//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "subtarget" #include "X86Subtarget.h" #include "X86InstrInfo.h" #include "X86GenSubtarget.inc" #include "llvm/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Host.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/SmallVector.h" using namespace llvm; #if defined(_MSC_VER) #include #endif /// ClassifyBlockAddressReference - Classify a blockaddress reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char X86Subtarget:: ClassifyBlockAddressReference() const { if (isPICStyleGOT()) // 32-bit ELF targets. return X86II::MO_GOTOFF; if (isPICStyleStubPIC()) // Darwin/32 in PIC mode. return X86II::MO_PIC_BASE_OFFSET; // Direct static reference to label. return X86II::MO_NO_FLAG; } /// ClassifyGlobalReference - Classify a global variable reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char X86Subtarget:: ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { // DLLImport only exists on windows, it is implemented as a load from a // DLLIMPORT stub. if (GV->hasDLLImportLinkage()) return X86II::MO_DLLIMPORT; // Determine whether this is a reference to a definition or a declaration. // Materializable GVs (in JIT lazy compilation mode) do not require an extra // load from stub. bool isDecl = GV->hasAvailableExternallyLinkage(); if (GV->isDeclaration() && !GV->isMaterializable()) isDecl = true; // X86-64 in PIC mode. if (isPICStyleRIPRel()) { // Large model never uses stubs. if (TM.getCodeModel() == CodeModel::Large) return X86II::MO_NO_FLAG; if (isTargetDarwin()) { // If symbol visibility is hidden, the extra load is not needed if // target is x86-64 or the symbol is definitely defined in the current // translation unit. if (GV->hasDefaultVisibility() && (isDecl || GV->isWeakForLinker())) return X86II::MO_GOTPCREL; } else { assert(isTargetELF() && "Unknown rip-relative target"); // Extra load is needed for all externally visible. if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) return X86II::MO_GOTPCREL; } return X86II::MO_NO_FLAG; } if (isPICStyleGOT()) { // 32-bit ELF targets. // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return X86II::MO_GOTOFF; return X86II::MO_GOT; } if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. // Determine whether we have a stub reference and/or whether the reference // is relative to the PIC base or not. // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return X86II::MO_PIC_BASE_OFFSET; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY_PIC_BASE; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) { // Hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; } // Otherwise, no stub. return X86II::MO_PIC_BASE_OFFSET; } if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. // Determine whether we have a stub reference. // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return X86II::MO_NO_FLAG; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return X86II::MO_DARWIN_NONLAZY; // Otherwise, no stub. return X86II::MO_NO_FLAG; } // Direct static reference to global. return X86II::MO_NO_FLAG; } /// getBZeroEntry - This function returns the name of a function which has an /// interface like the non-standard bzero function, if such a function exists on /// the current subtarget and it is considered prefereable over memset with zero /// passed as the second argument. Otherwise it returns null. const char *X86Subtarget::getBZeroEntry() const { // Darwin 10 has a __bzero entry point for this purpose. if (getDarwinVers() >= 10) return "__bzero"; return 0; } /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls /// to immediate address. bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { if (Is64Bit) return false; return isTargetELF() || TM.getRelocationModel() == Reloc::Static; } /// getSpecialAddressLatency - For targets where it is beneficial to /// backschedule instructions that compute addresses, return a value /// indicating the number of scheduling cycles of backscheduling that /// should be attempted. unsigned X86Subtarget::getSpecialAddressLatency() const { // For x86 out-of-order targets, back-schedule address computations so // that loads and stores aren't blocked. // This value was chosen arbitrarily. return 200; } /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) #if defined(__GNUC__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #endif #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; #endif #endif return true; } static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } void X86Subtarget::AutoDetectSubtargetFeatures() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; union { unsigned u[3]; char c[12]; } text; if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) return; GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 15) & 1) HasCMov = true; if ((EDX >> 23) & 1) X86SSELevel = MMX; if ((EDX >> 25) & 1) X86SSELevel = SSE1; if ((EDX >> 26) & 1) X86SSELevel = SSE2; if (ECX & 0x1) X86SSELevel = SSE3; if ((ECX >> 9) & 1) X86SSELevel = SSSE3; if ((ECX >> 19) & 1) X86SSELevel = SSE41; if ((ECX >> 20) & 1) X86SSELevel = SSE42; bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; HasFMA3 = IsIntel && ((ECX >> 12) & 0x1); HasAVX = ((ECX >> 28) & 0x1); HasAES = IsIntel && ((ECX >> 25) & 0x1); if (IsIntel || IsAMD) { // Determine if bit test memory instructions are slow. unsigned Family = 0; unsigned Model = 0; DetectFamilyModel(EAX, Family, Model); IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13); // If it's Nehalem, unaligned memory access is fast. if (Family == 15 && Model == 26) IsUAMemFast = true; GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); HasX86_64 = (EDX >> 29) & 0x1; HasSSE4A = IsAMD && ((ECX >> 6) & 0x1); HasFMA4 = IsAMD && ((ECX >> 16) & 0x1); } } X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, bool is64Bit) : PICStyle(PICStyles::None) , X86SSELevel(NoMMXSSE) , X863DNowLevel(NoThreeDNow) , HasCMov(false) , HasX86_64(false) , HasSSE4A(false) , HasAVX(false) , HasAES(false) , HasFMA3(false) , HasFMA4(false) , IsBTMemSlow(false) , IsUAMemFast(false) , HasVectorUAMem(false) , DarwinVers(0) , stackAlignment(8) // FIXME: this is a known good value for Yonah. How about others? , MaxInlineSizeThreshold(128) , Is64Bit(is64Bit) , TargetType(isELF) { // Default to ELF unless otherwise specified. // default to hard float ABI if (FloatABIType == FloatABI::Default) FloatABIType = FloatABI::Hard; // Determine default and user specified characteristics if (!FS.empty()) { // If feature string is not empty, parse features string. std::string CPU = sys::getHostCPUName(); ParseSubtargetFeatures(FS, CPU); // All X86-64 CPUs also have SSE2, however user might request no SSE via // -mattr, so don't force SSELevel here. } else { // Otherwise, use CPUID to auto-detect feature set. AutoDetectSubtargetFeatures(); // Make sure SSE2 is enabled; it is available on all X86-64 CPUs. if (Is64Bit && X86SSELevel < SSE2) X86SSELevel = SSE2; } // If requesting codegen for X86-64, make sure that 64-bit features // are enabled. if (Is64Bit) { HasX86_64 = true; // All 64-bit cpus have cmov support. HasCMov = true; } DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel << ", 3DNowLevel " << X863DNowLevel << ", 64bit " << HasX86_64 << "\n"); assert((!Is64Bit || HasX86_64) && "64-bit code requested on a subtarget that doesn't support it!"); // Set the boolean corresponding to the current target triple, or the default // if one cannot be determined, to true. if (TT.length() > 5) { size_t Pos; if ((Pos = TT.find("-darwin")) != std::string::npos) { TargetType = isDarwin; // Compute the darwin version number. if (isdigit(TT[Pos+7])) DarwinVers = atoi(&TT[Pos+7]); else DarwinVers = 8; // Minimum supported darwin is Tiger. } else if (TT.find("linux") != std::string::npos) { // Linux doesn't imply ELF, but we don't currently support anything else. TargetType = isELF; } else if (TT.find("cygwin") != std::string::npos) { TargetType = isCygwin; } else if (TT.find("mingw") != std::string::npos) { TargetType = isMingw; } else if (TT.find("win32") != std::string::npos) { TargetType = isWindows; } else if (TT.find("windows") != std::string::npos) { TargetType = isWindows; } else if (TT.find("-cl") != std::string::npos) { TargetType = isDarwin; DarwinVers = 9; } } // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64 // bit targets. if (TargetType == isDarwin || Is64Bit) stackAlignment = 16; if (StackAlignment) stackAlignment = StackAlignment; } /// IsCalleePop - Determines whether the callee is required to pop its /// own arguments. Callee pop is necessary to support tail calls. bool X86Subtarget::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv) const { if (IsVarArg) return false; switch (CallingConv) { default: return false; case CallingConv::X86_StdCall: return !is64Bit(); case CallingConv::X86_FastCall: return !is64Bit(); case CallingConv::X86_ThisCall: return !is64Bit(); case CallingConv::Fast: return GuaranteedTailCallOpt; case CallingConv::GHC: return GuaranteedTailCallOpt; } }