//===-- PTXAsmPrinter.cpp - PTX LLVM assembly writer ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PTX assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ptx-asm-printer" #include "PTX.h" #include "PTXMachineFunctionInfo.h" #include "PTXTargetMachine.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class PTXAsmPrinter : public AsmPrinter { public: explicit PTXAsmPrinter(TargetMachine &TM, MCStreamer &Streamer) : AsmPrinter(TM, Streamer) {} const char *getPassName() const { return "PTX Assembly Printer"; } bool doFinalization(Module &M); virtual void EmitStartOfAsmFile(Module &M); virtual bool runOnMachineFunction(MachineFunction &MF); virtual void EmitFunctionBodyStart(); virtual void EmitFunctionBodyEnd() { OutStreamer.EmitRawText(Twine("}")); } virtual void EmitInstruction(const MachineInstr *MI); void printOperand(const MachineInstr *MI, int opNum, raw_ostream &OS); void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &OS, const char *Modifier = 0); void printParamOperand(const MachineInstr *MI, int opNum, raw_ostream &OS, const char *Modifier = 0); void printPredicateOperand(const MachineInstr *MI, raw_ostream &O); // autogen'd. void printInstruction(const MachineInstr *MI, raw_ostream &OS); static const char *getRegisterName(unsigned RegNo); private: void EmitVariableDeclaration(const GlobalVariable *gv); void EmitFunctionDeclaration(); }; // class PTXAsmPrinter } // namespace static const char PARAM_PREFIX[] = "__param_"; static const char *getRegisterTypeName(unsigned RegNo) { #define TEST_REGCLS(cls, clsstr) \ if (PTX::cls ## RegisterClass->contains(RegNo)) return # clsstr; TEST_REGCLS(Preds, pred); TEST_REGCLS(RRegu16, u16); TEST_REGCLS(RRegu32, u32); TEST_REGCLS(RRegu64, u64); TEST_REGCLS(RRegf32, f32); TEST_REGCLS(RRegf64, f64); #undef TEST_REGCLS llvm_unreachable("Not in any register class!"); return NULL; } static const char *getStateSpaceName(unsigned addressSpace) { switch (addressSpace) { default: llvm_unreachable("Unknown state space"); case PTX::GLOBAL: return "global"; case PTX::CONSTANT: return "const"; case PTX::LOCAL: return "local"; case PTX::PARAMETER: return "param"; case PTX::SHARED: return "shared"; } return NULL; } static const char *getTypeName(const Type* type) { while (true) { switch (type->getTypeID()) { default: llvm_unreachable("Unknown type"); case Type::FloatTyID: return ".f32"; case Type::DoubleTyID: return ".f64"; case Type::IntegerTyID: switch (type->getPrimitiveSizeInBits()) { default: llvm_unreachable("Unknown integer bit-width"); case 16: return ".u16"; case 32: return ".u32"; case 64: return ".u64"; } case Type::ArrayTyID: case Type::PointerTyID: type = dyn_cast(type)->getElementType(); break; } } return NULL; } bool PTXAsmPrinter::doFinalization(Module &M) { // XXX Temproarily remove global variables so that doFinalization() will not // emit them again (global variables are emitted at beginning). Module::GlobalListType &global_list = M.getGlobalList(); int i, n = global_list.size(); GlobalVariable **gv_array = new GlobalVariable* [n]; // first, back-up GlobalVariable in gv_array i = 0; for (Module::global_iterator I = global_list.begin(), E = global_list.end(); I != E; ++I) gv_array[i++] = &*I; // second, empty global_list while (!global_list.empty()) global_list.remove(global_list.begin()); // call doFinalization bool ret = AsmPrinter::doFinalization(M); // now we restore global variables for (i = 0; i < n; i ++) global_list.insert(global_list.end(), gv_array[i]); delete[] gv_array; return ret; } void PTXAsmPrinter::EmitStartOfAsmFile(Module &M) { const PTXSubtarget& ST = TM.getSubtarget(); OutStreamer.EmitRawText(Twine("\t.version " + ST.getPTXVersionString())); OutStreamer.EmitRawText(Twine("\t.target " + ST.getTargetString() + (ST.supportsDouble() ? "" : ", map_f64_to_f32"))); OutStreamer.AddBlankLine(); // declare global variables for (Module::const_global_iterator i = M.global_begin(), e = M.global_end(); i != e; ++i) EmitVariableDeclaration(i); } bool PTXAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); EmitFunctionDeclaration(); EmitFunctionBody(); return false; } void PTXAsmPrinter::EmitFunctionBodyStart() { OutStreamer.EmitRawText(Twine("{")); const PTXMachineFunctionInfo *MFI = MF->getInfo(); // Print local variable definition for (PTXMachineFunctionInfo::reg_iterator i = MFI->localVarRegBegin(), e = MFI->localVarRegEnd(); i != e; ++ i) { unsigned reg = *i; std::string def = "\t.reg ."; def += getRegisterTypeName(reg); def += ' '; def += getRegisterName(reg); def += ';'; OutStreamer.EmitRawText(Twine(def)); } } void PTXAsmPrinter::EmitInstruction(const MachineInstr *MI) { std::string str; str.reserve(64); raw_string_ostream OS(str); // Emit predicate printPredicateOperand(MI, OS); // Write instruction to str printInstruction(MI, OS); OS << ';'; OS.flush(); StringRef strref = StringRef(str); OutStreamer.EmitRawText(strref); } void PTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum, raw_ostream &OS) { const MachineOperand &MO = MI->getOperand(opNum); switch (MO.getType()) { default: llvm_unreachable(""); break; case MachineOperand::MO_GlobalAddress: OS << *Mang->getSymbol(MO.getGlobal()); break; case MachineOperand::MO_Immediate: OS << (long) MO.getImm(); break; case MachineOperand::MO_MachineBasicBlock: OS << *MO.getMBB()->getSymbol(); break; case MachineOperand::MO_Register: OS << getRegisterName(MO.getReg()); break; case MachineOperand::MO_FPImmediate: APInt constFP = MO.getFPImm()->getValueAPF().bitcastToAPInt(); bool isFloat = MO.getFPImm()->getType()->getTypeID() == Type::FloatTyID; // Emit 0F for 32-bit floats and 0D for 64-bit doubles. if (isFloat) { OS << "0F"; } else { OS << "0D"; } // Emit the encoded floating-point value. if (constFP.getZExtValue() > 0) { OS << constFP.toString(16, false); } else { OS << "00000000"; // If We have a double-precision zero, pad to 8-bytes. if (!isFloat) { OS << "00000000"; } } break; } } void PTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &OS, const char *Modifier) { printOperand(MI, opNum, OS); if (MI->getOperand(opNum+1).isImm() && MI->getOperand(opNum+1).getImm() == 0) return; // don't print "+0" OS << "+"; printOperand(MI, opNum+1, OS); } void PTXAsmPrinter::printParamOperand(const MachineInstr *MI, int opNum, raw_ostream &OS, const char *Modifier) { OS << PARAM_PREFIX << (int) MI->getOperand(opNum).getImm() + 1; } void PTXAsmPrinter::EmitVariableDeclaration(const GlobalVariable *gv) { // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(gv)) return; MCSymbol *gvsym = Mang->getSymbol(gv); assert(gvsym->isUndefined() && "Cannot define a symbol twice!"); std::string decl; // check if it is defined in some other translation unit if (gv->isDeclaration()) decl += ".extern "; // state space: e.g., .global decl += "."; decl += getStateSpaceName(gv->getType()->getAddressSpace()); decl += " "; // alignment (optional) unsigned alignment = gv->getAlignment(); if (alignment != 0) { decl += ".align "; decl += utostr(Log2_32(gv->getAlignment())); decl += " "; } if (PointerType::classof(gv->getType())) { const PointerType* pointerTy = dyn_cast(gv->getType()); const Type* elementTy = pointerTy->getElementType(); decl += ".b8 "; decl += gvsym->getName(); decl += "["; if (elementTy->isArrayTy()) { assert(elementTy->isArrayTy() && "Only pointers to arrays are supported"); const ArrayType* arrayTy = dyn_cast(elementTy); elementTy = arrayTy->getElementType(); unsigned numElements = arrayTy->getNumElements(); while (elementTy->isArrayTy()) { arrayTy = dyn_cast(elementTy); elementTy = arrayTy->getElementType(); numElements *= arrayTy->getNumElements(); } // FIXME: isPrimitiveType() == false for i16? assert(elementTy->isSingleValueType() && "Non-primitive types are not handled"); // Compute the size of the array, in bytes. uint64_t arraySize = (elementTy->getPrimitiveSizeInBits() >> 3) * numElements; decl += utostr(arraySize); } decl += "]"; // handle string constants (assume ConstantArray means string) if (gv->hasInitializer()) { Constant *C = gv->getInitializer(); if (const ConstantArray *CA = dyn_cast(C)) { decl += " = {"; for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { if (i > 0) decl += ","; decl += "0x" + utohexstr(cast(CA->getOperand(i))->getZExtValue()); } decl += "}"; } } } else { // Note: this is currently the fall-through case and most likely generates // incorrect code. decl += getTypeName(gv->getType()); decl += " "; decl += gvsym->getName(); if (ArrayType::classof(gv->getType()) || PointerType::classof(gv->getType())) decl += "[]"; } decl += ";"; OutStreamer.EmitRawText(Twine(decl)); OutStreamer.AddBlankLine(); } void PTXAsmPrinter::EmitFunctionDeclaration() { // The function label could have already been emitted if two symbols end up // conflicting due to asm renaming. Detect this and emit an error. if (!CurrentFnSym->isUndefined()) { report_fatal_error("'" + Twine(CurrentFnSym->getName()) + "' label emitted multiple times to assembly file"); return; } const PTXMachineFunctionInfo *MFI = MF->getInfo(); const bool isKernel = MFI->isKernel(); unsigned reg; std::string decl = isKernel ? ".entry" : ".func"; // Print return register reg = MFI->retReg(); if (!isKernel && reg != PTX::NoRegister) { decl += " (.reg ."; // FIXME: could it return in .param space? decl += getRegisterTypeName(reg); decl += " "; decl += getRegisterName(reg); decl += ")"; } // Print function name decl += " "; decl += CurrentFnSym->getName().str(); // Print parameter list if (!MFI->argRegEmpty()) { decl += " ("; if (isKernel) { unsigned cnt = 0; for(PTXMachineFunctionInfo::reg_iterator i = MFI->argRegBegin(), e = MFI->argRegEnd(), b = i; i != e; ++i) { reg = *i; assert(reg != PTX::NoRegister && "Not a valid register!"); if (i != b) decl += ", "; decl += ".param ."; decl += getRegisterTypeName(reg); decl += " "; decl += PARAM_PREFIX; decl += utostr(++cnt); } } else { for (PTXMachineFunctionInfo::reg_iterator i = MFI->argRegBegin(), e = MFI->argRegEnd(), b = i; i != e; ++i) { reg = *i; assert(reg != PTX::NoRegister && "Not a valid register!"); if (i != b) decl += ", "; decl += ".reg ."; decl += getRegisterTypeName(reg); decl += " "; decl += getRegisterName(reg); } } decl += ")"; } OutStreamer.EmitRawText(Twine(decl)); } void PTXAsmPrinter:: printPredicateOperand(const MachineInstr *MI, raw_ostream &O) { int i = MI->findFirstPredOperandIdx(); if (i == -1) llvm_unreachable("missing predicate operand"); unsigned reg = MI->getOperand(i).getReg(); int predOp = MI->getOperand(i+1).getImm(); DEBUG(dbgs() << "predicate: (" << reg << ", " << predOp << ")\n"); if (reg != PTX::NoRegister) { O << '@'; if (predOp == PTX::PRED_NEGATE) O << '!'; O << getRegisterName(reg); } } #include "PTXGenAsmWriter.inc" // Force static initialization. extern "C" void LLVMInitializePTXAsmPrinter() { RegisterAsmPrinter X(ThePTX32Target); RegisterAsmPrinter Y(ThePTX64Target); }