//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that splits the constant pool up into 'islands' // which are scattered through-out the function. This is required due to the // limited pc-relative displacements that ARM has. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-cp-islands" #include "ARM.h" #include "ARMMachineFunctionInfo.h" #include "ARMInstrInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumCPEs, "Number of constpool entries"); STATISTIC(NumSplit, "Number of uncond branches inserted"); STATISTIC(NumCBrFixed, "Number of cond branches fixed"); STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); namespace { /// ARMConstantIslands - Due to limited pc-relative displacements, ARM /// requires constant pool entries to be scattered among the instructions /// inside a function. To do this, it completely ignores the normal LLVM /// constant pool, instead, it places constants where-ever it feels like with /// special instructions. /// /// The terminology used in this pass includes: /// Islands - Clumps of constants placed in the function. /// Water - Potential places where an island could be formed. /// CPE - A constant pool entry that has been placed somewhere, which /// tracks a list of users. class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass { /// NextUID - Assign unique ID's to CPE's. unsigned NextUID; /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed /// by MBB Number. std::vector BBSizes; /// WaterList - A sorted list of basic blocks where islands could be placed /// (i.e. blocks that don't fall through to the following block, due /// to a return, unreachable, or unconditional branch). std::vector WaterList; /// CPUser - One user of a constant pool, keeping the machine instruction /// pointer, the constant pool being referenced, and the max displacement /// allowed from the instruction to the CP. struct CPUser { MachineInstr *MI; MachineInstr *CPEMI; unsigned MaxDisp; CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp) : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {} }; /// CPUsers - Keep track of all of the machine instructions that use various /// constant pools and their max displacement. std::vector CPUsers; /// CPEntry - One per constant pool entry, keeping the machine instruction /// pointer, the constpool index, and the number of CPUser's which /// reference this entry. struct CPEntry { MachineInstr *CPEMI; unsigned CPI; unsigned RefCount; CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} }; /// CPEntries - Keep track of all of the constant pool entry machine /// instructions. For each constpool index, it keeps a vector of entries. std::vector > CPEntries; /// ImmBranch - One per immediate branch, keeping the machine instruction /// pointer, conditional or unconditional, the max displacement, /// and (if isCond is true) the corresponding unconditional branch /// opcode. struct ImmBranch { MachineInstr *MI; unsigned MaxDisp : 31; bool isCond : 1; int UncondBr; ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} }; /// Branches - Keep track of all the immediate branch instructions. /// std::vector ImmBranches; /// PushPopMIs - Keep track of all the Thumb push / pop instructions. /// SmallVector PushPopMIs; /// HasFarJump - True if any far jump instruction has been emitted during /// the branch fix up pass. bool HasFarJump; const TargetInstrInfo *TII; const ARMFunctionInfo *AFI; public: virtual bool runOnMachineFunction(MachineFunction &Fn); virtual const char *getPassName() const { return "ARM constant island placement and branch shortening pass"; } private: void DoInitialPlacement(MachineFunction &Fn, std::vector &CPEMIs); CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); void InitialFunctionScan(MachineFunction &Fn, const std::vector &CPEMIs); MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U); bool CPEIsInRange(MachineInstr *MI, MachineInstr *CPEMI, unsigned Disp); bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); bool FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br); bool FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br); bool FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br); bool UndoLRSpillRestore(); unsigned GetOffsetOf(MachineInstr *MI) const; unsigned GetOffsetOf(MachineBasicBlock *MBB) const; }; } /// createARMConstantIslandPass - returns an instance of the constpool /// island pass. FunctionPass *llvm::createARMConstantIslandPass() { return new ARMConstantIslands(); } bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) { MachineConstantPool &MCP = *Fn.getConstantPool(); TII = Fn.getTarget().getInstrInfo(); AFI = Fn.getInfo(); HasFarJump = false; // Renumber all of the machine basic blocks in the function, guaranteeing that // the numbers agree with the position of the block in the function. Fn.RenumberBlocks(); // Perform the initial placement of the constant pool entries. To start with, // we put them all at the end of the function. std::vector CPEMIs; if (!MCP.isEmpty()) DoInitialPlacement(Fn, CPEMIs); /// The next UID to take is the first unused one. NextUID = CPEMIs.size(); // Do the initial scan of the function, building up information about the // sizes of each block, the location of all the water, and finding all of the // constant pool users. InitialFunctionScan(Fn, CPEMIs); CPEMIs.clear(); // Iteratively place constant pool entries and fix up branches until there // is no change. bool MadeChange = false; while (true) { bool Change = false; for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) Change |= HandleConstantPoolUser(Fn, CPUsers[i]); for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) Change |= FixUpImmediateBr(Fn, ImmBranches[i]); if (!Change) break; MadeChange = true; } // If LR has been forced spilled and no far jumps (i.e. BL) has been issued. // Undo the spill / restore of LR if possible. if (!HasFarJump && AFI->isLRForceSpilled() && AFI->isThumbFunction()) MadeChange |= UndoLRSpillRestore(); BBSizes.clear(); WaterList.clear(); CPUsers.clear(); CPEntries.clear(); ImmBranches.clear(); PushPopMIs.clear(); return MadeChange; } /// DoInitialPlacement - Perform the initial placement of the constant pool /// entries. To start with, we put them all at the end of the function. void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn, std::vector &CPEMIs){ // Create the basic block to hold the CPE's. MachineBasicBlock *BB = new MachineBasicBlock(); Fn.getBasicBlockList().push_back(BB); // Add all of the constants from the constant pool to the end block, use an // identity mapping of CPI's to CPE's. const std::vector &CPs = Fn.getConstantPool()->getConstants(); const TargetData &TD = *Fn.getTarget().getTargetData(); for (unsigned i = 0, e = CPs.size(); i != e; ++i) { unsigned Size = TD.getTypeSize(CPs[i].getType()); // Verify that all constant pool entries are a multiple of 4 bytes. If not, // we would have to pad them out or something so that instructions stay // aligned. assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); MachineInstr *CPEMI = BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY)) .addImm(i).addConstantPoolIndex(i).addImm(Size); CPEMIs.push_back(CPEMI); // Add a new CPEntry, but no corresponding CPUser yet. std::vector CPEs; CPEs.push_back(CPEntry(CPEMI, i)); CPEntries.push_back(CPEs); NumCPEs++; DOUT << "Moved CPI#" << i << " to end of function as #" << i << "\n"; } } /// BBHasFallthrough - Return true of the specified basic block can fallthrough /// into the block immediately after it. static bool BBHasFallthrough(MachineBasicBlock *MBB) { // Get the next machine basic block in the function. MachineFunction::iterator MBBI = MBB; if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function. return false; MachineBasicBlock *NextBB = next(MBBI); for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) if (*I == NextBB) return true; return false; } /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, /// look up the corresponding CPEntry. ARMConstantIslands::CPEntry *ARMConstantIslands::findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI) { std::vector &CPEs = CPEntries[CPI]; // Number of entries per constpool index should be small, just do a // linear search. for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { if (CPEs[i].CPEMI == CPEMI) return &CPEs[i]; } return NULL; } /// InitialFunctionScan - Do the initial scan of the function, building up /// information about the sizes of each block, the location of all the water, /// and finding all of the constant pool users. void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn, const std::vector &CPEMIs) { for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end(); MBBI != E; ++MBBI) { MachineBasicBlock &MBB = *MBBI; // If this block doesn't fall through into the next MBB, then this is // 'water' that a constant pool island could be placed. if (!BBHasFallthrough(&MBB)) WaterList.push_back(&MBB); unsigned MBBSize = 0; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { // Add instruction size to MBBSize. MBBSize += ARM::GetInstSize(I); int Opc = I->getOpcode(); if (TII->isBranch(Opc)) { bool isCond = false; unsigned Bits = 0; unsigned Scale = 1; int UOpc = Opc; switch (Opc) { default: continue; // Ignore JT branches case ARM::Bcc: isCond = true; UOpc = ARM::B; // Fallthrough case ARM::B: Bits = 24; Scale = 4; break; case ARM::tBcc: isCond = true; UOpc = ARM::tB; Bits = 8; Scale = 2; break; case ARM::tB: Bits = 11; Scale = 2; break; } // Record this immediate branch. unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); } if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) PushPopMIs.push_back(I); // Scan the instructions for constant pool operands. for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (I->getOperand(op).isConstantPoolIndex()) { // We found one. The addressing mode tells us the max displacement // from the PC that this instruction permits. // Basic size info comes from the TSFlags field. unsigned Bits = 0; unsigned Scale = 1; unsigned TSFlags = I->getInstrDescriptor()->TSFlags; switch (TSFlags & ARMII::AddrModeMask) { default: // Constant pool entries can reach anything. if (I->getOpcode() == ARM::CONSTPOOL_ENTRY) continue; assert(0 && "Unknown addressing mode for CP reference!"); case ARMII::AddrMode1: // AM1: 8 bits << 2 Bits = 8; Scale = 4; // Taking the address of a CP entry. break; case ARMII::AddrMode2: Bits = 12; // +-offset_12 break; case ARMII::AddrMode3: Bits = 8; // +-offset_8 break; // addrmode4 has no immediate offset. case ARMII::AddrMode5: Bits = 8; Scale = 4; // +-(offset_8*4) break; case ARMII::AddrModeT1: Bits = 5; // +offset_5 break; case ARMII::AddrModeT2: Bits = 5; Scale = 2; // +(offset_5*2) break; case ARMII::AddrModeT4: Bits = 5; Scale = 4; // +(offset_5*4) break; case ARMII::AddrModeTs: Bits = 8; Scale = 4; // +(offset_8*4) break; } // Remember that this is a user of a CP entry. unsigned CPI = I->getOperand(op).getConstantPoolIndex(); MachineInstr *CPEMI = CPEMIs[CPI]; unsigned MaxOffs = ((1 << Bits)-1) * Scale; CPUsers.push_back(CPUser(I, CPEMI, MaxOffs)); // Increment corresponding CPEntry reference count. CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); assert(CPE && "Cannot find a corresponding CPEntry!"); CPE->RefCount++; // Instructions can only use one CP entry, don't bother scanning the // rest of the operands. break; } } // In thumb mode, if this block is a constpool island, pessmisticly assume // it needs to be padded by two byte so it's aligned on 4 byte boundary. if (AFI->isThumbFunction() && !MBB.empty() && MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) MBBSize += 2; BBSizes.push_back(MBBSize); } } /// GetOffsetOf - Return the current offset of the specified machine instruction /// from the start of the function. This offset changes as stuff is moved /// around inside the function. unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { MachineBasicBlock *MBB = MI->getParent(); // The offset is composed of two things: the sum of the sizes of all MBB's // before this instruction's block, and the offset from the start of the block // it is in. unsigned Offset = 0; // Sum block sizes before MBB. for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB) Offset += BBSizes[BB]; // Sum instructions before MI in MBB. for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { assert(I != MBB->end() && "Didn't find MI in its own basic block?"); if (&*I == MI) return Offset; Offset += ARM::GetInstSize(I); } } /// GetOffsetOf - Return the current offset of the specified machine BB /// from the start of the function. This offset changes as stuff is moved /// around inside the function. unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const { // Sum block sizes before MBB. unsigned Offset = 0; for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB) Offset += BBSizes[BB]; return Offset; } /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB /// ID. static bool CompareMBBNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS) { return LHS->getNumber() < RHS->getNumber(); } /// UpdateForInsertedWaterBlock - When a block is newly inserted into the /// machine function, it upsets all of the block numbers. Renumber the blocks /// and update the arrays that parallel this numbering. void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { // Renumber the MBB's to keep them consequtive. NewBB->getParent()->RenumberBlocks(NewBB); // Insert a size into BBSizes to align it properly with the (newly // renumbered) block numbers. BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); // Next, update WaterList. Specifically, we need to add NewMBB as having // available water after it. std::vector::iterator IP = std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, CompareMBBNumbers); WaterList.insert(IP, NewBB); } /// Split the basic block containing MI into two blocks, which are joined by /// an unconditional branch. Update datastructures and renumber blocks to /// account for this change and returns the newly created block. MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { MachineBasicBlock *OrigBB = MI->getParent(); bool isThumb = AFI->isThumbFunction(); // Create a new MBB for the code after the OrigBB. MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock()); MachineFunction::iterator MBBI = OrigBB; ++MBBI; OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB); // Splice the instructions starting with MI over to NewBB. NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); // Add an unconditional branch from OrigBB to NewBB. // Note the new unconditional branch is not being recorded. BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB); NumSplit++; // Update the CFG. All succs of OrigBB are now succs of NewBB. while (!OrigBB->succ_empty()) { MachineBasicBlock *Succ = *OrigBB->succ_begin(); OrigBB->removeSuccessor(Succ); NewBB->addSuccessor(Succ); // This pass should be run after register allocation, so there should be no // PHI nodes to update. assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI) && "PHI nodes should be eliminated by now!"); } // OrigBB branches to NewBB. OrigBB->addSuccessor(NewBB); // Update internal data structures to account for the newly inserted MBB. UpdateForInsertedWaterBlock(NewBB); // Figure out how large the first NewMBB is. unsigned NewBBSize = 0; for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); I != E; ++I) NewBBSize += ARM::GetInstSize(I); // Set the size of NewBB in BBSizes. BBSizes[NewBB->getNumber()] = NewBBSize; // We removed instructions from UserMBB, subtract that off from its size. // Add 2 or 4 to the block to count the unconditional branch we added to it. BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4); return NewBB; } /// CPEIsInRange - Returns true is the distance between specific MI and /// specific ConstPool entry instruction can fit in MI's displacement field. bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, MachineInstr *CPEMI, unsigned MaxDisp) { unsigned PCAdj = AFI->isThumbFunction() ? 4 : 8; unsigned UserOffset = GetOffsetOf(MI) + PCAdj; // In thumb mode, pessmisticly assumes the .align 2 before the first CPE // in the island adds two byte padding. unsigned AlignAdj = AFI->isThumbFunction() ? 2 : 0; unsigned CPEOffset = GetOffsetOf(CPEMI) + AlignAdj; DOUT << "User of CPE#" << CPEMI->getOperand(0).getImm() << " max delta=" << MaxDisp << " at offset " << int(CPEOffset-UserOffset) << "\t" << *MI; if (UserOffset <= CPEOffset) { // User before the CPE. if (CPEOffset-UserOffset <= MaxDisp) return true; } else if (!AFI->isThumbFunction()) { // Thumb LDR cannot encode negative offset. if (UserOffset-CPEOffset <= MaxDisp) return true; } return false; } /// BBIsJumpedOver - Return true of the specified basic block's only predecessor /// unconditionally branches to its only successor. static bool BBIsJumpedOver(MachineBasicBlock *MBB) { if (MBB->pred_size() != 1 || MBB->succ_size() != 1) return false; MachineBasicBlock *Succ = *MBB->succ_begin(); MachineBasicBlock *Pred = *MBB->pred_begin(); MachineInstr *PredMI = &Pred->back(); if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB) return PredMI->getOperand(0).getMBB() == Succ; return false; } /// HandleConstantPoolUser - Analyze the specified user, checking to see if it /// is out-of-range. If so, pick it up the constant pool value and move it some /// place in-range. bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){ MachineInstr *UserMI = U.MI; MachineInstr *CPEMI = U.CPEMI; // Check to see if the CPE is already in-range. if (CPEIsInRange(UserMI, CPEMI, U.MaxDisp)) return false; // Solution guaranteed to work: split the user's MBB right after the user and // insert a clone the CPE into the newly created water. MachineBasicBlock *UserMBB = UserMI->getParent(); MachineBasicBlock *NewMBB; // TODO: Search for the best place to split the code. In practice, using // loop nesting information to insert these guys outside of loops would be // sufficient. bool isThumb = AFI->isThumbFunction(); if (&UserMBB->back() == UserMI) { assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); NewMBB = next(MachineFunction::iterator(UserMBB)); // Add an unconditional branch from UserMBB to fallthrough block. // Note the new unconditional branch is not being recorded. BuildMI(UserMBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewMBB); BBSizes[UserMBB->getNumber()] += isThumb ? 2 : 4; } else { MachineInstr *NextMI = next(MachineBasicBlock::iterator(UserMI)); NewMBB = SplitBlockBeforeInstr(NextMI); } // Okay, we know we can put an island before UserMBB now, do it! MachineBasicBlock *NewIsland = new MachineBasicBlock(); Fn.getBasicBlockList().insert(NewMBB, NewIsland); // Update internal data structures to account for the newly inserted MBB. UpdateForInsertedWaterBlock(NewIsland); // Now that we have an island to add the CPE to, clone the original CPE and // add it to the island. unsigned ID = NextUID++; unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex(); unsigned Size = CPEMI->getOperand(2).getImm(); // Find the old entry. Eliminate it if it is no longer used. CPEntry *OldCPE = findConstPoolEntry(CPI, CPEMI); assert(OldCPE && "Unexpected!"); if (--OldCPE->RefCount == 0) { MachineBasicBlock *OldCPEBB = OldCPE->CPEMI->getParent(); if (OldCPEBB->empty()) { // In thumb mode, the size of island is padded by two to compensate for // the alignment requirement. BBSizes[OldCPEBB->getNumber()] = 0; // An island has only one predecessor BB and one successor BB. Check if // this BB's predecessor jumps directly to this BB's successor. This // shouldn't happen currently. assert(!BBIsJumpedOver(OldCPEBB) && "How did this happen?"); // FIXME: remove the empty blocks after all the work is done? } else BBSizes[OldCPEBB->getNumber()] -= Size; OldCPE->CPEMI->eraseFromParent(); OldCPE->CPEMI = NULL; NumCPEs--; } // Build a new CPE for this user. U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY)) .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); CPEntries[CPI].push_back(CPEntry(U.CPEMI, CPI, 1)); NumCPEs++; // Compensate for .align 2 in thumb mode. if (isThumb) Size += 2; // Increase the size of the island block to account for the new entry. BBSizes[NewIsland->getNumber()] += Size; // Finally, change the CPI in the instruction operand to be ID. for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) if (UserMI->getOperand(i).isConstantPoolIndex()) { UserMI->getOperand(i).setConstantPoolIndex(ID); break; } DOUT << " Moved CPE to #" << ID << " CPI=" << CPI << "\t" << *UserMI; return true; } /// BBIsInRange - Returns true is the distance between specific MI and /// specific BB can fit in MI's displacement field. bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { unsigned PCAdj = AFI->isThumbFunction() ? 4 : 8; unsigned BrOffset = GetOffsetOf(MI) + PCAdj; unsigned DestOffset = GetOffsetOf(DestBB); DOUT << "Branch of destination BB#" << DestBB->getNumber() << " from BB#" << MI->getParent()->getNumber() << " max delta=" << MaxDisp << " at offset " << int(DestOffset-BrOffset) << "\t" << *MI; if (BrOffset <= DestOffset) { if (DestOffset - BrOffset <= MaxDisp) return true; } else { if (BrOffset - DestOffset <= MaxDisp) return true; } return false; } /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far /// away to fit in its displacement field. bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &Fn, ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock(); // Check to see if the DestBB is already in-range. if (BBIsInRange(MI, DestBB, Br.MaxDisp)) return false; if (!Br.isCond) return FixUpUnconditionalBr(Fn, Br); return FixUpConditionalBr(Fn, Br); } /// FixUpUnconditionalBr - Fix up an unconditional branches whose destination is /// too far away to fit in its displacement field. If LR register ha been /// spilled in the epilogue, then we can use BL to implement a far jump. /// Otherwise, add a intermediate branch instruction to to a branch. bool ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &Fn, ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *MBB = MI->getParent(); assert(AFI->isThumbFunction() && "Expected a Thumb function!"); // Use BL to implement far jump. Br.MaxDisp = (1 << 21) * 2; MI->setInstrDescriptor(TII->get(ARM::tBfar)); BBSizes[MBB->getNumber()] += 2; HasFarJump = true; NumUBrFixed++; DOUT << " Changed B to long jump " << *MI; return true; } /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in the /// specific unconditional branch instruction. static inline unsigned getUnconditionalBrDisp(int Opc) { return (Opc == ARM::tB) ? (1<<10)*2 : (1<<23)*4; } /// FixUpConditionalBr - Fix up a conditional branches whose destination is too /// far away to fit in its displacement field. It is converted to an inverse /// conditional branch + an unconditional branch to the destination. bool ARMConstantIslands::FixUpConditionalBr(MachineFunction &Fn, ImmBranch &Br) { MachineInstr *MI = Br.MI; MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock(); // Add a unconditional branch to the destination and invert the branch // condition to jump over it: // blt L1 // => // bge L2 // b L1 // L2: ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue(); CC = ARMCC::getOppositeCondition(CC); // If the branch is at the end of its MBB and that has a fall-through block, // direct the updated conditional branch to the fall-through block. Otherwise, // split the MBB before the next instruction. MachineBasicBlock *MBB = MI->getParent(); MachineInstr *BMI = &MBB->back(); bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); NumCBrFixed++; if (BMI != MI) { if (next(MachineBasicBlock::iterator(MI)) == MBB->back() && BMI->getOpcode() == Br.UncondBr) { // Last MI in the BB is a unconditional branch. Can we simply invert the // condition and swap destinations: // beq L1 // b L2 // => // bne L2 // b L1 MachineBasicBlock *NewDest = BMI->getOperand(0).getMachineBasicBlock(); if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { DOUT << " Invert Bcc condition and swap its destination with " << *BMI; BMI->getOperand(0).setMachineBasicBlock(DestBB); MI->getOperand(0).setMachineBasicBlock(NewDest); MI->getOperand(1).setImm(CC); return true; } } } if (NeedSplit) { SplitBlockBeforeInstr(MI); // No need for the branch to the next block. We're adding a unconditional // branch to the destination. MBB->back().eraseFromParent(); } MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB)); DOUT << " Insert B to BB#" << DestBB->getNumber() << " also invert condition and change dest. to BB#" << NextBB->getNumber() << "\n"; // Insert a unconditional branch and replace the conditional branch. // Also update the ImmBranch as well as adding a new entry for the new branch. BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC); Br.MI = &MBB->back(); BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB); unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); MI->eraseFromParent(); // Increase the size of MBB to account for the new unconditional branch. BBSizes[MBB->getNumber()] += ARM::GetInstSize(&MBB->back()); return true; } /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills /// LR / restores LR to pc. bool ARMConstantIslands::UndoLRSpillRestore() { bool MadeChange = false; for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { MachineInstr *MI = PushPopMIs[i]; if (MI->getNumOperands() == 1) { if (MI->getOpcode() == ARM::tPOP_RET && MI->getOperand(0).getReg() == ARM::PC) BuildMI(MI->getParent(), TII->get(ARM::tBX_RET)); MI->eraseFromParent(); MadeChange = true; } } return MadeChange; }