//===-- DelaySlotFiller.cpp - MBlaze delay slot filler --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A pass that attempts to fill instructions with delay slots. If no // instructions can be moved into the delay slot then a NOP is placed there. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "delay-slot-filler" #include "MBlaze.h" #include "MBlazeTargetMachine.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(FilledSlots, "Number of delay slots filled"); namespace { struct Filler : public MachineFunctionPass { TargetMachine &TM; const TargetInstrInfo *TII; static char ID; Filler(TargetMachine &tm) : MachineFunctionPass(ID), TM(tm), TII(tm.getInstrInfo()) { } virtual const char *getPassName() const { return "MBlaze Delay Slot Filler"; } bool runOnMachineBasicBlock(MachineBasicBlock &MBB); bool runOnMachineFunction(MachineFunction &F) { bool Changed = false; for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Changed |= runOnMachineBasicBlock(*FI); return Changed; } }; char Filler::ID = 0; } // end of anonymous namespace static bool hasImmInstruction( MachineBasicBlock::iterator &candidate ) { // Any instruction with an immediate mode operand greater than // 16-bits requires an implicit IMM instruction. unsigned numOper = candidate->getNumOperands(); for( unsigned op = 0; op < numOper; ++op ) { if( candidate->getOperand(op).isImm() && (candidate->getOperand(op).getImm() & 0xFFFFFFFFFFFF0000LL) != 0 ) return true; // FIXME: we could probably check to see if the FP value happens // to not need an IMM instruction. For now we just always // assume that FP values always do. if( candidate->getOperand(op).isFPImm() ) return true; } return false; } static bool delayHasHazard( MachineBasicBlock::iterator &candidate, MachineBasicBlock::iterator &slot ) { // Loop over all of the operands in the branch instruction // and make sure that none of them are defined by the // candidate instruction. unsigned numOper = slot->getNumOperands(); for( unsigned op = 0; op < numOper; ++op ) { if( !slot->getOperand(op).isReg() || !slot->getOperand(op).isUse() || slot->getOperand(op).isImplicit() ) continue; unsigned cnumOper = candidate->getNumOperands(); for( unsigned cop = 0; cop < cnumOper; ++cop ) { if( candidate->getOperand(cop).isReg() && candidate->getOperand(cop).isDef() && candidate->getOperand(cop).getReg() == slot->getOperand(op).getReg() ) return true; } } // There are no hazards between the two instructions return false; } static bool usedBeforeDelaySlot( MachineBasicBlock::iterator &candidate, MachineBasicBlock::iterator &slot ) { MachineBasicBlock::iterator I = candidate; for (++I; I != slot; ++I) { unsigned numOper = I->getNumOperands(); for( unsigned op = 0; op < numOper; ++op ) { if( I->getOperand(op).isReg() && I->getOperand(op).isUse() ) { unsigned reg = I->getOperand(op).getReg(); unsigned cops = candidate->getNumOperands(); for( unsigned cop = 0; cop < cops; ++cop ) { if( candidate->getOperand(cop).isReg() && candidate->getOperand(cop).isDef() && candidate->getOperand(cop).getReg() == reg ) return true; } } } } return false; } static MachineBasicBlock::iterator findDelayInstr(MachineBasicBlock &MBB,MachineBasicBlock::iterator &slot) { MachineBasicBlock::iterator found = MBB.end(); for (MachineBasicBlock::iterator I = MBB.begin(); I != slot; ++I) { TargetInstrDesc desc = I->getDesc(); if( desc.hasDelaySlot() || desc.isBranch() || desc.mayLoad() || desc. mayStore() || hasImmInstruction(I) || delayHasHazard(I,slot) || usedBeforeDelaySlot(I,slot)) continue; found = I; } return found; } /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. /// Currently, we fill delay slots with NOPs. We assume there is only one /// delay slot per delayed instruction. bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) if (I->getDesc().hasDelaySlot()) { MachineBasicBlock::iterator J = I; MachineBasicBlock::iterator D = findDelayInstr(MBB,I); ++J; ++FilledSlots; Changed = true; if( D == MBB.end() ) BuildMI(MBB, J, I->getDebugLoc(), TII->get(MBlaze::NOP)); else MBB.splice( J, &MBB, D ); } return Changed; } /// createMBlazeDelaySlotFillerPass - Returns a pass that fills in delay /// slots in MBlaze MachineFunctions FunctionPass *llvm::createMBlazeDelaySlotFillerPass(MBlazeTargetMachine &tm) { return new Filler(tm); }