//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tool implements a just-in-time compiler for LLVM, allowing direct // execution of LLVM bytecode in an efficient manner. // //===----------------------------------------------------------------------===// #include "JIT.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/ModuleProvider.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetJITInfo.h" #include using namespace llvm; JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji) : ExecutionEngine(MP), TM(tm), TJI(tji), PM(MP) { setTargetData(TM.getTargetData()); // Initialize MCE MCE = createEmitter(*this); // Add target data PM.add(new TargetData(TM.getTargetData())); // Compile LLVM Code down to machine code in the intermediate representation TJI.addPassesToJITCompile(PM); // Turn the machine code intermediate representation into bytes in memory that // may be executed. if (TM.addPassesToEmitMachineCode(PM, *MCE)) { std::cerr << "Target '" << TM.getName() << "' doesn't support machine code emission!\n"; abort(); } } JIT::~JIT() { delete MCE; delete &TM; } /// run - Start execution with the specified function and arguments. /// GenericValue JIT::runFunction(Function *F, const std::vector &ArgValues) { assert(F && "Function *F was null at entry to run()"); void *FPtr = getPointerToFunction(F); assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); const FunctionType *FTy = F->getFunctionType(); const Type *RetTy = FTy->getReturnType(); assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) && "Too many arguments passed into function!"); assert(FTy->getNumParams() == ArgValues.size() && "This doesn't support passing arguments through varargs (yet)!"); // Handle some common cases first. These cases correspond to common `main' // prototypes. if (RetTy == Type::IntTy || RetTy == Type::UIntTy || RetTy == Type::VoidTy) { switch (ArgValues.size()) { case 3: if ((FTy->getParamType(0) == Type::IntTy || FTy->getParamType(0) == Type::UIntTy) && isa(FTy->getParamType(1)) && isa(FTy->getParamType(2))) { int (*PF)(int, char **, const char **) = (int(*)(int, char **, const char **))FPtr; // Call the function. GenericValue rv; rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]), (const char **)GVTOP(ArgValues[2])); return rv; } break; case 2: if ((FTy->getParamType(0) == Type::IntTy || FTy->getParamType(0) == Type::UIntTy) && isa(FTy->getParamType(1))) { int (*PF)(int, char **) = (int(*)(int, char **))FPtr; // Call the function. GenericValue rv; rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1])); return rv; } break; case 1: if (FTy->getNumParams() == 1 && (FTy->getParamType(0) == Type::IntTy || FTy->getParamType(0) == Type::UIntTy)) { GenericValue rv; int (*PF)(int) = (int(*)(int))FPtr; rv.IntVal = PF(ArgValues[0].IntVal); return rv; } break; } } // Handle cases where no arguments are passed first. if (ArgValues.empty()) { GenericValue rv; switch (RetTy->getTypeID()) { default: assert(0 && "Unknown return type for function call!"); case Type::BoolTyID: rv.BoolVal = ((bool(*)())FPtr)(); return rv; case Type::SByteTyID: case Type::UByteTyID: rv.SByteVal = ((char(*)())FPtr)(); return rv; case Type::ShortTyID: case Type::UShortTyID: rv.ShortVal = ((short(*)())FPtr)(); return rv; case Type::VoidTyID: case Type::IntTyID: case Type::UIntTyID: rv.IntVal = ((int(*)())FPtr)(); return rv; case Type::LongTyID: case Type::ULongTyID: rv.LongVal = ((int64_t(*)())FPtr)(); return rv; case Type::FloatTyID: rv.FloatVal = ((float(*)())FPtr)(); return rv; case Type::DoubleTyID: rv.DoubleVal = ((double(*)())FPtr)(); return rv; case Type::PointerTyID: return PTOGV(((void*(*)())FPtr)()); } } // Okay, this is not one of our quick and easy cases. Because we don't have a // full FFI, we have to codegen a nullary stub function that just calls the // function we are interested in, passing in constants for all of the // arguments. Make this function and return. // First, create the function. FunctionType *STy=FunctionType::get(RetTy, std::vector(), false); Function *Stub = new Function(STy, Function::InternalLinkage, "", F->getParent()); // Insert a basic block. BasicBlock *StubBB = new BasicBlock("", Stub); // Convert all of the GenericValue arguments over to constants. Note that we // currently don't support varargs. std::vector Args; for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { Constant *C = 0; const Type *ArgTy = FTy->getParamType(i); const GenericValue &AV = ArgValues[i]; switch (ArgTy->getTypeID()) { default: assert(0 && "Unknown argument type for function call!"); case Type::BoolTyID: C = ConstantBool::get(AV.BoolVal); break; case Type::SByteTyID: C = ConstantSInt::get(ArgTy, AV.SByteVal); break; case Type::UByteTyID: C = ConstantUInt::get(ArgTy, AV.UByteVal); break; case Type::ShortTyID: C = ConstantSInt::get(ArgTy, AV.ShortVal); break; case Type::UShortTyID: C = ConstantUInt::get(ArgTy, AV.UShortVal); break; case Type::IntTyID: C = ConstantSInt::get(ArgTy, AV.IntVal); break; case Type::UIntTyID: C = ConstantUInt::get(ArgTy, AV.UIntVal); break; case Type::LongTyID: C = ConstantSInt::get(ArgTy, AV.LongVal); break; case Type::ULongTyID: C = ConstantUInt::get(ArgTy, AV.ULongVal); break; case Type::FloatTyID: C = ConstantFP ::get(ArgTy, AV.FloatVal); break; case Type::DoubleTyID: C = ConstantFP ::get(ArgTy, AV.DoubleVal); break; case Type::PointerTyID: void *ArgPtr = GVTOP(AV); if (sizeof(void*) == 4) { C = ConstantSInt::get(Type::IntTy, (int)(intptr_t)ArgPtr); } else { C = ConstantSInt::get(Type::LongTy, (intptr_t)ArgPtr); } C = ConstantExpr::getCast(C, ArgTy); // Cast the integer to pointer break; } Args.push_back(C); } CallInst *TheCall = new CallInst(F, Args, "", StubBB); TheCall->setTailCall(); if (TheCall->getType() != Type::VoidTy) new ReturnInst(TheCall, StubBB); // Return result of the call. else new ReturnInst(StubBB); // Just return void. // Finally, return the value returned by our nullary stub function. return runFunction(Stub, std::vector()); } /// runJITOnFunction - Run the FunctionPassManager full of /// just-in-time compilation passes on F, hopefully filling in /// GlobalAddress[F] with the address of F's machine code. /// void JIT::runJITOnFunction(Function *F) { static bool isAlreadyCodeGenerating = false; assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); // JIT the function isAlreadyCodeGenerating = true; PM.run(*F); isAlreadyCodeGenerating = false; // If the function referred to a global variable that had not yet been // emitted, it allocates memory for the global, but doesn't emit it yet. Emit // all of these globals now. while (!PendingGlobals.empty()) { const GlobalVariable *GV = PendingGlobals.back(); PendingGlobals.pop_back(); EmitGlobalVariable(GV); } } /// getPointerToFunction - This method is used to get the address of the /// specified function, compiling it if neccesary. /// void *JIT::getPointerToFunction(Function *F) { if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Check if function already code gen'd // Make sure we read in the function if it exists in this Module if (F->hasNotBeenReadFromBytecode()) try { MP->materializeFunction(F); } catch ( std::string& errmsg ) { std::cerr << "Error reading function '" << F->getName() << "' from bytecode file: " << errmsg << "\n"; abort(); } catch (...) { std::cerr << "Error reading function '" << F->getName() << "from bytecode file!\n"; abort(); } if (F->isExternal()) { void *Addr = getPointerToNamedFunction(F->getName()); addGlobalMapping(F, Addr); return Addr; } runJITOnFunction(F); void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); return Addr; } /// getOrEmitGlobalVariable - Return the address of the specified global /// variable, possibly emitting it to memory if needed. This is used by the /// Emitter. void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { void *Ptr = getPointerToGlobalIfAvailable(GV); if (Ptr) return Ptr; // If the global is external, just remember the address. if (GV->isExternal()) { Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str()); if (Ptr == 0) { std::cerr << "Could not resolve external global address: " << GV->getName() << "\n"; abort(); } } else { // If the global hasn't been emitted to memory yet, allocate space. We will // actually initialize the global after current function has finished // compilation. uint64_t S = getTargetData().getTypeSize(GV->getType()->getElementType()); Ptr = new char[(size_t)S]; PendingGlobals.push_back(GV); } addGlobalMapping(GV, Ptr); return Ptr; } /// recompileAndRelinkFunction - This method is used to force a function /// which has already been compiled, to be compiled again, possibly /// after it has been modified. Then the entry to the old copy is overwritten /// with a branch to the new copy. If there was no old copy, this acts /// just like JIT::getPointerToFunction(). /// void *JIT::recompileAndRelinkFunction(Function *F) { void *OldAddr = getPointerToGlobalIfAvailable(F); // If it's not already compiled there is no reason to patch it up. if (OldAddr == 0) { return getPointerToFunction(F); } // Delete the old function mapping. addGlobalMapping(F, 0); // Recodegen the function runJITOnFunction(F); // Update state, forward the old function to the new function. void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr && "Code generation didn't add function to GlobalAddress table!"); TJI.replaceMachineCodeForFunction(OldAddr, Addr); return Addr; } /// freeMachineCodeForFunction - release machine code memory for given Function /// void JIT::freeMachineCodeForFunction(Function *F) { // currently a no-op }