//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// @file This file contains the declarations for the subclasses of Constant, /// which represent the different flavors of constant values that live in LLVM. /// Note that Constants are immutable (once created they never change) and are /// fully shared by structural equivalence. This means that two structurally /// equivalent constants will always have the same address. Constant's are /// created on demand as needed and never deleted: thus clients don't have to /// worry about the lifetime of the objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CONSTANTS_H #define LLVM_CONSTANTS_H #include "llvm/Constant.h" #include "llvm/Type.h" namespace llvm { class ArrayType; class StructType; class PointerType; class PackedType; template struct ConstantCreator; template struct ConvertConstantType; //===----------------------------------------------------------------------===// /// This is the shared superclass of boolean and integer constants. This class /// just defines some common interfaces to be implemented by the subclasses. /// @brief An abstract class for integer constants. class ConstantIntegral : public Constant { protected: uint64_t Val; ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V); public: /// ConstantIntegral::get - Return a bool or integer constant. static ConstantIntegral *get(const Type *Ty, int64_t V); /// Return the constant as a 64-bit unsigned integer value after it /// has been zero extended as appropriate for the type of this constant. /// @brief Return the zero extended value. inline uint64_t getZExtValue() const { return Val; } /// Return the constant as a 64-bit integer value after it has been sign /// sign extended as appropriate for the type of this constant. /// @brief Return the sign extended value. inline int64_t getSExtValue() const { unsigned Size = getType()->getPrimitiveSizeInBits(); return (int64_t(Val) << (64-Size)) >> (64-Size); } /// This function is implemented by subclasses and will return true iff this /// constant represents the the "null" value that would be returned by the /// getNullValue method. /// @returns true if the constant's value is 0. /// @brief Determine if the value is null. virtual bool isNullValue() const = 0; /// This function is implemented by sublcasses and will return true iff this /// constant represents the the largest value that may be represented by this /// constant's type. /// @returns true if the constant's value is maximal. /// @brief Determine if the value is maximal. virtual bool isMaxValue() const = 0; /// This function is implemented by subclasses and will return true iff this /// constant represents the smallest value that may be represented by this /// constant's type. /// @returns true if the constant's value is minimal /// @brief Determine if the value is minimal. virtual bool isMinValue() const = 0; /// This function is implemented by subclasses and will return true iff every /// bit in this constant is set to true. /// @returns true if all bits of the constant are ones. /// @brief Determine if the value is all ones. virtual bool isAllOnesValue() const = 0; /// @returns the largest value for an integer constant of the given type /// @brief Get the maximal value static ConstantIntegral *getMaxValue(const Type *Ty); /// @returns the smallest value for an integer constant of the given type /// @brief Get the minimal value static ConstantIntegral *getMinValue(const Type *Ty); /// @returns the value for an integer constant of the given type that has all /// its bits set to true. /// @brief Get the all ones value static ConstantIntegral *getAllOnesValue(const Type *Ty); /// Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantIntegral *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantBoolVal || V->getValueType() == ConstantIntVal; } }; //===----------------------------------------------------------------------===// /// This concrete class represents constant values of type BoolTy. There are /// only two instances of this class constructed: the True and False static /// members. The constructor is hidden to ensure this invariant. /// @brief Constant Boolean class class ConstantBool : public ConstantIntegral { ConstantBool(bool V); public: /// getTrue/getFalse - Return the singleton true/false values. static ConstantBool *getTrue(); static ConstantBool *getFalse(); /// This method is provided mostly for compatibility with the other /// ConstantIntegral subclasses. /// @brief Static factory method for getting a ConstantBool instance. static ConstantBool *get(bool Value) { return Value ? getTrue() : getFalse();} /// This method is provided mostly for compatibility with the other /// ConstantIntegral subclasses. /// @brief Static factory method for getting a ConstantBool instance. static ConstantBool *get(const Type *Ty, bool Value) { return get(Value); } /// Returns the opposite value of this ConstantBool value. /// @brief Get inverse value. inline ConstantBool *inverted() const { return getValue() ? getFalse() : getTrue(); } /// @returns the value of this ConstantBool /// @brief return the boolean value of this constant. inline bool getValue() const { return static_cast(getZExtValue()); } /// @see ConstantIntegral for details /// @brief Implement overrides virtual bool isNullValue() const { return getValue() == false; } virtual bool isMaxValue() const { return getValue() == true; } virtual bool isMinValue() const { return getValue() == false; } virtual bool isAllOnesValue() const { return getValue() == true; } /// @brief Methods to support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantBool *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantBoolVal; } }; //===----------------------------------------------------------------------===// /// This is concrete integer subclass of ConstantIntegral that represents /// both signed and unsigned integral constants, other than boolean. /// @brief Class for constant integers. class ConstantInt : public ConstantIntegral { protected: ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT ConstantInt(const Type *Ty, uint64_t V); ConstantInt(const Type *Ty, int64_t V); friend struct ConstantCreator; public: /// A helper method that can be used to determine if the constant contained /// within is equal to a constant. This only works for very small values, /// because this is all that can be represented with all types. /// @brief Determine if this constant's value is same as an unsigned char. bool equalsInt(unsigned char V) const { assert(V <= 127 && "equalsInt: Can only be used with very small positive constants!"); return Val == V; } /// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a uint64_t but accessing it with either /// getSExtValue() or getZExtValue() (ConstantIntegral) will yield the correct /// sized/signed value for the type Ty. /// @brief Get a ConstantInt for a specific value. static ConstantInt *get(const Type *Ty, int64_t V); /// This static method returns true if the type Ty is big enough to /// represent the value V. This can be used to avoid having the get method /// assert when V is larger than Ty can represent. /// @returns true if V is a valid value for type Ty /// @brief Determine if the value is in range for the given type. static bool isValueValidForType(const Type *Ty, int64_t V); /// @returns true if this is the null integer value. /// @see ConstantIntegral for details /// @brief Implement override. virtual bool isNullValue() const { return Val == 0; } /// @returns true iff this constant's bits are all set to true. /// @see ConstantIntegral /// @brief Override implementation virtual bool isAllOnesValue() const { return getSExtValue() == -1; } /// @returns true iff this is the largest value that may be represented /// by this type. /// @see ConstantIntegeral /// @brief Override implementation virtual bool isMaxValue() const { if (getType()->isSigned()) { int64_t V = getSExtValue(); if (V < 0) return false; // Be careful about wrap-around on 'long's ++V; return !isValueValidForType(getType(), V) || V < 0; } return isAllOnesValue(); } /// @returns true if this is the smallest value that may be represented by /// this type. /// @see ConstantIntegral /// @brief Override implementation virtual bool isMinValue() const { if (getType()->isSigned()) { int64_t V = getSExtValue(); if (V > 0) return false; // Be careful about wrap-around on 'long's --V; return !isValueValidForType(getType(), V) || V > 0; } return getZExtValue() == 0; } /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. static inline bool classof(const ConstantInt *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP : public Constant { double Val; friend struct ConstantCreator; friend struct ConstantCreator; ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT protected: ConstantFP(const Type *Ty, double V); public: /// get() - Static factory methods - Return objects of the specified value static ConstantFP *get(const Type *Ty, double V); /// isValueValidForType - return true if Ty is big enough to represent V. static bool isValueValidForType(const Type *Ty, double V); inline double getValue() const { return Val; } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. Don't depend on == for doubles to tell us it's zero, it /// considers -0.0 to be null as well as 0.0. :( virtual bool isNullValue() const; /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. bool isExactlyValue(double V) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantFP *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantFPVal; } }; //===----------------------------------------------------------------------===// /// ConstantAggregateZero - All zero aggregate value /// class ConstantAggregateZero : public Constant { friend struct ConstantCreator; ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT protected: ConstantAggregateZero(const Type *Ty) : Constant(Ty, ConstantAggregateZeroVal, 0, 0) {} public: /// get() - static factory method for creating a null aggregate. It is /// illegal to call this method with a non-aggregate type. static Constant *get(const Type *Ty); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const ConstantAggregateZero *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantAggregateZeroVal; } }; //===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray : public Constant { friend struct ConstantCreator >; ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT protected: ConstantArray(const ArrayType *T, const std::vector &Val); ~ConstantArray(); public: /// get() - Static factory methods - Return objects of the specified value static Constant *get(const ArrayType *T, const std::vector &); /// This method constructs a ConstantArray and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array. This effectively increases the length /// of the array by one (you've been warned). However, in some situations /// this is not desired so if AddNull==false then the string is copied without /// null termination. static Constant *get(const std::string &Initializer, bool AddNull = true); /// getType - Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const ArrayType *getType() const { return reinterpret_cast(Value::getType()); } /// isString - This method returns true if the array is an array of sbyte or /// ubyte, and if the elements of the array are all ConstantInt's. bool isString() const; /// isCString - This method returns true if the array is a string (see /// isString) and it ends in a null byte \0 and does not contains any other /// null bytes except its terminator. bool isCString() const; /// getAsString - If this array is isString(), then this method converts the /// array to an std::string and returns it. Otherwise, it asserts out. /// std::string getAsString() const; /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantArray *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantArrayVal; } }; //===----------------------------------------------------------------------===// // ConstantStruct - Constant Struct Declarations // class ConstantStruct : public Constant { friend struct ConstantCreator >; ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT protected: ConstantStruct(const StructType *T, const std::vector &Val); ~ConstantStruct(); public: /// get() - Static factory methods - Return objects of the specified value /// static Constant *get(const StructType *T, const std::vector &V); static Constant *get(const std::vector &V); /// getType() specialization - Reduce amount of casting... /// inline const StructType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero structs are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantStruct *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantStructVal; } }; //===----------------------------------------------------------------------===// /// ConstantPacked - Constant Packed Declarations /// class ConstantPacked : public Constant { friend struct ConstantCreator >; ConstantPacked(const ConstantPacked &); // DO NOT IMPLEMENT protected: ConstantPacked(const PackedType *T, const std::vector &Val); ~ConstantPacked(); public: /// get() - Static factory methods - Return objects of the specified value static Constant *get(const PackedType *T, const std::vector &); static Constant *get(const std::vector &V); /// getType - Specialize the getType() method to always return an PackedType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const PackedType *getType() const { return reinterpret_cast(Value::getType()); } /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. This always returns false because zero arrays are always /// created as ConstantAggregateZero objects. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPacked *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantPackedVal; } }; //===----------------------------------------------------------------------===// /// ConstantPointerNull - a constant pointer value that points to null /// class ConstantPointerNull : public Constant { friend struct ConstantCreator; ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT protected: ConstantPointerNull(const PointerType *T) : Constant(reinterpret_cast(T), Value::ConstantPointerNullVal, 0, 0) {} public: /// get() - Static factory methods - Return objects of the specified value static ConstantPointerNull *get(const PointerType *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return true; } virtual void destroyConstant(); /// getType - Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline const PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantPointerNull *) { return true; } static bool classof(const Value *V) { return V->getValueType() == ConstantPointerNullVal; } }; /// ConstantExpr - a constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantCreator > >; friend struct ConvertConstantType; protected: ConstantExpr(const Type *Ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(Ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. SubclassData = Opcode; } // These private methods are used by the type resolution code to create // ConstantExprs in intermediate forms. static Constant *getTy(const Type *Ty, unsigned Opcode, Constant *C1, Constant *C2); static Constant *getShiftTy(const Type *Ty, unsigned Opcode, Constant *C1, Constant *C2); static Constant *getSelectTy(const Type *Ty, Constant *C1, Constant *C2, Constant *C3); static Constant *getGetElementPtrTy(const Type *Ty, Constant *C, const std::vector &IdxList); static Constant *getExtractElementTy(const Type *Ty, Constant *Val, Constant *Idx); static Constant *getInsertElementTy(const Type *Ty, Constant *Val, Constant *Elt, Constant *Idx); static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1, Constant *V2, Constant *Mask); public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible. /// Cast constant expr /// static Constant *getTrunc (Constant *C, const Type *Ty); static Constant *getSignExtend (Constant *C, const Type *Ty); static Constant *getZeroExtend (Constant *C, const Type *Ty); static Constant *getFPTrunc (Constant *C, const Type *Ty); static Constant *getFPExtend (Constant *C, const Type *Ty); static Constant *getUIToFP (Constant *C, const Type *Ty); static Constant *getSIToFP (Constant *C, const Type *Ty); static Constant *getFPToUI (Constant *C, const Type *Ty); static Constant *getFPToSI (Constant *C, const Type *Ty); static Constant *getPtrToInt (Constant *C, const Type *Ty); static Constant *getIntToPtr (Constant *C, const Type *Ty); static Constant *getBitCast (Constant *C, const Type *Ty); // @brief Convenience function for getting one of the casting operations // using a CastOps opcode. static Constant *getCast( unsigned ops, ///< The opcode for the conversion Constant *C, ///< The constant to be converted const Type *Ty ///< The type to which the constant is converted ); // @brief Get a ConstantExpr Conversion operator that casts C to Ty static Constant *getCast(Constant *C, const Type *Ty); /// @brief Return true if this is a convert constant expression bool isCast() const; /// Select constant expr /// static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) { return getSelectTy(V1->getType(), C, V1, V2); } /// getSizeOf constant expr - computes the size of a type in a target /// independent way (Note: the return type is a ULong). /// static Constant *getSizeOf(const Type *Ty); /// getPtrPtrFromArrayPtr constant expr - given a pointer to a constant array, /// return a pointer to a pointer of the array element type. static Constant *getPtrPtrFromArrayPtr(Constant *C); /// ConstantExpr::get - Return a binary or shift operator constant expression, /// folding if possible. /// static Constant *get(unsigned Opcode, Constant *C1, Constant *C2); /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// static Constant *getNeg(Constant *C); static Constant *getNot(Constant *C); static Constant *getAdd(Constant *C1, Constant *C2); static Constant *getSub(Constant *C1, Constant *C2); static Constant *getMul(Constant *C1, Constant *C2); static Constant *getUDiv(Constant *C1, Constant *C2); static Constant *getSDiv(Constant *C1, Constant *C2); static Constant *getFDiv(Constant *C1, Constant *C2); static Constant *getURem(Constant *C1, Constant *C2); // unsigned rem static Constant *getSRem(Constant *C1, Constant *C2); // signed rem static Constant *getFRem(Constant *C1, Constant *C2); static Constant *getAnd(Constant *C1, Constant *C2); static Constant *getOr(Constant *C1, Constant *C2); static Constant *getXor(Constant *C1, Constant *C2); static Constant *getSetEQ(Constant *C1, Constant *C2); static Constant *getSetNE(Constant *C1, Constant *C2); static Constant *getSetLT(Constant *C1, Constant *C2); static Constant *getSetGT(Constant *C1, Constant *C2); static Constant *getSetLE(Constant *C1, Constant *C2); static Constant *getSetGE(Constant *C1, Constant *C2); static Constant *getShl(Constant *C1, Constant *C2); static Constant *getLShr(Constant *C1, Constant *C2); static Constant *getAShr(Constant *C1, Constant *C2); /// Getelementptr form. std::vector is only accepted for convenience: /// all elements must be Constant's. /// static Constant *getGetElementPtr(Constant *C, const std::vector &IdxList); static Constant *getGetElementPtr(Constant *C, const std::vector &IdxList); static Constant *getExtractElement(Constant *Vec, Constant *Idx); static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } /// getOpcode - Return the opcode at the root of this constant expression unsigned getOpcode() const { return SubclassData; } /// getOpcodeName - Return a string representation for an opcode. const char *getOpcodeName() const; /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values. The specified operands must /// match count and type with the existing ones. Constant *getWithOperands(const std::vector &Ops) const; virtual void destroyConstant(); virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); /// Override methods to provide more type information... inline Constant *getOperand(unsigned i) { return cast(User::getOperand(i)); } inline Constant *getOperand(unsigned i) const { return const_cast(cast(User::getOperand(i))); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return V->getValueType() == ConstantExprVal; } }; //===----------------------------------------------------------------------===// /// UndefValue - 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any type. /// class UndefValue : public Constant { friend struct ConstantCreator; UndefValue(const UndefValue &); // DO NOT IMPLEMENT protected: UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {} public: /// get() - Static factory methods - Return an 'undef' object of the specified /// type. /// static UndefValue *get(const Type *T); /// isNullValue - Return true if this is the value that would be returned by /// getNullValue. virtual bool isNullValue() const { return false; } virtual void destroyConstant(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UndefValue *) { return true; } static bool classof(const Value *V) { return V->getValueType() == UndefValueVal; } }; } // End llvm namespace #endif