//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The ScalarEvolution class is an LLVM pass which can be used to analyze and // catagorize scalar expressions in loops. It specializes in recognizing // general induction variables, representing them with the abstract and opaque // SCEV class. Given this analysis, trip counts of loops and other important // properties can be obtained. // // This analysis is primarily useful for induction variable substitution and // strength reduction. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H #define LLVM_ANALYSIS_SCALAREVOLUTION_H #include "llvm/Pass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/Allocator.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/DenseMap.h" #include namespace llvm { class APInt; class ConstantInt; class Type; class ScalarEvolution; class TargetData; /// SCEV - This class represents an analyzed expression in the program. These /// are opaque objects that the client is not allowed to do much with /// directly. /// class SCEV : public FoldingSetNode { const unsigned SCEVType; // The SCEV baseclass this node corresponds to SCEV(const SCEV &); // DO NOT IMPLEMENT void operator=(const SCEV &); // DO NOT IMPLEMENT protected: virtual ~SCEV(); public: explicit SCEV(unsigned SCEVTy) : SCEVType(SCEVTy) {} virtual void Profile(FoldingSetNodeID &ID) const = 0; unsigned getSCEVType() const { return SCEVType; } /// isLoopInvariant - Return true if the value of this SCEV is unchanging in /// the specified loop. virtual bool isLoopInvariant(const Loop *L) const = 0; /// hasComputableLoopEvolution - Return true if this SCEV changes value in a /// known way in the specified loop. This property being true implies that /// the value is variant in the loop AND that we can emit an expression to /// compute the value of the expression at any particular loop iteration. virtual bool hasComputableLoopEvolution(const Loop *L) const = 0; /// getType - Return the LLVM type of this SCEV expression. /// virtual const Type *getType() const = 0; /// isZero - Return true if the expression is a constant zero. /// bool isZero() const; /// isOne - Return true if the expression is a constant one. /// bool isOne() const; /// isAllOnesValue - Return true if the expression is a constant /// all-ones value. /// bool isAllOnesValue() const; /// replaceSymbolicValuesWithConcrete - If this SCEV internally references /// the symbolic value "Sym", construct and return a new SCEV that produces /// the same value, but which uses the concrete value Conc instead of the /// symbolic value. If this SCEV does not use the symbolic value, it /// returns itself. virtual const SCEV* replaceSymbolicValuesWithConcrete(const SCEV* Sym, const SCEV* Conc, ScalarEvolution &SE) const = 0; /// dominates - Return true if elements that makes up this SCEV dominates /// the specified basic block. virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0; /// print - Print out the internal representation of this scalar to the /// specified stream. This should really only be used for debugging /// purposes. virtual void print(raw_ostream &OS) const = 0; void print(std::ostream &OS) const; void print(std::ostream *OS) const { if (OS) print(*OS); } /// dump - This method is used for debugging. /// void dump() const; }; inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { S.print(OS); return OS; } inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) { S.print(OS); return OS; } /// SCEVCouldNotCompute - An object of this class is returned by queries that /// could not be answered. For example, if you ask for the number of /// iterations of a linked-list traversal loop, you will get one of these. /// None of the standard SCEV operations are valid on this class, it is just a /// marker. struct SCEVCouldNotCompute : public SCEV { SCEVCouldNotCompute(); // None of these methods are valid for this object. virtual void Profile(FoldingSetNodeID &ID) const; virtual bool isLoopInvariant(const Loop *L) const; virtual const Type *getType() const; virtual bool hasComputableLoopEvolution(const Loop *L) const; virtual void print(raw_ostream &OS) const; virtual const SCEV* replaceSymbolicValuesWithConcrete(const SCEV* Sym, const SCEV* Conc, ScalarEvolution &SE) const; virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const { return true; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEVCouldNotCompute *S) { return true; } static bool classof(const SCEV *S); }; /// ScalarEvolution - This class is the main scalar evolution driver. Because /// client code (intentionally) can't do much with the SCEV objects directly, /// they must ask this class for services. /// class ScalarEvolution : public FunctionPass { /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be /// notified whenever a Value is deleted. class SCEVCallbackVH : public CallbackVH { ScalarEvolution *SE; virtual void deleted(); virtual void allUsesReplacedWith(Value *New); public: SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0); }; friend class SCEVCallbackVH; friend class SCEVExpander; /// F - The function we are analyzing. /// Function *F; /// LI - The loop information for the function we are currently analyzing. /// LoopInfo *LI; /// TD - The target data information for the target we are targetting. /// TargetData *TD; /// CouldNotCompute - This SCEV is used to represent unknown trip /// counts and things. SCEVCouldNotCompute CouldNotCompute; /// Scalars - This is a cache of the scalars we have analyzed so far. /// std::map Scalars; /// BackedgeTakenInfo - Information about the backedge-taken count /// of a loop. This currently inclues an exact count and a maximum count. /// struct BackedgeTakenInfo { /// Exact - An expression indicating the exact backedge-taken count of /// the loop if it is known, or a SCEVCouldNotCompute otherwise. const SCEV* Exact; /// Exact - An expression indicating the least maximum backedge-taken /// count of the loop that is known, or a SCEVCouldNotCompute. const SCEV* Max; /*implicit*/ BackedgeTakenInfo(const SCEV* exact) : Exact(exact), Max(exact) {} BackedgeTakenInfo(const SCEV* exact, const SCEV* max) : Exact(exact), Max(max) {} /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any /// computed information, or whether it's all SCEVCouldNotCompute /// values. bool hasAnyInfo() const { return !isa(Exact) || !isa(Max); } }; /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for /// this function as they are computed. std::map BackedgeTakenCounts; /// ConstantEvolutionLoopExitValue - This map contains entries for all of /// the PHI instructions that we attempt to compute constant evolutions for. /// This allows us to avoid potentially expensive recomputation of these /// properties. An instruction maps to null if we are unable to compute its /// exit value. std::map ConstantEvolutionLoopExitValue; /// ValuesAtScopes - This map contains entries for all the instructions /// that we attempt to compute getSCEVAtScope information for without /// using SCEV techniques, which can be expensive. std::map > ValuesAtScopes; /// createSCEV - We know that there is no SCEV for the specified value. /// Analyze the expression. const SCEV* createSCEV(Value *V); /// createNodeForPHI - Provide the special handling we need to analyze PHI /// SCEVs. const SCEV* createNodeForPHI(PHINode *PN); /// createNodeForGEP - Provide the special handling we need to analyze GEP /// SCEVs. const SCEV* createNodeForGEP(User *GEP); /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value /// for the specified instruction and replaces any references to the /// symbolic value SymName with the specified value. This is used during /// PHI resolution. void ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName, const SCEV* NewVal); /// getBECount - Subtract the end and start values and divide by the step, /// rounding up, to get the number of times the backedge is executed. Return /// CouldNotCompute if an intermediate computation overflows. const SCEV* getBECount(const SCEV* Start, const SCEV* End, const SCEV* Step); /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given /// loop, lazily computing new values if the loop hasn't been analyzed /// yet. const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); /// ComputeBackedgeTakenCount - Compute the number of times the specified /// loop will iterate. BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L); /// ComputeBackedgeTakenCountFromExit - Compute the number of times the /// backedge of the specified loop will execute if it exits via the /// specified block. BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L, BasicBlock *ExitingBlock); /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the /// backedge of the specified loop will execute if its exit condition /// were a conditional branch of ExitCond, TBB, and FBB. BackedgeTakenInfo ComputeBackedgeTakenCountFromExitCond(const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB); /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of /// times the backedge of the specified loop will execute if its exit /// condition were a conditional branch of the ICmpInst ExitCond, TBB, /// and FBB. BackedgeTakenInfo ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, ICmpInst *ExitCond, BasicBlock *TBB, BasicBlock *FBB); /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition /// of 'icmp op load X, cst', try to see if we can compute the trip count. const SCEV* ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, const Loop *L, ICmpInst::Predicate p); /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute /// a constant number of times (the condition evolves only from constants), /// try to evaluate a few iterations of the loop until we get the exit /// condition gets a value of ExitWhen (true or false). If we cannot /// evaluate the trip count of the loop, return CouldNotCompute. const SCEV* ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen); /// HowFarToZero - Return the number of times a backedge comparing the /// specified value to zero will execute. If not computable, return /// CouldNotCompute. const SCEV* HowFarToZero(const SCEV *V, const Loop *L); /// HowFarToNonZero - Return the number of times a backedge checking the /// specified value for nonzero will execute. If not computable, return /// CouldNotCompute. const SCEV* HowFarToNonZero(const SCEV *V, const Loop *L); /// HowManyLessThans - Return the number of times a backedge containing the /// specified less-than comparison will execute. If not computable, return /// CouldNotCompute. isSigned specifies whether the less-than is signed. BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, bool isSigned); /// getLoopPredecessor - If the given loop's header has exactly one unique /// predecessor outside the loop, return it. Otherwise return null. BasicBlock *getLoopPredecessor(const Loop *L); /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB /// (which may not be an immediate predecessor) which has exactly one /// successor from which BB is reachable, or null if no such block is /// found. BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); /// isNecessaryCond - Test whether the given CondValue value is a condition /// which is at least as strict as the one described by Pred, LHS, and RHS. bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, bool Inverse); /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is /// in the header of its containing loop, we know the loop executes a /// constant number of times, and the PHI node is just a recurrence /// involving constants, fold it. Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L); /// forgetLoopPHIs - Delete the memoized SCEVs associated with the /// PHI nodes in the given loop. This is used when the trip count of /// the loop may have changed. void forgetLoopPHIs(const Loop *L); public: static char ID; // Pass identification, replacement for typeid ScalarEvolution(); /// isSCEVable - Test if values of the given type are analyzable within /// the SCEV framework. This primarily includes integer types, and it /// can optionally include pointer types if the ScalarEvolution class /// has access to target-specific information. bool isSCEVable(const Type *Ty) const; /// getTypeSizeInBits - Return the size in bits of the specified type, /// for which isSCEVable must return true. uint64_t getTypeSizeInBits(const Type *Ty) const; /// getEffectiveSCEVType - Return a type with the same bitwidth as /// the given type and which represents how SCEV will treat the given /// type, for which isSCEVable must return true. For pointer types, /// this is the pointer-sized integer type. const Type *getEffectiveSCEVType(const Type *Ty) const; /// getSCEV - Return a SCEV expression handle for the full generality of the /// specified expression. const SCEV* getSCEV(Value *V); const SCEV* getConstant(ConstantInt *V); const SCEV* getConstant(const APInt& Val); const SCEV* getConstant(const Type *Ty, uint64_t V, bool isSigned = false); const SCEV* getTruncateExpr(const SCEV* Op, const Type *Ty); const SCEV* getZeroExtendExpr(const SCEV* Op, const Type *Ty); const SCEV* getSignExtendExpr(const SCEV* Op, const Type *Ty); const SCEV* getAnyExtendExpr(const SCEV* Op, const Type *Ty); const SCEV* getAddExpr(SmallVectorImpl &Ops); const SCEV* getAddExpr(const SCEV* LHS, const SCEV* RHS) { SmallVector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getAddExpr(Ops); } const SCEV* getAddExpr(const SCEV* Op0, const SCEV* Op1, const SCEV* Op2) { SmallVector Ops; Ops.push_back(Op0); Ops.push_back(Op1); Ops.push_back(Op2); return getAddExpr(Ops); } const SCEV* getMulExpr(SmallVectorImpl &Ops); const SCEV* getMulExpr(const SCEV* LHS, const SCEV* RHS) { SmallVector Ops; Ops.push_back(LHS); Ops.push_back(RHS); return getMulExpr(Ops); } const SCEV* getUDivExpr(const SCEV* LHS, const SCEV* RHS); const SCEV* getAddRecExpr(const SCEV* Start, const SCEV* Step, const Loop *L); const SCEV* getAddRecExpr(SmallVectorImpl &Operands, const Loop *L); const SCEV* getAddRecExpr(const SmallVectorImpl &Operands, const Loop *L) { SmallVector NewOp(Operands.begin(), Operands.end()); return getAddRecExpr(NewOp, L); } const SCEV* getSMaxExpr(const SCEV* LHS, const SCEV* RHS); const SCEV* getSMaxExpr(SmallVectorImpl &Operands); const SCEV* getUMaxExpr(const SCEV* LHS, const SCEV* RHS); const SCEV* getUMaxExpr(SmallVectorImpl &Operands); const SCEV* getSMinExpr(const SCEV* LHS, const SCEV* RHS); const SCEV* getUMinExpr(const SCEV* LHS, const SCEV* RHS); const SCEV* getUnknown(Value *V); const SCEV* getCouldNotCompute(); /// getNegativeSCEV - Return the SCEV object corresponding to -V. /// const SCEV* getNegativeSCEV(const SCEV* V); /// getNotSCEV - Return the SCEV object corresponding to ~V. /// const SCEV* getNotSCEV(const SCEV* V); /// getMinusSCEV - Return LHS-RHS. /// const SCEV* getMinusSCEV(const SCEV* LHS, const SCEV* RHS); /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion /// of the input value to the specified type. If the type must be /// extended, it is zero extended. const SCEV* getTruncateOrZeroExtend(const SCEV* V, const Type *Ty); /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion /// of the input value to the specified type. If the type must be /// extended, it is sign extended. const SCEV* getTruncateOrSignExtend(const SCEV* V, const Type *Ty); /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is zero extended. The conversion must not be narrowing. const SCEV* getNoopOrZeroExtend(const SCEV* V, const Type *Ty); /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is sign extended. The conversion must not be narrowing. const SCEV* getNoopOrSignExtend(const SCEV* V, const Type *Ty); /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of /// the input value to the specified type. If the type must be extended, /// it is extended with unspecified bits. The conversion must not be /// narrowing. const SCEV* getNoopOrAnyExtend(const SCEV* V, const Type *Ty); /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the /// input value to the specified type. The conversion must not be /// widening. const SCEV* getTruncateOrNoop(const SCEV* V, const Type *Ty); /// getIntegerSCEV - Given a SCEVable type, create a constant for the /// specified signed integer value and return a SCEV for the constant. const SCEV* getIntegerSCEV(int Val, const Type *Ty); /// getUMaxFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umax operation /// with them. const SCEV* getUMaxFromMismatchedTypes(const SCEV* LHS, const SCEV* RHS); /// getUMinFromMismatchedTypes - Promote the operands to the wider of /// the types using zero-extension, and then perform a umin operation /// with them. const SCEV* getUMinFromMismatchedTypes(const SCEV* LHS, const SCEV* RHS); /// hasSCEV - Return true if the SCEV for this value has already been /// computed. bool hasSCEV(Value *V) const; /// setSCEV - Insert the specified SCEV into the map of current SCEVs for /// the specified value. void setSCEV(Value *V, const SCEV* H); /// getSCEVAtScope - Return a SCEV expression handle for the specified value /// at the specified scope in the program. The L value specifies a loop /// nest to evaluate the expression at, where null is the top-level or a /// specified loop is immediately inside of the loop. /// /// This method can be used to compute the exit value for a variable defined /// in a loop by querying what the value will hold in the parent loop. /// /// In the case that a relevant loop exit value cannot be computed, the /// original value V is returned. const SCEV* getSCEVAtScope(const SCEV *S, const Loop *L); /// getSCEVAtScope - This is a convenience function which does /// getSCEVAtScope(getSCEV(V), L). const SCEV* getSCEVAtScope(Value *V, const Loop *L); /// isLoopGuardedByCond - Test whether entry to the loop is protected by /// a conditional between LHS and RHS. This is used to help avoid max /// expressions in loop trip counts. bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS); /// getBackedgeTakenCount - If the specified loop has a predictable /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute /// object. The backedge-taken count is the number of times the loop header /// will be branched to from within the loop. This is one less than the /// trip count of the loop, since it doesn't count the first iteration, /// when the header is branched to from outside the loop. /// /// Note that it is not valid to call this method on a loop without a /// loop-invariant backedge-taken count (see /// hasLoopInvariantBackedgeTakenCount). /// const SCEV* getBackedgeTakenCount(const Loop *L); /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except /// return the least SCEV value that is known never to be less than the /// actual backedge taken count. const SCEV* getMaxBackedgeTakenCount(const Loop *L); /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop /// has an analyzable loop-invariant backedge-taken count. bool hasLoopInvariantBackedgeTakenCount(const Loop *L); /// forgetLoopBackedgeTakenCount - This method should be called by the /// client when it has changed a loop in a way that may effect /// ScalarEvolution's ability to compute a trip count, or if the loop /// is deleted. void forgetLoopBackedgeTakenCount(const Loop *L); /// GetMinTrailingZeros - Determine the minimum number of zero bits that S /// is guaranteed to end in (at every loop iteration). It is, at the same /// time, the minimum number of times S is divisible by 2. For example, /// given {4,+,8} it returns 2. If S is guaranteed to be 0, it returns the /// bitwidth of S. uint32_t GetMinTrailingZeros(const SCEV* S); /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is /// guaranteed to begin with (at every loop iteration). uint32_t GetMinLeadingZeros(const SCEV* S); /// GetMinSignBits - Determine the minimum number of sign bits that S is /// guaranteed to begin with. uint32_t GetMinSignBits(const SCEV* S); virtual bool runOnFunction(Function &F); virtual void releaseMemory(); virtual void getAnalysisUsage(AnalysisUsage &AU) const; void print(raw_ostream &OS, const Module* = 0) const; virtual void print(std::ostream &OS, const Module* = 0) const; void print(std::ostream *OS, const Module* M = 0) const { if (OS) print(*OS, M); } private: FoldingSet UniqueSCEVs; BumpPtrAllocator SCEVAllocator; }; } #endif