// $Id$ -*-c++-*- //*************************************************************************** // File: // MachineInstr.h // // Purpose: // // // Strategy: // // History: // 7/2/01 - Vikram Adve - Created //**************************************************************************/ #ifndef LLVM_CODEGEN_MACHINEINSTR_H #define LLVM_CODEGEN_MACHINEINSTR_H #include #include "llvm/CodeGen/InstrForest.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/NonCopyable.h" #include "llvm/Target/MachineInstrInfo.h" template class ValOpIterator; //--------------------------------------------------------------------------- // class MachineOperand // // Purpose: // Representation of each machine instruction operand. // This class is designed so that you can allocate a vector of operands // first and initialize each one later. // // E.g, for this VM instruction: // ptr = alloca type, numElements // we generate 2 machine instructions on the SPARC: // // mul Constant, Numelements -> Reg // add %sp, Reg -> Ptr // // Each instruction has 3 operands, listed above. Of those: // - Reg, NumElements, and Ptr are of operand type MO_Register. // - Constant is of operand type MO_SignExtendedImmed on the SPARC. // // For the register operands, the virtual register type is as follows: // // - Reg will be of virtual register type MO_MInstrVirtualReg. The field // MachineInstr* minstr will point to the instruction that computes reg. // // - %sp will be of virtual register type MO_MachineReg. // The field regNum identifies the machine register. // // - NumElements will be of virtual register type MO_VirtualReg. // The field Value* value identifies the value. // // - Ptr will also be of virtual register type MO_VirtualReg. // Again, the field Value* value identifies the value. // //--------------------------------------------------------------------------- class MachineOperand { public: enum MachineOperandType { MO_VirtualRegister, // virtual register for *value MO_MachineRegister, // pre-assigned machine register `regNum' MO_CCRegister, MO_SignExtendedImmed, MO_UnextendedImmed, MO_PCRelativeDisp, }; private: MachineOperandType opType; union { Value* value; // BasicBlockVal for a label operand. // ConstantVal for a non-address immediate. // Virtual register for an SSA operand, // including hidden operands required for // the generated machine code. int64_t immedVal; // constant value for an explicit constant }; unsigned regNum; // register number for an explicit register // will be set for a value after reg allocation bool isDef; // is this a defition for the value public: /*ctor*/ MachineOperand (); /*ctor*/ MachineOperand (MachineOperandType operandType, Value* _val); /*copy ctor*/ MachineOperand (const MachineOperand&); /*dtor*/ ~MachineOperand () {} // Accessor methods. Caller is responsible for checking the // operand type before invoking the corresponding accessor. // inline MachineOperandType getOperandType () const { return opType; } inline Value* getVRegValue () const { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_PCRelativeDisp); return value; } inline unsigned int getMachineRegNum() const { assert(opType == MO_MachineRegister); return regNum; } inline int64_t getImmedValue () const { assert(opType >= MO_SignExtendedImmed || opType <= MO_PCRelativeDisp); return immedVal; } inline bool opIsDef () const { return isDef; } public: friend ostream& operator<<(ostream& os, const MachineOperand& mop); private: // These functions are provided so that a vector of operands can be // statically allocated and individual ones can be initialized later. // Give class MachineInstr gets access to these functions. // void Initialize (MachineOperandType operandType, Value* _val); void InitializeConst (MachineOperandType operandType, int64_t intValue); void InitializeReg (unsigned int regNum); friend class MachineInstr; friend class ValOpIterator; friend class ValOpIterator< MachineInstr, Value>; public: // replaces the Value with its corresponding physical register afeter // register allocation is complete void setRegForValue(int reg) { assert(opType == MO_VirtualRegister || opType == MO_CCRegister); regNum = reg; } // used to get the reg number if when one is allocted (must be // called only after reg alloc) inline unsigned getAllocatedRegNum() const { assert(opType == MO_VirtualRegister || opType == MO_CCRegister || opType == MO_MachineRegister); return regNum; } }; inline MachineOperand::MachineOperand() : opType(MO_VirtualRegister), value(NULL), regNum(0), immedVal(0), isDef(false) {} inline MachineOperand::MachineOperand(MachineOperandType operandType, Value* _val) : opType(operandType), value(_val), regNum(0), immedVal(0), isDef(false) {} inline MachineOperand::MachineOperand(const MachineOperand& mo) : opType(mo.opType), isDef(false) { switch(opType) { case MO_VirtualRegister: case MO_CCRegister: value = mo.value; break; case MO_MachineRegister: regNum = mo.regNum; break; case MO_SignExtendedImmed: case MO_UnextendedImmed: case MO_PCRelativeDisp: immedVal = mo.immedVal; break; default: assert(0); } } inline void MachineOperand::Initialize(MachineOperandType operandType, Value* _val) { opType = operandType; value = _val; } inline void MachineOperand::InitializeConst(MachineOperandType operandType, int64_t intValue) { opType = operandType; value = NULL; immedVal = intValue; } inline void MachineOperand::InitializeReg(unsigned int _regNum) { opType = MO_MachineRegister; value = NULL; regNum = _regNum; } //--------------------------------------------------------------------------- // class MachineInstr // // Purpose: // Representation of each machine instruction. // // MachineOpCode must be an enum, defined separately for each target. // E.g., It is defined in SparcInstructionSelection.h for the SPARC. // // opCodeMask is used to record variants of an instruction. // E.g., each branch instruction on SPARC has 2 flags (i.e., 4 variants): // ANNUL: if 1: Annul delay slot instruction. // PREDICT-NOT-TAKEN: if 1: predict branch not taken. // Instead of creating 4 different opcodes for BNZ, we create a single // opcode and set bits in opCodeMask for each of these flags. //--------------------------------------------------------------------------- class MachineInstr : public NonCopyable { private: MachineOpCode opCode; OpCodeMask opCodeMask; // extra bits for variants of an opcode vector operands; public: typedef ValOpIterator val_op_const_iterator; typedef ValOpIterator val_op_iterator; public: /*ctor*/ MachineInstr (MachineOpCode _opCode, OpCodeMask _opCodeMask = 0x0); /*ctor*/ MachineInstr (MachineOpCode _opCode, unsigned numOperands, OpCodeMask _opCodeMask = 0x0); inline ~MachineInstr () {} const MachineOpCode getOpCode () const; unsigned int getNumOperands () const; const MachineOperand& getOperand (unsigned int i) const; MachineOperand& getOperand (unsigned int i); bool operandIsDefined(unsigned int i) const; void dump (unsigned int indent = 0) const; public: friend ostream& operator<<(ostream& os, const MachineInstr& minstr); friend val_op_const_iterator; friend val_op_iterator; public: // Access to set the operands when building the machine instruction void SetMachineOperand(unsigned int i, MachineOperand::MachineOperandType operandType, Value* _val, bool isDef=false); void SetMachineOperand(unsigned int i, MachineOperand::MachineOperandType operandType, int64_t intValue, bool isDef=false); void SetMachineOperand(unsigned int i, unsigned int regNum, bool isDef=false); }; inline const MachineOpCode MachineInstr::getOpCode() const { return opCode; } inline unsigned int MachineInstr::getNumOperands() const { return operands.size(); } inline MachineOperand& MachineInstr::getOperand(unsigned int i) { assert(i < operands.size() && "getOperand() out of range!"); return operands[i]; } inline const MachineOperand& MachineInstr::getOperand(unsigned int i) const { assert(i < operands.size() && "getOperand() out of range!"); return operands[i]; } inline bool MachineInstr::operandIsDefined(unsigned int i) const { return getOperand(i).opIsDef(); } template class ValOpIterator : public std::forward_iterator<_V, ptrdiff_t> { private: unsigned int i; int resultPos; _MI* minstr; inline void skipToNextVal() { while (i < minstr->getNumOperands() && ! ((minstr->operands[i].opType == MachineOperand::MO_VirtualRegister || minstr->operands[i].opType == MachineOperand::MO_CCRegister) && minstr->operands[i].value != NULL)) ++i; } public: typedef ValOpIterator<_MI, _V> _Self; inline ValOpIterator(_MI* _minstr) : i(0), minstr(_minstr) { resultPos = TargetInstrDescriptors[minstr->opCode].resultPos; skipToNextVal(); }; inline _V* operator*() const { return minstr->getOperand(i).getVRegValue();} const MachineOperand & getMachineOperand() const { return minstr->getOperand(i); } inline _V* operator->() const { return operator*(); } // inline bool isDef () const { return (((int) i) == resultPos); } inline bool isDef () const { return minstr->getOperand(i).isDef; } inline bool done () const { return (i == minstr->getNumOperands()); } inline _Self& operator++() { i++; skipToNextVal(); return *this; } inline _Self operator++(int) { _Self tmp = *this; ++*this; return tmp; } }; //--------------------------------------------------------------------------- // class MachineCodeForVMInstr // // Purpose: // Representation of the sequence of machine instructions created // for a single VM instruction. Additionally records information // about hidden and implicit values used by the machine instructions: // // (1) "Temporary values" are intermediate values used in the machine // instruction sequence, but not in the VM instruction // Note that such values should be treated as pure SSA values with // no interpretation of their operands (i.e., as a TmpInstruction // object which actually represents such a value). // // (2) "Implicit uses" are values used in the VM instruction but not in // the machine instruction sequence // //--------------------------------------------------------------------------- class MachineCodeForVMInstr: public vector { private: vector< Value*> tempVec; // used by m/c instr but not VM instr vector implicitUses; // used by VM instr but not m/c instr public: /*ctor*/ MachineCodeForVMInstr () {} /*ctor*/ ~MachineCodeForVMInstr (); const vector< Value*>& getTempValues () const { return tempVec; } const vector& getImplicitUses() const { return implicitUses; } void addTempValue ( Value* val) { tempVec.push_back(val); } void addImplicitUse(const Value* val) { implicitUses.push_back(val);} // dropAllReferences() - This function drops all references within // temporary (hidden) instructions created in implementing the original // VM intruction. This ensures there are no remaining "uses" within // these hidden instructions, before the values of a method are freed. // // Make this inline because it has to be called from class Instruction // and inlining it avoids a serious circurality in link order. inline void dropAllReferences() { for (unsigned i=0, N=tempVec.size(); i < N; i++) if (Instruction *I = dyn_cast(tempVec[i])) I->dropAllReferences(); } }; inline MachineCodeForVMInstr::~MachineCodeForVMInstr() { // Free the Value objects created to hold intermediate values for (unsigned i=0, N=tempVec.size(); i < N; i++) delete tempVec[i]; // Free the MachineInstr objects allocated, if any. for (unsigned i=0, N=this->size(); i < N; i++) delete (*this)[i]; } //--------------------------------------------------------------------------- // class MachineCodeForBasicBlock // // Purpose: // Representation of the sequence of machine instructions created // for a basic block. //--------------------------------------------------------------------------- class MachineCodeForBasicBlock: public vector { public: typedef vector::iterator iterator; typedef vector::const_iterator const_iterator; }; //--------------------------------------------------------------------------- // Target-independent utility routines for creating machine instructions //--------------------------------------------------------------------------- //------------------------------------------------------------------------ // Function Set2OperandsFromInstr // Function Set3OperandsFromInstr // // For the common case of 2- and 3-operand arithmetic/logical instructions, // set the m/c instr. operands directly from the VM instruction's operands. // Check whether the first or second operand is 0 and can use a dedicated // "0" register. // Check whether the second operand should use an immediate field or register. // (First and third operands are never immediates for such instructions.) // // Arguments: // canDiscardResult: Specifies that the result operand can be discarded // by using the dedicated "0" // // op1position, op2position and resultPosition: Specify in which position // in the machine instruction the 3 operands (arg1, arg2 // and result) should go. // // RETURN VALUE: unsigned int flags, where // flags & 0x01 => operand 1 is constant and needs a register // flags & 0x02 => operand 2 is constant and needs a register //------------------------------------------------------------------------ void Set2OperandsFromInstr (MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& targetMachine, bool canDiscardResult = false, int op1Position = 0, int resultPosition = 1); void Set3OperandsFromInstr (MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& targetMachine, bool canDiscardResult = false, int op1Position = 0, int op2Position = 1, int resultPosition = 2); MachineOperand::MachineOperandType ChooseRegOrImmed(Value* val, MachineOpCode opCode, const TargetMachine& targetMachine, bool canUseImmed, unsigned int& getMachineRegNum, int64_t& getImmedValue); ostream& operator<<(ostream& os, const MachineInstr& minstr); ostream& operator<<(ostream& os, const MachineOperand& mop); void PrintMachineInstructions (const Method *method); //**************************************************************************/ #endif