(); // Create i+1 and fill the PHINode. Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); Induction->addIncoming(StartIdx, VectorPH); Induction->addIncoming(NextIdx, VecBody); // Create the compare. Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); // Now we have two terminators. Remove the old one from the block. VecBody->getTerminator()->eraseFromParent(); // Get ready to start creating new instructions into the vectorized body. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Create and register the new vector loop. Loop* Lp = new Loop(); Loop *ParentLoop = OrigLoop->getParentLoop(); // Insert the new loop into the loop nest and register the new basic blocks. if (ParentLoop) { ParentLoop->addChildLoop(Lp); for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase()); ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); } else { LI->addTopLevelLoop(Lp); } Lp->addBasicBlockToLoop(VecBody, LI->getBase()); // Save the state. LoopVectorPreHeader = VectorPH; LoopScalarPreHeader = ScalarPH; LoopMiddleBlock = MiddleBlock; LoopExitBlock = ExitBlock; LoopVectorBody = VecBody; LoopScalarBody = OldBasicBlock; } /// This function returns the identity element (or neutral element) for /// the operation K. Constant* LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { switch (K) { case RK_IntegerXor: case RK_IntegerAdd: case RK_IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return ConstantInt::get(Tp, 0); case RK_IntegerMult: // Multiplying a number by 1 does not change it. return ConstantInt::get(Tp, 1); case RK_IntegerAnd: // AND-ing a number with an all-1 value does not change it. return ConstantInt::get(Tp, -1, true); case RK_FloatMult: // Multiplying a number by 1 does not change it. return ConstantFP::get(Tp, 1.0L); case RK_FloatAdd: // Adding zero to a number does not change it. return ConstantFP::get(Tp, 0.0L); default: llvm_unreachable("Unknown reduction kind"); } } static Intrinsic::ID getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { // If we have an intrinsic call, check if it is trivially vectorizable. if (IntrinsicInst *II = dyn_cast(CI)) { switch (II->getIntrinsicID()) { case Intrinsic::sqrt: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::log: case Intrinsic::log10: case Intrinsic::log2: case Intrinsic::fabs: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::pow: case Intrinsic::fma: case Intrinsic::fmuladd: return II->getIntrinsicID(); default: return Intrinsic::not_intrinsic; } } if (!TLI) return Intrinsic::not_intrinsic; LibFunc::Func Func; Function *F = CI->getCalledFunction(); // We're going to make assumptions on the semantics of the functions, check // that the target knows that it's available in this environment. if (!F || !TLI->getLibFunc(F->getName(), Func)) return Intrinsic::not_intrinsic; // Otherwise check if we have a call to a function that can be turned into a // vector intrinsic. switch (Func) { default: break; case LibFunc::sin: case LibFunc::sinf: case LibFunc::sinl: return Intrinsic::sin; case LibFunc::cos: case LibFunc::cosf: case LibFunc::cosl: return Intrinsic::cos; case LibFunc::exp: case LibFunc::expf: case LibFunc::expl: return Intrinsic::exp; case LibFunc::exp2: case LibFunc::exp2f: case LibFunc::exp2l: return Intrinsic::exp2; case LibFunc::log: case LibFunc::logf: case LibFunc::logl: return Intrinsic::log; case LibFunc::log10: case LibFunc::log10f: case LibFunc::log10l: return Intrinsic::log10; case LibFunc::log2: case LibFunc::log2f: case LibFunc::log2l: return Intrinsic::log2; case LibFunc::fabs: case LibFunc::fabsf: case LibFunc::fabsl: return Intrinsic::fabs; case LibFunc::floor: case LibFunc::floorf: case LibFunc::floorl: return Intrinsic::floor; case LibFunc::ceil: case LibFunc::ceilf: case LibFunc::ceill: return Intrinsic::ceil; case LibFunc::trunc: case LibFunc::truncf: case LibFunc::truncl: return Intrinsic::trunc; case LibFunc::rint: case LibFunc::rintf: case LibFunc::rintl: return Intrinsic::rint; case LibFunc::nearbyint: case LibFunc::nearbyintf: case LibFunc::nearbyintl: return Intrinsic::nearbyint; case LibFunc::pow: case LibFunc::powf: case LibFunc::powl: return Intrinsic::pow; } return Intrinsic::not_intrinsic; } /// This function translates the reduction kind to an LLVM binary operator. static unsigned getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { switch (Kind) { case LoopVectorizationLegality::RK_IntegerAdd: return Instruction::Add; case LoopVectorizationLegality::RK_IntegerMult: return Instruction::Mul; case LoopVectorizationLegality::RK_IntegerOr: return Instruction::Or; case LoopVectorizationLegality::RK_IntegerAnd: return Instruction::And; case LoopVectorizationLegality::RK_IntegerXor: return Instruction::Xor; case LoopVectorizationLegality::RK_FloatMult: return Instruction::FMul; case LoopVectorizationLegality::RK_FloatAdd: return Instruction::FAdd; case LoopVectorizationLegality::RK_IntegerMinMax: return Instruction::ICmp; case LoopVectorizationLegality::RK_FloatMinMax: return Instruction::FCmp; default: llvm_unreachable("Unknown reduction operation"); } } Value *createMinMaxOp(IRBuilder<> &Builder, LoopVectorizationLegality::MinMaxReductionKind RK, Value *Left, Value *Right) { CmpInst::Predicate P = CmpInst::ICMP_NE; switch (RK) { default: llvm_unreachable("Unknown min/max reduction kind"); case LoopVectorizationLegality::MRK_UIntMin: P = CmpInst::ICMP_ULT; break; case LoopVectorizationLegality::MRK_UIntMax: P = CmpInst::ICMP_UGT; break; case LoopVectorizationLegality::MRK_SIntMin: P = CmpInst::ICMP_SLT; break; case LoopVectorizationLegality::MRK_SIntMax: P = CmpInst::ICMP_SGT; break; case LoopVectorizationLegality::MRK_FloatMin: P = CmpInst::FCMP_OLT; break; case LoopVectorizationLegality::MRK_FloatMax: P = CmpInst::FCMP_OGT; break; } Value *Cmp; if (RK == LoopVectorizationLegality::MRK_FloatMin || RK == LoopVectorizationLegality::MRK_FloatMax) Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); else Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); return Select; } void InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { //===------------------------------------------------===// // // Notice: any optimization or new instruction that go // into the code below should be also be implemented in // the cost-model. // //===------------------------------------------------===// Constant *Zero = Builder.getInt32(0); // In order to support reduction variables we need to be able to vectorize // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two // stages. First, we create a new vector PHI node with no incoming edges. // We use this value when we vectorize all of the instructions that use the // PHI. Next, after all of the instructions in the block are complete we // add the new incoming edges to the PHI. At this point all of the // instructions in the basic block are vectorized, so we can use them to // construct the PHI. PhiVector RdxPHIsToFix; // Scan the loop in a topological order to ensure that defs are vectorized // before users. LoopBlocksDFS DFS(OrigLoop); DFS.perform(LI); // Vectorize all of the blocks in the original loop. for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); bb != be; ++bb) vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix); // At this point every instruction in the original loop is widened to // a vector form. We are almost done. Now, we need to fix the PHI nodes // that we vectorized. The PHI nodes are currently empty because we did // not want to introduce cycles. Notice that the remaining PHI nodes // that we need to fix are reduction variables. // Create the 'reduced' values for each of the induction vars. // The reduced values are the vector values that we scalarize and combine // after the loop is finished. for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); it != e; ++it) { PHINode *RdxPhi = *it; assert(RdxPhi && "Unable to recover vectorized PHI"); // Find the reduction variable descriptor. assert(Legal->getReductionVars()->count(RdxPhi) && "Unable to find the reduction variable"); LoopVectorizationLegality::ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; // We need to generate a reduction vector from the incoming scalar. // To do so, we need to generate the 'identity' vector and overide // one of the elements with the incoming scalar reduction. We need // to do it in the vector-loop preheader. Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); // This is the vector-clone of the value that leaves the loop. VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); Type *VecTy = VectorExit[0]->getType(); // Find the reduction identity variable. Zero for addition, or, xor, // one for multiplication, -1 for And. Value *Identity; Value *VectorStart; if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { // MinMax reduction have the start value as their identify. VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue, "minmax.ident"); } else { Constant *Iden = LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType()); Identity = ConstantVector::getSplat(VF, Iden); // This vector is the Identity vector where the first element is the // incoming scalar reduction. VectorStart = Builder.CreateInsertElement(Identity, RdxDesc.StartValue, Zero); } // Fix the vector-loop phi. // We created the induction variable so we know that the // preheader is the first entry. BasicBlock *VecPreheader = Induction->getIncomingBlock(0); // Reductions do not have to start at zero. They can start with // any loop invariant values. VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); BasicBlock *Latch = OrigLoop->getLoopLatch(); Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); VectorParts &Val = getVectorValue(LoopVal); for (unsigned part = 0; part < UF; ++part) { // Make sure to add the reduction stat value only to the // first unroll part. Value *StartVal = (part == 0) ? VectorStart : Identity; cast(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); cast(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody); } // Before each round, move the insertion point right between // the PHIs and the values we are going to write. // This allows us to write both PHINodes and the extractelement // instructions. Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); VectorParts RdxParts; for (unsigned part = 0; part < UF; ++part) { // This PHINode contains the vectorized reduction variable, or // the initial value vector, if we bypass the vector loop. VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); Value *StartVal = (part == 0) ? VectorStart : Identity; for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody); RdxParts.push_back(NewPhi); } // Reduce all of the unrolled parts into a single vector. Value *ReducedPartRdx = RdxParts[0]; unsigned Op = getReductionBinOp(RdxDesc.Kind); for (unsigned part = 1; part < UF; ++part) { if (Op != Instruction::ICmp && Op != Instruction::FCmp) ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], ReducedPartRdx, "bin.rdx"); else ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, ReducedPartRdx, RdxParts[part]); } // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles // and vector ops, reducing the set of values being computed by half each // round. assert(isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"); Value *TmpVec = ReducedPartRdx; SmallVector ShuffleMask(VF, 0); for (unsigned i = VF; i != 1; i >>= 1) { // Move the upper half of the vector to the lower half. for (unsigned j = 0; j != i/2; ++j) ShuffleMask[j] = Builder.getInt32(i/2 + j); // Fill the rest of the mask with undef. std::fill(&ShuffleMask[i/2], ShuffleMask.end(), UndefValue::get(Builder.getInt32Ty())); Value *Shuf = Builder.CreateShuffleVector(TmpVec, UndefValue::get(TmpVec->getType()), ConstantVector::get(ShuffleMask), "rdx.shuf"); if (Op != Instruction::ICmp && Op != Instruction::FCmp) TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"); else TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); } // The result is in the first element of the vector. Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); // Now, we need to fix the users of the reduction variable // inside and outside of the scalar remainder loop. // We know that the loop is in LCSSA form. We need to update the // PHI nodes in the exit blocks. for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) continue; // All PHINodes need to have a single entry edge, or two if // we already fixed them. assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); // We found our reduction value exit-PHI. Update it with the // incoming bypass edge. if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { // Add an edge coming from the bypass. LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock); break; } }// end of the LCSSA phi scan. // Fix the scalar loop reduction variable with the incoming reduction sum // from the vector body and from the backedge value. int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); // Pick the other block. int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0); (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); }// end of for each redux variable. // The Loop exit block may have single value PHI nodes where the incoming // value is 'undef'. While vectorizing we only handled real values that // were defined inside the loop. Here we handle the 'undef case'. // See PR14725. for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) continue; if (LCSSAPhi->getNumIncomingValues() == 1) LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), LoopMiddleBlock); } } InnerLoopVectorizer::VectorParts InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && "Invalid edge"); VectorParts SrcMask = createBlockInMask(Src); // The terminator has to be a branch inst! BranchInst *BI = dyn_cast(Src->getTerminator()); assert(BI && "Unexpected terminator found"); if (BI->isConditional()) { VectorParts EdgeMask = getVectorValue(BI->getCondition()); if (BI->getSuccessor(0) != Dst) for (unsigned part = 0; part < UF; ++part) EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); for (unsigned part = 0; part < UF; ++part) EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); return EdgeMask; } return SrcMask; } InnerLoopVectorizer::VectorParts InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); // Loop incoming mask is all-one. if (OrigLoop->getHeader() == BB) { Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); return getVectorValue(C); } // This is the block mask. We OR all incoming edges, and with zero. Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); VectorParts BlockMask = getVectorValue(Zero); // For each pred: for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { VectorParts EM = createEdgeMask(*it, BB); for (unsigned part = 0; part < UF; ++part) BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); } return BlockMask; } void InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, PhiVector *PV) { // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { VectorParts &Entry = WidenMap.get(it); switch (it->getOpcode()) { case Instruction::Br: // Nothing to do for PHIs and BR, since we already took care of the // loop control flow instructions. continue; case Instruction::PHI:{ PHINode* P = cast(it); // Handle reduction variables: if (Legal->getReductionVars()->count(P)) { for (unsigned part = 0; part < UF; ++part) { // This is phase one of vectorizing PHIs. Type *VecTy = VectorType::get(it->getType(), VF); Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", LoopVectorBody-> getFirstInsertionPt()); } PV->push_back(P); continue; } // Check for PHI nodes that are lowered to vector selects. if (P->getParent() != OrigLoop->getHeader()) { // We know that all PHIs in non header blocks are converted into // selects, so we don't have to worry about the insertion order and we // can just use the builder. // At this point we generate the predication tree. There may be // duplications since this is a simple recursive scan, but future // optimizations will clean it up. unsigned NumIncoming = P->getNumIncomingValues(); assert(NumIncoming > 1 && "Invalid PHI"); // Generate a sequence of selects of the form: // SELECT(Mask3, In3, // SELECT(Mask2, In2, // ( ...))) for (unsigned In = 0; In < NumIncoming; In++) { VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), P->getParent()); VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); for (unsigned part = 0; part < UF; ++part) { // We don't need to 'select' the first PHI operand because it is // the default value if all of the other masks don't match. if (In == 0) Entry[part] = In0[part]; else // Select between the current value and the previous incoming edge // based on the incoming mask. Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], "predphi"); } } continue; } // This PHINode must be an induction variable. // Make sure that we know about it. assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); LoopVectorizationLegality::InductionInfo II = Legal->getInductionVars()->lookup(P); switch (II.IK) { case LoopVectorizationLegality::IK_NoInduction: llvm_unreachable("Unknown induction"); case LoopVectorizationLegality::IK_IntInduction: { assert(P == OldInduction && "Unexpected PHI"); Value *Broadcasted = getBroadcastInstrs(Induction); // After broadcasting the induction variable we need to make the // vector consecutive by adding 0, 1, 2 ... for (unsigned part = 0; part < UF; ++part) Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); continue; } case LoopVectorizationLegality::IK_ReverseIntInduction: case LoopVectorizationLegality::IK_PtrInduction: case LoopVectorizationLegality::IK_ReversePtrInduction: // Handle reverse integer and pointer inductions. Value *StartIdx = 0; // If we have a single integer induction variable then use it. // Otherwise, start counting at zero. if (OldInduction) { LoopVectorizationLegality::InductionInfo OldII = Legal->getInductionVars()->lookup(OldInduction); StartIdx = OldII.StartValue; } else { StartIdx = ConstantInt::get(Induction->getType(), 0); } // This is the normalized GEP that starts counting at zero. Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, "normalized.idx"); // Handle the reverse integer induction variable case. if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { IntegerType *DstTy = cast(II.StartValue->getType()); Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, "resize.norm.idx"); Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, "reverse.idx"); // This is a new value so do not hoist it out. Value *Broadcasted = getBroadcastInstrs(ReverseInd); // After broadcasting the induction variable we need to make the // vector consecutive by adding ... -3, -2, -1, 0. for (unsigned part = 0; part < UF; ++part) Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, true); continue; } // Handle the pointer induction variable case. assert(P->getType()->isPointerTy() && "Unexpected type."); // Is this a reverse induction ptr or a consecutive induction ptr. bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == II.IK); // This is the vector of results. Notice that we don't generate // vector geps because scalar geps result in better code. for (unsigned part = 0; part < UF; ++part) { Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); for (unsigned int i = 0; i < VF; ++i) { int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); Value *GlobalIdx; if (!Reverse) GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); else GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, "next.gep"); VecVal = Builder.CreateInsertElement(VecVal, SclrGep, Builder.getInt32(i), "insert.gep"); } Entry[part] = VecVal; } continue; } }// End of PHI. case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Just widen binops. BinaryOperator *BinOp = dyn_cast(it); VectorParts &A = getVectorValue(it->getOperand(0)); VectorParts &B = getVectorValue(it->getOperand(1)); // Use this vector value for all users of the original instruction. for (unsigned Part = 0; Part < UF; ++Part) { Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. BinaryOperator *VecOp = dyn_cast(V); if (VecOp && isa(BinOp)) { VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); } if (VecOp && isa(VecOp)) VecOp->setIsExact(BinOp->isExact()); Entry[Part] = V; } break; } case Instruction::Select: { // Widen selects. // If the selector is loop invariant we can create a select // instruction with a scalar condition. Otherwise, use vector-select. bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), OrigLoop); // The condition can be loop invariant but still defined inside the // loop. This means that we can't just use the original 'cond' value. // We have to take the 'vectorized' value and pick the first lane. // Instcombine will make this a no-op. VectorParts &Cond = getVectorValue(it->getOperand(0)); VectorParts &Op0 = getVectorValue(it->getOperand(1)); VectorParts &Op1 = getVectorValue(it->getOperand(2)); Value *ScalarCond = Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); for (unsigned Part = 0; Part < UF; ++Part) { Entry[Part] = Builder.CreateSelect( InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); } break; } case Instruction::ICmp: case Instruction::FCmp: { // Widen compares. Generate vector compares. bool FCmp = (it->getOpcode() == Instruction::FCmp); CmpInst *Cmp = dyn_cast(it); VectorParts &A = getVectorValue(it->getOperand(0)); VectorParts &B = getVectorValue(it->getOperand(1)); for (unsigned Part = 0; Part < UF; ++Part) { Value *C = 0; if (FCmp) C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); else C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); Entry[Part] = C; } break; } case Instruction::Store: case Instruction::Load: vectorizeMemoryInstruction(it, Legal); break; case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { CastInst *CI = dyn_cast(it); /// Optimize the special case where the source is the induction /// variable. Notice that we can only optimize the 'trunc' case /// because: a. FP conversions lose precision, b. sext/zext may wrap, /// c. other casts depend on pointer size. if (CI->getOperand(0) == OldInduction && it->getOpcode() == Instruction::Trunc) { Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); Value *Broadcasted = getBroadcastInstrs(ScalarCast); for (unsigned Part = 0; Part < UF; ++Part) Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); break; } /// Vectorize casts. Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF); VectorParts &A = getVectorValue(it->getOperand(0)); for (unsigned Part = 0; Part < UF; ++Part) Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); break; } case Instruction::Call: { // Ignore dbg intrinsics. if (isa(it)) break; Module *M = BB->getParent()->getParent(); CallInst *CI = cast(it); Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); assert(ID && "Not an intrinsic call!"); for (unsigned Part = 0; Part < UF; ++Part) { SmallVector Args; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); Args.push_back(Arg[Part]); } Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) }; Function *F = Intrinsic::getDeclaration(M, ID, Tys); Entry[Part] = Builder.CreateCall(F, Args); } break; } default: // All other instructions are unsupported. Scalarize them. scalarizeInstruction(it); break; }// end of switch. }// end of for_each instr. } void InnerLoopVectorizer::updateAnalysis() { // Forget the original basic block. SE->forgetLoop(OrigLoop); // Update the dominator tree information. assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && "Entry does not dominate exit."); for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); DEBUG(DT->verifyAnalysis()); } bool LoopVectorizationLegality::canVectorizeWithIfConvert() { if (!EnableIfConversion) return false; assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); std::vector &LoopBlocks = TheLoop->getBlocksVector(); // Collect the blocks that need predication. for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) { BasicBlock *BB = LoopBlocks[i]; // We don't support switch statements inside loops. if (!isa(BB->getTerminator())) return false; // We must be able to predicate all blocks that need to be predicated. if (blockNeedsPredication(BB) && !blockCanBePredicated(BB)) return false; } // We can if-convert this loop. return true; } bool LoopVectorizationLegality::canVectorize() { assert(TheLoop->getLoopPreheader() && "No preheader!!"); // We can only vectorize innermost loops. if (TheLoop->getSubLoopsVector().size()) return false; // We must have a single backedge. if (TheLoop->getNumBackEdges() != 1) return false; // We must have a single exiting block. if (!TheLoop->getExitingBlock()) return false; unsigned NumBlocks = TheLoop->getNumBlocks(); // Check if we can if-convert non single-bb loops. if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); return false; } // We need to have a loop header. BasicBlock *Latch = TheLoop->getLoopLatch(); DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() << "\n"); // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch); if (ExitCount == SE->getCouldNotCompute()) { DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); return false; } // Do not loop-vectorize loops with a tiny trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); if (TC > 0u && TC < TinyTripCountVectorThreshold) { DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is not worth vectorizing.\n"); return false; } // Check if we can vectorize the instructions and CFG in this loop. if (!canVectorizeInstrs()) { DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); return false; } // Go over each instruction and look at memory deps. if (!canVectorizeMemory()) { DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); return false; } // Collect all of the variables that remain uniform after vectorization. collectLoopUniforms(); DEBUG(dbgs() << "LV: We can vectorize this loop" << (PtrRtCheck.Need ? " (with a runtime bound check)" : "") <<"!\n"); // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. return true; } bool LoopVectorizationLegality::canVectorizeInstrs() { BasicBlock *PreHeader = TheLoop->getLoopPreheader(); BasicBlock *Header = TheLoop->getHeader(); // If we marked the scalar loop as "already vectorized" then no need // to vectorize it again. if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) { DEBUG(dbgs() << "LV: This loop was vectorized before\n"); return false; } // Look for the attribute signaling the absence of NaNs. Function &F = *Header->getParent(); if (F.hasFnAttribute("no-nans-fp-math")) HasFunNoNaNAttr = F.getAttributes().getAttribute( AttributeSet::FunctionIndex, "no-nans-fp-math").getValueAsString() == "true"; // For each block in the loop. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { // Scan the instructions in the block and look for hazards. for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { if (PHINode *Phi = dyn_cast(it)) { // Check that this PHI type is allowed. if (!Phi->getType()->isIntegerTy() && !Phi->getType()->isFloatingPointTy() && !Phi->getType()->isPointerTy()) { DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); return false; } // If this PHINode is not in the header block, then we know that we // can convert it to select during if-conversion. No need to check if // the PHIs in this block are induction or reduction variables. if (*bb != Header) continue; // We only allow if-converted PHIs with more than two incoming values. if (Phi->getNumIncomingValues() != 2) { DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); return false; } // This is the value coming from the preheader. Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); // Check if this is an induction variable. InductionKind IK = isInductionVariable(Phi); if (IK_NoInduction != IK) { // Int inductions are special because we only allow one IV. if (IK == IK_IntInduction) { if (Induction) { DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n"); return false; } Induction = Phi; } DEBUG(dbgs() << "LV: Found an induction variable.\n"); Inductions[Phi] = InductionInfo(StartValue, IK); continue; } if (AddReductionVar(Phi, RK_IntegerAdd)) { DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerMult)) { DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerOr)) { DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerAnd)) { DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerXor)) { DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_IntegerMinMax)) { DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_FloatMult)) { DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_FloatAdd)) { DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, RK_FloatMinMax)) { DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<"\n"); continue; } DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); return false; }// end of PHI handling // We still don't handle functions. However, we can ignore dbg intrinsic // calls and we do handle certain intrinsic and libm functions. CallInst *CI = dyn_cast(it); if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa(CI)) { DEBUG(dbgs() << "LV: Found a call site.\n"); return false; } // Check that the instruction return type is vectorizable. if (!VectorType::isValidElementType(it->getType()) && !it->getType()->isVoidTy()) { DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); return false; } // Check that the stored type is vectorizable. if (StoreInst *ST = dyn_cast(it)) { Type *T = ST->getValueOperand()->getType(); if (!VectorType::isValidElementType(T)) return false; } // Reduction instructions are allowed to have exit users. // All other instructions must not have external users. if (!AllowedExit.count(it)) //Check that all of the users of the loop are inside the BB. for (Value::use_iterator I = it->use_begin(), E = it->use_end(); I != E; ++I) { Instruction *U = cast(*I); // This user may be a reduction exit value. if (!TheLoop->contains(U)) { DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); return false; } } } // next instr. } if (!Induction) { DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); assert(getInductionVars()->size() && "No induction variables"); } return true; } void LoopVectorizationLegality::collectLoopUniforms() { // We now know that the loop is vectorizable! // Collect variables that will remain uniform after vectorization. std::vector Worklist; BasicBlock *Latch = TheLoop->getLoopLatch(); // Start with the conditional branch and walk up the block. Worklist.push_back(Latch->getTerminator()->getOperand(0)); while (Worklist.size()) { Instruction *I = dyn_cast(Worklist.back()); Worklist.pop_back(); // Look at instructions inside this loop. // Stop when reaching PHI nodes. // TODO: we need to follow values all over the loop, not only in this block. if (!I || !TheLoop->contains(I) || isa(I)) continue; // This is a known uniform. Uniforms.insert(I); // Insert all operands. for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) { Worklist.push_back(I->getOperand(i)); } } } AliasAnalysis::Location LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) { if (StoreInst *Store = dyn_cast(Inst)) return AA->getLocation(Store); else if (LoadInst *Load = dyn_cast(Inst)) return AA->getLocation(Load); llvm_unreachable("Should be either load or store instruction"); } bool LoopVectorizationLegality::hasPossibleGlobalWriteReorder( Value *Object, Instruction *Inst, AliasMultiMap& WriteObjects, unsigned MaxByteWidth) { AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst); std::vector::iterator it = WriteObjects[Object].begin(), end = WriteObjects[Object].end(); for (; it != end; ++it) { Instruction* I = *it; if (I == Inst) continue; AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I); if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth), ThatLoc.getWithNewSize(MaxByteWidth))) return true; } return false; } bool LoopVectorizationLegality::canVectorizeMemory() { typedef SmallVector ValueVector; typedef SmallPtrSet ValueSet; // Holds the Load and Store *instructions*. ValueVector Loads; ValueVector Stores; PtrRtCheck.Pointers.clear(); PtrRtCheck.Need = false; const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); // For each block. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { // Scan the BB and collect legal loads and stores. for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { // If this is a load, save it. If this instruction can read from memory // but is not a load, then we quit. Notice that we don't handle function // calls that read or write. if (it->mayReadFromMemory()) { LoadInst *Ld = dyn_cast(it); if (!Ld) return false; if (!Ld->isSimple() && !IsAnnotatedParallel) { DEBUG(dbgs() << "LV: Found a non-simple load.\n"); return false; } Loads.push_back(Ld); continue; } // Save 'store' instructions. Abort if other instructions write to memory. if (it->mayWriteToMemory()) { StoreInst *St = dyn_cast(it); if (!St) return false; if (!St->isSimple() && !IsAnnotatedParallel) { DEBUG(dbgs() << "LV: Found a non-simple store.\n"); return false; } Stores.push_back(St); } } // next instr. } // next block. // Now we have two lists that hold the loads and the stores. // Next, we find the pointers that they use. // Check if we see any stores. If there are no stores, then we don't // care if the pointers are *restrict*. if (!Stores.size()) { DEBUG(dbgs() << "LV: Found a read-only loop!\n"); return true; } // Holds the read and read-write *pointers* that we find. These maps hold // unique values for pointers (so no need for multi-map). AliasMap Reads; AliasMap ReadWrites; // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects // multiple times on the same object. If the ptr is accessed twice, once // for read and once for write, it will only appear once (on the write // list). This is okay, since we are going to check for conflicts between // writes and between reads and writes, but not between reads and reads. ValueSet Seen; ValueVector::iterator I, IE; for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { StoreInst *ST = cast(*I); Value* Ptr = ST->getPointerOperand(); if (isUniform(Ptr)) { DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); return false; } // If we did *not* see this pointer before, insert it to // the read-write list. At this phase it is only a 'write' list. if (Seen.insert(Ptr)) ReadWrites.insert(std::make_pair(Ptr, ST)); } if (IsAnnotatedParallel) { DEBUG(dbgs() << "LV: A loop annotated parallel, ignore memory dependency " << "checks.\n"); return true; } for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { LoadInst *LD = cast(*I); Value* Ptr = LD->getPointerOperand(); // If we did *not* see this pointer before, insert it to the // read list. If we *did* see it before, then it is already in // the read-write list. This allows us to vectorize expressions // such as A[i] += x; Because the address of A[i] is a read-write // pointer. This only works if the index of A[i] is consecutive. // If the address of i is unknown (for example A[B[i]]) then we may // read a few words, modify, and write a few words, and some of the // words may be written to the same address. if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr)) Reads.insert(std::make_pair(Ptr, LD)); } // If we write (or read-write) to a single destination and there are no // other reads in this loop then is it safe to vectorize. if (ReadWrites.size() == 1 && Reads.size() == 0) { DEBUG(dbgs() << "LV: Found a write-only loop!\n"); return true; } unsigned NumReadPtrs = 0; unsigned NumWritePtrs = 0; // Find pointers with computable bounds. We are going to use this information // to place a runtime bound check. bool CanDoRT = true; AliasMap::iterator MI, ME; for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) { Value *V = (*MI).first; if (hasComputableBounds(V)) { PtrRtCheck.insert(SE, TheLoop, V, true); NumWritePtrs++; DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n"); } else { CanDoRT = false; break; } } for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) { Value *V = (*MI).first; if (hasComputableBounds(V)) { PtrRtCheck.insert(SE, TheLoop, V, false); NumReadPtrs++; DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n"); } else { CanDoRT = false; break; } } // Check that we did not collect too many pointers or found a // unsizeable pointer. unsigned NumComparisons = (NumWritePtrs * (NumReadPtrs + NumWritePtrs - 1)); DEBUG(dbgs() << "LV: We need to compare " << NumComparisons << " ptrs.\n"); if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { PtrRtCheck.reset(); CanDoRT = false; } if (CanDoRT) { DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); } bool NeedRTCheck = false; // Biggest vectorized access possible, vector width * unroll factor. // TODO: We're being very pessimistic here, find a way to know the // real access width before getting here. unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) * TTI->getMaximumUnrollFactor(); // Now that the pointers are in two lists (Reads and ReadWrites), we // can check that there are no conflicts between each of the writes and // between the writes to the reads. // Note that WriteObjects duplicates the stores (indexed now by underlying // objects) to avoid pointing to elements inside ReadWrites. // TODO: Maybe create a new type where they can interact without duplication. AliasMultiMap WriteObjects; ValueVector TempObjects; // Check that the read-writes do not conflict with other read-write // pointers. bool AllWritesIdentified = true; for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) { Value *Val = (*MI).first; Instruction *Inst = (*MI).second; GetUnderlyingObjects(Val, TempObjects, DL); for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end(); UI != UE; ++UI) { if (!isIdentifiedObject(*UI)) { DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n"); NeedRTCheck = true; AllWritesIdentified = false; } // Never seen it before, can't alias. if (WriteObjects[*UI].empty()) { DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n"); WriteObjects[*UI].push_back(Inst); continue; } // Direct alias found. if (!AA || dyn_cast(*UI) == NULL) { DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **UI <<"\n"); return false; } DEBUG(dbgs() << "LV: Found a conflicting global value:" << **UI <<"\n"); DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n"); DEBUG(dbgs() << "LV: On value:" << *Val <<"\n"); // If global alias, make sure they do alias. if (hasPossibleGlobalWriteReorder(*UI, Inst, WriteObjects, MaxByteWidth)) { DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **UI << "\n"); return false; } // Didn't alias, insert into map for further reference. WriteObjects[*UI].push_back(Inst); } TempObjects.clear(); } /// Check that the reads don't conflict with the read-writes. for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) { Value *Val = (*MI).first; GetUnderlyingObjects(Val, TempObjects, DL); for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end(); UI != UE; ++UI) { // If all of the writes are identified then we don't care if the read // pointer is identified or not. if (!AllWritesIdentified && !isIdentifiedObject(*UI)) { DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n"); NeedRTCheck = true; } // Never seen it before, can't alias. if (WriteObjects[*UI].empty()) continue; // Direct alias found. if (!AA || dyn_cast(*UI) == NULL) { DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **UI <<"\n"); return false; } DEBUG(dbgs() << "LV: Found a global value: " << **UI <<"\n"); Instruction *Inst = (*MI).second; DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n"); DEBUG(dbgs() << "LV: On value:" << *Val <<"\n"); // If global alias, make sure they do alias. if (hasPossibleGlobalWriteReorder(*UI, Inst, WriteObjects, MaxByteWidth)) { DEBUG(dbgs() << "LV: Found a possible read-write reorder:" << **UI << "\n"); return false; } } TempObjects.clear(); } PtrRtCheck.Need = NeedRTCheck; if (NeedRTCheck && !CanDoRT) { DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << "the array bounds.\n"); PtrRtCheck.reset(); return false; } DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") << " need a runtime memory check.\n"); return true; } bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, ReductionKind Kind) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = 0; // Indicates that we found a binary operation in our scan. bool FoundBinOp = false; // Iter is our iterator. We start with the PHI node and scan for all of the // users of this instruction. All users must be instructions that can be // used as reduction variables (such as ADD). We may have a single // out-of-block user. The cycle must end with the original PHI. Instruction *Iter = Phi; // To recognize min/max patterns formed by a icmp select sequence, we store // the number of instruction we saw from the recognized min/max pattern, // such that we don't stop when we see the phi has two uses (one by the select // and one by the icmp) and to make sure we only see exactly the two // instructions. unsigned NumCmpSelectPatternInst = 0; ReductionInstDesc ReduxDesc(false, 0); // Avoid cycles in the chain. SmallPtrSet VisitedInsts; while (VisitedInsts.insert(Iter)) { // If the instruction has no users then this is a broken // chain and can't be a reduction variable. if (Iter->use_empty()) return false; // Did we find a user inside this loop already ? bool FoundInBlockUser = false; // Did we reach the initial PHI node already ? bool FoundStartPHI = false; // Is this a bin op ? FoundBinOp |= !isa(Iter); // For each of the *users* of iter. for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end(); it != e; ++it) { Instruction *U = cast(*it); // We already know that the PHI is a user. if (U == Phi) { FoundStartPHI = true; continue; } // Check if we found the exit user. BasicBlock *Parent = U->getParent(); if (!TheLoop->contains(Parent)) { // Exit if you find multiple outside users. if (ExitInstruction != 0) return false; ExitInstruction = Iter; } // We allow in-loop PHINodes which are not the original reduction PHI // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE // structure) then don't skip this PHI. if (isa(Iter) && isa(U) && U->getParent() != TheLoop->getHeader() && TheLoop->contains(U) && Iter->hasNUsesOrMore(2)) continue; // We can't have multiple inside users except for a combination of // icmp/select both using the phi. if (FoundInBlockUser && !NumCmpSelectPatternInst) return false; FoundInBlockUser = true; // Any reduction instr must be of one of the allowed kinds. ReduxDesc = isReductionInstr(U, Kind, ReduxDesc); if (!ReduxDesc.IsReduction) return false; if (Kind == RK_IntegerMinMax && (isa(U) || isa(U))) ++NumCmpSelectPatternInst; if (Kind == RK_FloatMinMax && (isa(U) || isa(U))) ++NumCmpSelectPatternInst; // Reductions of instructions such as Div, and Sub is only // possible if the LHS is the reduction variable. if (!U->isCommutative() && !isa(U) && !isa(U) && !isa(U) && !isa(U) && U->getOperand(0) != Iter) return false; Iter = ReduxDesc.PatternLastInst; } // This means we have seen one but not the other instruction of the // pattern or more than just a select and cmp. if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && NumCmpSelectPatternInst != 2) return false; // We found a reduction var if we have reached the original // phi node and we only have a single instruction with out-of-loop // users. if (FoundStartPHI) { // This instruction is allowed to have out-of-loop users. AllowedExit.insert(ExitInstruction); // Save the description of this reduction variable. ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, ReduxDesc.MinMaxKind); Reductions[Phi] = RD; // We've ended the cycle. This is a reduction variable if we have an // outside user and it has a binary op. return FoundBinOp && ExitInstruction; } } return false; } /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). LoopVectorizationLegality::ReductionInstDesc LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev) { assert((isa(I) || isa(I) || isa(I)) && "Expect a select instruction"); Instruction *Cmp = 0; SelectInst *Select = 0; // We must handle the select(cmp()) as a single instruction. Advance to the // select. if ((Cmp = dyn_cast(I)) || (Cmp = dyn_cast(I))) { if (!Cmp->hasOneUse() || !(Select = dyn_cast(*I->use_begin()))) return ReductionInstDesc(false, I); return ReductionInstDesc(Select, Prev.MinMaxKind); } // Only handle single use cases for now. if (!(Select = dyn_cast(I))) return ReductionInstDesc(false, I); if (!(Cmp = dyn_cast(I->getOperand(0))) && !(Cmp = dyn_cast(I->getOperand(0)))) return ReductionInstDesc(false, I); if (!Cmp->hasOneUse()) return ReductionInstDesc(false, I); Value *CmpLeft; Value *CmpRight; // Look for a min/max pattern. if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_UIntMin); else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_UIntMax); else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_SIntMax); else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_SIntMin); else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMin); else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMax); else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMin); else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return ReductionInstDesc(Select, MRK_FloatMax); return ReductionInstDesc(false, I); } LoopVectorizationLegality::ReductionInstDesc LoopVectorizationLegality::isReductionInstr(Instruction *I, ReductionKind Kind, ReductionInstDesc &Prev) { bool FP = I->getType()->isFloatingPointTy(); bool FastMath = (FP && I->isCommutative() && I->isAssociative()); switch (I->getOpcode()) { default: return ReductionInstDesc(false, I); case Instruction::PHI: if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax)) return ReductionInstDesc(false, I); return ReductionInstDesc(I, Prev.MinMaxKind); case Instruction::Sub: case Instruction::Add: return ReductionInstDesc(Kind == RK_IntegerAdd, I); case Instruction::Mul: return ReductionInstDesc(Kind == RK_IntegerMult, I); case Instruction::And: return ReductionInstDesc(Kind == RK_IntegerAnd, I); case Instruction::Or: return ReductionInstDesc(Kind == RK_IntegerOr, I); case Instruction::Xor: return ReductionInstDesc(Kind == RK_IntegerXor, I); case Instruction::FMul: return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); case Instruction::FAdd: return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: if (Kind != RK_IntegerMinMax && (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) return ReductionInstDesc(false, I); return isMinMaxSelectCmpPattern(I, Prev); } } LoopVectorizationLegality::InductionKind LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return IK_NoInduction; // Check that the PHI is consecutive. const SCEV *PhiScev = SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return IK_NoInduction; } const SCEV *Step = AR->getStepRecurrence(*SE); // Integer inductions need to have a stride of one. if (PhiTy->isIntegerTy()) { if (Step->isOne()) return IK_IntInduction; if (Step->isAllOnesValue()) return IK_ReverseIntInduction; return IK_NoInduction; } // Calculate the pointer stride and check if it is consecutive. const SCEVConstant *C = dyn_cast(Step); if (!C) return IK_NoInduction; assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); if (C->getValue()->equalsInt(Size)) return IK_PtrInduction; else if (C->getValue()->equalsInt(0 - Size)) return IK_ReversePtrInduction; return IK_NoInduction; } bool LoopVectorizationLegality::isInductionVariable(const Value *V) { Value *In0 = const_cast(V); PHINode *PN = dyn_cast_or_null(In0); if (!PN) return false; return Inductions.count(PN); } bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { assert(TheLoop->contains(BB) && "Unknown block used"); // Blocks that do not dominate the latch need predication. BasicBlock* Latch = TheLoop->getLoopLatch(); return !DT->dominates(BB, Latch); } bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) { for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { // We don't predicate loads/stores at the moment. if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow()) return false; // The instructions below can trap. switch (it->getOpcode()) { default: continue; case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: return false; } } return true; } bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) { const SCEV *PhiScev = SE->getSCEV(Ptr); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) return false; return AR->isAffine(); } LoopVectorizationCostModel::VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, unsigned UserVF) { // Width 1 means no vectorize VectorizationFactor Factor = { 1U, 0U }; if (OptForSize && Legal->getRuntimePointerCheck()->Need) { DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); return Factor; } // Find the trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); DEBUG(dbgs() << "LV: Found trip count:"<block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { BasicBlock *BB = *bb; // For each instruction in the loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { Type *T = it->getType(); // Only examine Loads, Stores and PHINodes. if (!isa(it) && !isa(it) && !isa(it)) continue; // Examine PHI nodes that are reduction variables. if (PHINode *PN = dyn_cast(it)) if (!Legal->getReductionVars()->count(PN)) continue; // Examine the stored values. if (StoreInst *ST = dyn_cast(it)) T = ST->getValueOperand()->getType(); // Ignore loaded pointer types and stored pointer types that are not // consecutive. However, we do want to take consecutive stores/loads of // pointer vectors into account. if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) continue; MaxWidth = std::max(MaxWidth, (unsigned)DL->getTypeSizeInBits(T->getScalarType())); } } return MaxWidth; } unsigned LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, unsigned LoopCost) { // -- The unroll heuristics -- // We unroll the loop in order to expose ILP and reduce the loop overhead. // There are many micro-architectural considerations that we can't predict // at this level. For example frontend pressure (on decode or fetch) due to // code size, or the number and capabilities of the execution ports. // // We use the following heuristics to select the unroll factor: // 1. If the code has reductions the we unroll in order to break the cross // iteration dependency. // 2. If the loop is really small then we unroll in order to reduce the loop // overhead. // 3. We don't unroll if we think that we will spill registers to memory due // to the increased register pressure. // Use the user preference, unless 'auto' is selected. if (UserUF != 0) return UserUF; // When we optimize for size we don't unroll. if (OptForSize) return 1; // Do not unroll loops with a relatively small trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); if (TC > 1 && TC < TinyTripCountUnrollThreshold) return 1; unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true); DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters << " vector registers\n"); LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); // We divide by these constants so assume that we have at least one // instruction that uses at least one register. R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); R.NumInstructions = std::max(R.NumInstructions, 1U); // We calculate the unroll factor using the following formula. // Subtract the number of loop invariants from the number of available // registers. These registers are used by all of the unrolled instances. // Next, divide the remaining registers by the number of registers that is // required by the loop, in order to estimate how many parallel instances // fit without causing spills. unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers; // Clamp the unroll factor ranges to reasonable factors. unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); // If we did not calculate the cost for VF (because the user selected the VF) // then we calculate the cost of VF here. if (LoopCost == 0) LoopCost = expectedCost(VF); // Clamp the calculated UF to be between the 1 and the max unroll factor // that the target allows. if (UF > MaxUnrollSize) UF = MaxUnrollSize; else if (UF < 1) UF = 1; if (Legal->getReductionVars()->size()) { DEBUG(dbgs() << "LV: Unrolling because of reductions. \n"); return UF; } // We want to unroll tiny loops in order to reduce the loop overhead. // We assume that the cost overhead is 1 and we use the cost model // to estimate the cost of the loop and unroll until the cost of the // loop overhead is about 5% of the cost of the loop. DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n"); if (LoopCost < 20) { DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n"); unsigned NewUF = 20/LoopCost + 1; return std::min(NewUF, UF); } DEBUG(dbgs() << "LV: Not Unrolling. \n"); return 1; } LoopVectorizationCostModel::RegisterUsage LoopVectorizationCostModel::calculateRegisterUsage() { // This function calculates the register usage by measuring the highest number // of values that are alive at a single location. Obviously, this is a very // rough estimation. We scan the loop in a topological order in order and // assign a number to each instruction. We use RPO to ensure that defs are // met before their users. We assume that each instruction that has in-loop // users starts an interval. We record every time that an in-loop value is // used, so we have a list of the first and last occurrences of each // instruction. Next, we transpose this data structure into a multi map that // holds the list of intervals that *end* at a specific location. This multi // map allows us to perform a linear search. We scan the instructions linearly // and record each time that a new interval starts, by placing it in a set. // If we find this value in the multi-map then we remove it from the set. // The max register usage is the maximum size of the set. // We also search for instructions that are defined outside the loop, but are // used inside the loop. We need this number separately from the max-interval // usage number because when we unroll, loop-invariant values do not take // more register. LoopBlocksDFS DFS(TheLoop); DFS.perform(LI); RegisterUsage R; R.NumInstructions = 0; // Each 'key' in the map opens a new interval. The values // of the map are the index of the 'last seen' usage of the // instruction that is the key. typedef DenseMap IntervalMap; // Maps instruction to its index. DenseMap IdxToInstr; // Marks the end of each interval. IntervalMap EndPoint; // Saves the list of instruction indices that are used in the loop. SmallSet Ends; // Saves the list of values that are used in the loop but are // defined outside the loop, such as arguments and constants. SmallPtrSet LoopInvariants; unsigned Index = 0; for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); bb != be; ++bb) { R.NumInstructions += (*bb)->size(); for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { Instruction *I = it; IdxToInstr[Index++] = I; // Save the end location of each USE. for (unsigned i = 0; i < I->getNumOperands(); ++i) { Value *U = I->getOperand(i); Instruction *Instr = dyn_cast(U); // Ignore non-instruction values such as arguments, constants, etc. if (!Instr) continue; // If this instruction is outside the loop then record it and continue. if (!TheLoop->contains(Instr)) { LoopInvariants.insert(Instr); continue; } // Overwrite previous end points. EndPoint[Instr] = Index; Ends.insert(Instr); } } } // Saves the list of intervals that end with the index in 'key'. typedef SmallVector InstrList; DenseMap TransposeEnds; // Transpose the EndPoints to a list of values that end at each index. for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; ++it) TransposeEnds[it->second].push_back(it->first); SmallSet OpenIntervals; unsigned MaxUsage = 0; DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); for (unsigned int i = 0; i < Index; ++i) { Instruction *I = IdxToInstr[i]; // Ignore instructions that are never used within the loop. if (!Ends.count(I)) continue; // Remove all of the instructions that end at this location. InstrList &List = TransposeEnds[i]; for (unsigned int j=0, e = List.size(); j < e; ++j) OpenIntervals.erase(List[j]); // Count the number of live interals. MaxUsage = std::max(MaxUsage, OpenIntervals.size()); DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << OpenIntervals.size() <<"\n"); // Add the current instruction to the list of open intervals. OpenIntervals.insert(I); } unsigned Invariant = LoopInvariants.size(); DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n"); DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n"); DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n"); R.LoopInvariantRegs = Invariant; R.MaxLocalUsers = MaxUsage; return R; } unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { unsigned Cost = 0; // For each block. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { unsigned BlockCost = 0; BasicBlock *BB = *bb; // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { // Skip dbg intrinsics. if (isa(it)) continue; unsigned C = getInstructionCost(it, VF); Cost += C; DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " << VF << " For instruction: "<< *it << "\n"); } // We assume that if-converted blocks have a 50% chance of being executed. // When the code is scalar then some of the blocks are avoided due to CF. // When the code is vectorized we execute all code paths. if (Legal->blockNeedsPredication(*bb) && VF == 1) BlockCost /= 2; Cost += BlockCost; } return Cost; } unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { // If we know that this instruction will remain uniform, check the cost of // the scalar version. if (Legal->isUniformAfterVectorization(I)) VF = 1; Type *RetTy = I->getType(); Type *VectorTy = ToVectorTy(RetTy, VF); // TODO: We need to estimate the cost of intrinsic calls. switch (I->getOpcode()) { case Instruction::GetElementPtr: // We mark this instruction as zero-cost because the cost of GEPs in // vectorized code depends on whether the corresponding memory instruction // is scalarized or not. Therefore, we handle GEPs with the memory // instruction cost. return 0; case Instruction::Br: { return TTI.getCFInstrCost(I->getOpcode()); } case Instruction::PHI: //TODO: IF-converted IFs become selects. return 0; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Certain instructions can be cheaper to vectorize if they have a constant // second vector operand. One example of this are shifts on x86. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_AnyValue; if (isa(I->getOperand(1))) Op2VK = TargetTransformInfo::OK_UniformConstantValue; return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); } case Instruction::Select: { SelectInst *SI = cast(I); const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); Type *CondTy = SI->getCondition()->getType(); if (!ScalarCond) CondTy = VectorType::get(CondTy, VF); return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); } case Instruction::ICmp: case Instruction::FCmp: { Type *ValTy = I->getOperand(0)->getType(); VectorTy = ToVectorTy(ValTy, VF); return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); } case Instruction::Store: case Instruction::Load: { StoreInst *SI = dyn_cast(I); LoadInst *LI = dyn_cast(I); Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); VectorTy = ToVectorTy(ValTy, VF); unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); unsigned AS = SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); // We add the cost of address computation here instead of with the gep // instruction because only here we know whether the operation is // scalarized. if (VF == 1) return TTI.getAddressComputationCost(VectorTy) + TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); // Scalarized loads/stores. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool Reverse = ConsecutiveStride < 0; unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { unsigned Cost = 0; // The cost of extracting from the value vector and pointer vector. Type *PtrTy = ToVectorTy(Ptr->getType(), VF); for (unsigned i = 0; i < VF; ++i) { // The cost of extracting the pointer operand. Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); // In case of STORE, the cost of ExtractElement from the vector. // In case of LOAD, the cost of InsertElement into the returned // vector. Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : Instruction::InsertElement, VectorTy, i); } // The cost of the scalar loads/stores. Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType()); Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, AS); return Cost; } // Wide load/stores. unsigned Cost = TTI.getAddressComputationCost(VectorTy); Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); if (Reverse) Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); return Cost; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { // We optimize the truncation of induction variable. // The cost of these is the same as the scalar operation. if (I->getOpcode() == Instruction::Trunc && Legal->isInductionVariable(I->getOperand(0))) return TTI.getCastInstrCost(I->getOpcode(), I->getType(), I->getOperand(0)->getType()); Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); } case Instruction::Call: { CallInst *CI = cast(I); Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); assert(ID && "Not an intrinsic call!"); Type *RetTy = ToVectorTy(CI->getType(), VF); SmallVector Tys; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); } default: { // We are scalarizing the instruction. Return the cost of the scalar // instruction, plus the cost of insert and extract into vector // elements, times the vector width. unsigned Cost = 0; if (!RetTy->isVoidTy() && VF != 1) { unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); // The cost of inserting the results plus extracting each one of the // operands. Cost += VF * (InsCost + ExtCost * I->getNumOperands()); } // The cost of executing VF copies of the scalar instruction. This opcode // is unknown. Assume that it is the same as 'mul'. Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); return Cost; } }// end of switch. } Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { if (Scalar->isVoidTy() || VF == 1) return Scalar; return VectorType::get(Scalar, VF); } char LoopVectorize::ID = 0; static const char lv_name[] = "Loop Vectorization"; INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) namespace llvm { Pass *createLoopVectorizePass() { return new LoopVectorize(); } } bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { // Check for a store. if (StoreInst *ST = dyn_cast(Inst)) return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; // Check for a load. if (LoadInst *LI = dyn_cast(Inst)) return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; return false; }