//===- DSGraph.h - Represent a collection of data structures ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header defines the data structure graph (DSGraph) and the // ReachabilityCloner class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DSGRAPH_H #define LLVM_ANALYSIS_DSGRAPH_H #include "llvm/Analysis/DataStructure/DSNode.h" #include "llvm/ADT/hash_map" #include "llvm/ADT/EquivalenceClasses.h" #include namespace llvm { class GlobalValue; //===----------------------------------------------------------------------===// /// DSScalarMap - An instance of this class is used to keep track of all of /// which DSNode each scalar in a function points to. This is specialized to /// keep track of globals with nodes in the function, and to keep track of the /// unique DSNodeHandle being used by the scalar map. /// /// This class is crucial to the efficiency of DSA with some large SCC's. In /// these cases, the cost of iterating over the scalar map dominates the cost /// of DSA. In all of these cases, the DSA phase is really trying to identify /// globals or unique node handles active in the function. /// class DSScalarMap { typedef hash_map ValueMapTy; ValueMapTy ValueMap; typedef hash_set GlobalSetTy; GlobalSetTy GlobalSet; EquivalenceClasses &GlobalECs; public: DSScalarMap(EquivalenceClasses &ECs) : GlobalECs(ECs) {} EquivalenceClasses &getGlobalECs() const { return GlobalECs; } // Compatibility methods: provide an interface compatible with a map of // Value* to DSNodeHandle's. typedef ValueMapTy::const_iterator const_iterator; typedef ValueMapTy::iterator iterator; iterator begin() { return ValueMap.begin(); } iterator end() { return ValueMap.end(); } const_iterator begin() const { return ValueMap.begin(); } const_iterator end() const { return ValueMap.end(); } GlobalValue *getLeaderForGlobal(GlobalValue *GV) const { EquivalenceClasses::iterator ECI = GlobalECs.findValue(GV); if (ECI == GlobalECs.end()) return GV; return *GlobalECs.findLeader(ECI); } iterator find(Value *V) { iterator I = ValueMap.find(V); if (I != ValueMap.end()) return I; if (GlobalValue *GV = dyn_cast(V)) { // If this is a global, check to see if it is equivalenced to something // in the map. GlobalValue *Leader = getLeaderForGlobal(GV); if (Leader != GV) I = ValueMap.find((Value*)Leader); } return I; } const_iterator find(Value *V) const { const_iterator I = ValueMap.find(V); if (I != ValueMap.end()) return I; if (GlobalValue *GV = dyn_cast(V)) { // If this is a global, check to see if it is equivalenced to something // in the map. GlobalValue *Leader = getLeaderForGlobal(GV); if (Leader != GV) I = ValueMap.find((Value*)Leader); } return I; } /// getRawEntryRef - This method can be used by clients that are aware of the /// global value equivalence class in effect. DSNodeHandle &getRawEntryRef(Value *V) { std::pair IP = ValueMap.insert(std::make_pair(V, DSNodeHandle())); if (IP.second) // Inserted the new entry into the map. if (GlobalValue *GV = dyn_cast(V)) GlobalSet.insert(GV); return IP.first->second; } unsigned count(Value *V) const { return ValueMap.find(V) != ValueMap.end(); } void erase(Value *V) { erase(ValueMap.find(V)); } void eraseIfExists(Value *V) { iterator I = find(V); if (I != end()) erase(I); } /// replaceScalar - When an instruction needs to be modified, this method can /// be used to update the scalar map to remove the old and insert the new. /// void replaceScalar(Value *Old, Value *New) { iterator I = find(Old); assert(I != end() && "Old value is not in the map!"); ValueMap.insert(std::make_pair(New, I->second)); erase(I); } /// copyScalarIfExists - If Old exists in the scalar map, make New point to /// whatever Old did. void copyScalarIfExists(Value *Old, Value *New) { iterator I = find(Old); if (I != end()) ValueMap.insert(std::make_pair(New, I->second)); } /// operator[] - Return the DSNodeHandle for the specified value, creating a /// new null handle if there is no entry yet. DSNodeHandle &operator[](Value *V) { iterator I = ValueMap.find(V); if (I != ValueMap.end()) return I->second; // Return value if already exists. if (GlobalValue *GV = dyn_cast(V)) return AddGlobal(GV); return ValueMap.insert(std::make_pair(V, DSNodeHandle())).first->second; } void erase(iterator I) { assert(I != ValueMap.end() && "Cannot erase end!"); if (GlobalValue *GV = dyn_cast(I->first)) GlobalSet.erase(GV); ValueMap.erase(I); } void clear() { ValueMap.clear(); GlobalSet.clear(); } // Access to the global set: the set of all globals currently in the // scalar map. typedef GlobalSetTy::const_iterator global_iterator; global_iterator global_begin() const { return GlobalSet.begin(); } global_iterator global_end() const { return GlobalSet.end(); } unsigned global_size() const { return GlobalSet.size(); } unsigned global_count(GlobalValue *GV) const { return GlobalSet.count(GV); } private: DSNodeHandle &AddGlobal(GlobalValue *GV); }; //===----------------------------------------------------------------------===// /// DSGraph - The graph that represents a function. /// class DSGraph { public: // Public data-type declarations... typedef DSScalarMap ScalarMapTy; typedef hash_map ReturnNodesTy; typedef ilist NodeListTy; /// NodeMapTy - This data type is used when cloning one graph into another to /// keep track of the correspondence between the nodes in the old and new /// graphs. typedef hash_map NodeMapTy; // InvNodeMapTy - This data type is used to represent the inverse of a node // map. typedef hash_multimap InvNodeMapTy; private: DSGraph *GlobalsGraph; // Pointer to the common graph of global objects bool PrintAuxCalls; // Should this graph print the Aux calls vector? NodeListTy Nodes; ScalarMapTy ScalarMap; // ReturnNodes - A return value for every function merged into this graph. // Each DSGraph may have multiple functions merged into it at any time, which // is used for representing SCCs. // ReturnNodesTy ReturnNodes; // FunctionCalls - This list maintains a single entry for each call // instruction in the current graph. The first entry in the vector is the // scalar that holds the return value for the call, the second is the function // scalar being invoked, and the rest are pointer arguments to the function. // This vector is built by the Local graph and is never modified after that. // std::list FunctionCalls; // AuxFunctionCalls - This vector contains call sites that have been processed // by some mechanism. In pratice, the BU Analysis uses this vector to hold // the _unresolved_ call sites, because it cannot modify FunctionCalls. // std::list AuxFunctionCalls; /// TD - This is the target data object for the machine this graph is /// constructed for. const TargetData &TD; void operator=(const DSGraph &); // DO NOT IMPLEMENT DSGraph(const DSGraph&); // DO NOT IMPLEMENT public: // Create a new, empty, DSGraph. DSGraph(EquivalenceClasses &ECs, const TargetData &td) : GlobalsGraph(0), PrintAuxCalls(false), ScalarMap(ECs), TD(td) {} // Compute the local DSGraph DSGraph(EquivalenceClasses &ECs, const TargetData &TD, Function &F, DSGraph *GlobalsGraph); // Copy ctor - If you want to capture the node mapping between the source and // destination graph, you may optionally do this by specifying a map to record // this into. // // Note that a copied graph does not retain the GlobalsGraph pointer of the // source. You need to set a new GlobalsGraph with the setGlobalsGraph // method. // DSGraph(const DSGraph &DSG, EquivalenceClasses &ECs, unsigned CloneFlags = 0); ~DSGraph(); DSGraph *getGlobalsGraph() const { return GlobalsGraph; } void setGlobalsGraph(DSGraph *G) { GlobalsGraph = G; } /// getGlobalECs - Return the set of equivalence classes that the global /// variables in the program form. EquivalenceClasses &getGlobalECs() const { return ScalarMap.getGlobalECs(); } /// getTargetData - Return the TargetData object for the current target. /// const TargetData &getTargetData() const { return TD; } /// setPrintAuxCalls - If you call this method, the auxillary call vector will /// be printed instead of the standard call vector to the dot file. /// void setPrintAuxCalls() { PrintAuxCalls = true; } bool shouldPrintAuxCalls() const { return PrintAuxCalls; } /// node_iterator/begin/end - Iterate over all of the nodes in the graph. Be /// extremely careful with these methods because any merging of nodes could /// cause the node to be removed from this list. This means that if you are /// iterating over nodes and doing something that could cause _any_ node to /// merge, your node_iterators into this graph can be invalidated. typedef NodeListTy::iterator node_iterator; node_iterator node_begin() { return Nodes.begin(); } node_iterator node_end() { return Nodes.end(); } typedef NodeListTy::const_iterator node_const_iterator; node_const_iterator node_begin() const { return Nodes.begin(); } node_const_iterator node_end() const { return Nodes.end(); } /// getFunctionNames - Return a space separated list of the name of the /// functions in this graph (if any) /// std::string getFunctionNames() const; /// addNode - Add a new node to the graph. /// void addNode(DSNode *N) { Nodes.push_back(N); } void unlinkNode(DSNode *N) { Nodes.remove(N); } /// getScalarMap - Get a map that describes what the nodes the scalars in this /// function point to... /// ScalarMapTy &getScalarMap() { return ScalarMap; } const ScalarMapTy &getScalarMap() const { return ScalarMap; } /// getFunctionCalls - Return the list of call sites in the original local /// graph... /// const std::list &getFunctionCalls() const { return FunctionCalls;} std::list &getFunctionCalls() { return FunctionCalls;} /// getAuxFunctionCalls - Get the call sites as modified by whatever passes /// have been run. /// std::list &getAuxFunctionCalls() { return AuxFunctionCalls; } const std::list &getAuxFunctionCalls() const { return AuxFunctionCalls; } // Function Call iteration typedef std::list::const_iterator fc_iterator; fc_iterator fc_begin() const { return FunctionCalls.begin(); } fc_iterator fc_end() const { return FunctionCalls.end(); } // Aux Function Call iteration typedef std::list::const_iterator afc_iterator; afc_iterator afc_begin() const { return AuxFunctionCalls.begin(); } afc_iterator afc_end() const { return AuxFunctionCalls.end(); } /// getNodeForValue - Given a value that is used or defined in the body of the /// current function, return the DSNode that it points to. /// DSNodeHandle &getNodeForValue(Value *V) { return ScalarMap[V]; } const DSNodeHandle &getNodeForValue(Value *V) const { ScalarMapTy::const_iterator I = ScalarMap.find(V); assert(I != ScalarMap.end() && "Use non-const lookup function if node may not be in the map"); return I->second; } /// retnodes_* iterator methods: expose iteration over return nodes in the /// graph, which are also the set of functions incorporated in this graph. typedef ReturnNodesTy::const_iterator retnodes_iterator; retnodes_iterator retnodes_begin() const { return ReturnNodes.begin(); } retnodes_iterator retnodes_end() const { return ReturnNodes.end(); } /// getReturnNodes - Return the mapping of functions to their return nodes for /// this graph. /// const ReturnNodesTy &getReturnNodes() const { return ReturnNodes; } ReturnNodesTy &getReturnNodes() { return ReturnNodes; } /// getReturnNodeFor - Return the return node for the specified function. /// DSNodeHandle &getReturnNodeFor(Function &F) { ReturnNodesTy::iterator I = ReturnNodes.find(&F); assert(I != ReturnNodes.end() && "F not in this DSGraph!"); return I->second; } const DSNodeHandle &getReturnNodeFor(Function &F) const { ReturnNodesTy::const_iterator I = ReturnNodes.find(&F); assert(I != ReturnNodes.end() && "F not in this DSGraph!"); return I->second; } /// containsFunction - Return true if this DSGraph contains information for /// the specified function. bool containsFunction(Function *F) const { return ReturnNodes.count(F); } /// getGraphSize - Return the number of nodes in this graph. /// unsigned getGraphSize() const { return Nodes.size(); } /// addObjectToGraph - This method can be used to add global, stack, and heap /// objects to the graph. This can be used when updating DSGraphs due to the /// introduction of new temporary objects. The new object is not pointed to /// and does not point to any other objects in the graph. Note that this /// method initializes the type of the DSNode to the declared type of the /// object if UseDeclaredType is true, otherwise it leaves the node type as /// void. DSNode *addObjectToGraph(Value *Ptr, bool UseDeclaredType = true); /// print - Print a dot graph to the specified ostream... /// void print(std::ostream &O) const; /// dump - call print(std::cerr), for use from the debugger... /// void dump() const; /// viewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, /// then cleanup. For use from the debugger. /// void viewGraph() const; void writeGraphToFile(std::ostream &O, const std::string &GraphName) const; /// maskNodeTypes - Apply a mask to all of the node types in the graph. This /// is useful for clearing out markers like Incomplete. /// void maskNodeTypes(unsigned Mask) { for (node_iterator I = node_begin(), E = node_end(); I != E; ++I) I->maskNodeTypes(Mask); } void maskIncompleteMarkers() { maskNodeTypes(~DSNode::Incomplete); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside // the scope of current analysis may have modified it), the 'Incomplete' flag // is added to the NodeType. // enum MarkIncompleteFlags { MarkFormalArgs = 1, IgnoreFormalArgs = 0, IgnoreGlobals = 2, MarkGlobalsIncomplete = 0, }; void markIncompleteNodes(unsigned Flags); // removeDeadNodes - Use a reachability analysis to eliminate subgraphs that // are unreachable. This often occurs because the data structure doesn't // "escape" into it's caller, and thus should be eliminated from the caller's // graph entirely. This is only appropriate to use when inlining graphs. // enum RemoveDeadNodesFlags { RemoveUnreachableGlobals = 1, KeepUnreachableGlobals = 0, }; void removeDeadNodes(unsigned Flags); /// CloneFlags enum - Bits that may be passed into the cloneInto method to /// specify how to clone the function graph. enum CloneFlags { StripAllocaBit = 1 << 0, KeepAllocaBit = 0, DontCloneCallNodes = 1 << 1, CloneCallNodes = 0, DontCloneAuxCallNodes = 1 << 2, CloneAuxCallNodes = 0, StripModRefBits = 1 << 3, KeepModRefBits = 0, StripIncompleteBit = 1 << 4, KeepIncompleteBit = 0, }; void updateFromGlobalGraph(); /// computeNodeMapping - Given roots in two different DSGraphs, traverse the /// nodes reachable from the two graphs, computing the mapping of nodes from /// the first to the second graph. /// static void computeNodeMapping(const DSNodeHandle &NH1, const DSNodeHandle &NH2, NodeMapTy &NodeMap, bool StrictChecking = true); /// computeGToGGMapping - Compute the mapping of nodes in the graph to nodes /// in the globals graph. void computeGToGGMapping(NodeMapTy &NodeMap); /// computeGGToGMapping - Compute the mapping of nodes in the global /// graph to nodes in this graph. void computeGGToGMapping(InvNodeMapTy &InvNodeMap); /// computeCalleeCallerMapping - Given a call from a function in the current /// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the /// mapping of nodes from the callee to nodes in the caller. void computeCalleeCallerMapping(DSCallSite CS, const Function &Callee, DSGraph &CalleeGraph, NodeMapTy &NodeMap); /// cloneInto - Clone the specified DSGraph into the current graph. /// /// The CloneFlags member controls various aspects of the cloning process. /// void cloneInto(const DSGraph &G, unsigned CloneFlags = 0); /// getFunctionArgumentsForCall - Given a function that is currently in this /// graph, return the DSNodeHandles that correspond to the pointer-compatible /// function arguments. The vector is filled in with the return value (or /// null if it is not pointer compatible), followed by all of the /// pointer-compatible arguments. void getFunctionArgumentsForCall(Function *F, std::vector &Args) const; /// mergeInGraph - This graph merges in the minimal number of /// nodes from G2 into 'this' graph, merging the bindings specified by the /// call site (in this graph) with the bindings specified by the vector in G2. /// If the StripAlloca's argument is 'StripAllocaBit' then Alloca markers are /// removed from nodes. /// void mergeInGraph(const DSCallSite &CS, std::vector &Args, const DSGraph &G2, unsigned CloneFlags); /// mergeInGraph - This method is the same as the above method, but the /// argument bindings are provided by using the formal arguments of F. /// void mergeInGraph(const DSCallSite &CS, Function &F, const DSGraph &Graph, unsigned CloneFlags); /// getCallSiteForArguments - Get the arguments and return value bindings for /// the specified function in the current graph. /// DSCallSite getCallSiteForArguments(Function &F) const; /// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in /// the context of this graph, return the DSCallSite for it. DSCallSite getDSCallSiteForCallSite(CallSite CS) const; // Methods for checking to make sure graphs are well formed... void AssertNodeInGraph(const DSNode *N) const { assert((!N || N->getParentGraph() == this) && "AssertNodeInGraph: Node is not in graph!"); } void AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const; void AssertCallSiteInGraph(const DSCallSite &CS) const; void AssertCallNodesInGraph() const; void AssertAuxCallNodesInGraph() const; void AssertGraphOK() const; /// removeTriviallyDeadNodes - After the graph has been constructed, this /// method removes all unreachable nodes that are created because they got /// merged with other nodes in the graph. This is used as the first step of /// removeDeadNodes. /// void removeTriviallyDeadNodes(); }; /// ReachabilityCloner - This class is used to incrementally clone and merge /// nodes from a non-changing source graph into a potentially mutating /// destination graph. Nodes are only cloned over on demand, either in /// responds to a merge() or getClonedNH() call. When a node is cloned over, /// all of the nodes reachable from it are automatically brought over as well. /// class ReachabilityCloner { DSGraph &Dest; const DSGraph &Src; /// BitsToKeep - These bits are retained from the source node when the /// source nodes are merged into the destination graph. unsigned BitsToKeep; unsigned CloneFlags; // NodeMap - A mapping from nodes in the source graph to the nodes that // represent them in the destination graph. DSGraph::NodeMapTy NodeMap; public: ReachabilityCloner(DSGraph &dest, const DSGraph &src, unsigned cloneFlags) : Dest(dest), Src(src), CloneFlags(cloneFlags) { assert(&Dest != &Src && "Cannot clone from graph to same graph!"); BitsToKeep = ~DSNode::DEAD; if (CloneFlags & DSGraph::StripAllocaBit) BitsToKeep &= ~DSNode::AllocaNode; if (CloneFlags & DSGraph::StripModRefBits) BitsToKeep &= ~(DSNode::Modified | DSNode::Read); if (CloneFlags & DSGraph::StripIncompleteBit) BitsToKeep &= ~DSNode::Incomplete; } DSNodeHandle getClonedNH(const DSNodeHandle &SrcNH); void merge(const DSNodeHandle &NH, const DSNodeHandle &SrcNH); /// mergeCallSite - Merge the nodes reachable from the specified src call /// site into the nodes reachable from DestCS. /// void mergeCallSite(DSCallSite &DestCS, const DSCallSite &SrcCS); bool clonedAnyNodes() const { return !NodeMap.empty(); } /// hasClonedNode - Return true if the specified node has been cloned from /// the source graph into the destination graph. bool hasClonedNode(const DSNode *N) { return NodeMap.count(N); } void destroy() { NodeMap.clear(); } }; } // End llvm namespace #endif