//===----- SchedulePostRAList.cpp - list scheduler ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a top-down list scheduler, using standard algorithms. // The basic approach uses a priority queue of available nodes to schedule. // One at a time, nodes are taken from the priority queue (thus in priority // order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "post-RA-sched" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumStalls, "Number of pipeline stalls"); namespace { class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass { public: static char ID; PostRAScheduler() : MachineFunctionPass(&ID) {} private: MachineFunction *MF; const TargetMachine *TM; public: const char *getPassName() const { return "Post RA top-down list latency scheduler (STUB)"; } bool runOnMachineFunction(MachineFunction &Fn); }; char PostRAScheduler::ID = 0; class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs { public: SchedulePostRATDList(MachineBasicBlock *mbb, const TargetMachine &tm) : ScheduleDAGInstrs(mbb, tm) {} private: MachineFunction *MF; const TargetMachine *TM; /// AvailableQueue - The priority queue to use for the available SUnits. /// LatencyPriorityQueue AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands becomes available, the instruction is /// added to the AvailableQueue. std::vector PendingQueue; public: const char *getPassName() const { return "Post RA top-down list latency scheduler (STUB)"; } bool runOnMachineFunction(MachineFunction &Fn); void Schedule(); private: void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); }; } bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { DOUT << "PostRAScheduler\n"; MF = &Fn; TM = &MF->getTarget(); // Loop over all of the basic blocks for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { SchedulePostRATDList Scheduler(MBB, *TM); Scheduler.Run(); Scheduler.EmitSchedule(); } return true; } /// Schedule - Schedule the DAG using list scheduling. void SchedulePostRATDList::Schedule() { DOUT << "********** List Scheduling **********\n"; // Build scheduling units. BuildSchedUnits(); AvailableQueue.initNodes(SUnits); ListScheduleTopDown(); AvailableQueue.releaseState(); } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. Also update its cycle bound. void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) { --SuccSU->NumPredsLeft; #ifndef NDEBUG if (SuccSU->NumPredsLeft < 0) { cerr << "*** Scheduling failed! ***\n"; SuccSU->dump(this); cerr << " has been released too many times!\n"; assert(0); } #endif // Compute how many cycles it will be before this actually becomes // available. This is the max of the start time of all predecessors plus // their latencies. // If this is a token edge, we don't need to wait for the latency of the // preceeding instruction (e.g. a long-latency load) unless there is also // some other data dependence. unsigned PredDoneCycle = SU->Cycle; if (!isChain) PredDoneCycle += SU->Latency; else if (SU->Latency) PredDoneCycle += 1; SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle); if (SuccSU->NumPredsLeft == 0) { PendingQueue.push_back(SuccSU); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DOUT << "*** Scheduling [" << CurCycle << "]: "; DEBUG(SU->dump(this)); Sequence.push_back(SU); SU->Cycle = CurCycle; // Top down: release successors. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(SU, I->Dep, I->isCtrl); SU->isScheduled = true; AvailableQueue.ScheduledNode(SU); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void SchedulePostRATDList::ListScheduleTopDown() { unsigned CurCycle = 0; // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.empty()) { AvailableQueue.push(&SUnits[i]); SUnits[i].isAvailable = true; } } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. Sequence.reserve(SUnits.size()); while (!AvailableQueue.empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i]->CycleBound == CurCycle) { AvailableQueue.push(PendingQueue[i]); PendingQueue[i]->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else { assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?"); } } // If there are no instructions available, don't try to issue anything, and // don't advance the hazard recognizer. if (AvailableQueue.empty()) { ++CurCycle; continue; } SUnit *FoundSUnit = AvailableQueue.pop(); // If we found a node to schedule, do it now. if (FoundSUnit) { ScheduleNodeTopDown(FoundSUnit, CurCycle); // If this is a pseudo-op node, we don't want to increment the current // cycle. if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! ++CurCycle; } else { // Otherwise, we have a pipeline stall, but no other problem, just advance // the current cycle and try again. DOUT << "*** Advancing cycle, no work to do\n"; ++NumStalls; ++CurCycle; } } #ifndef NDEBUG VerifySchedule(/*isBottomUp=*/false); #endif } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// FunctionPass *llvm::createPostRAScheduler() { return new PostRAScheduler(); }