//===-- Constants.cpp - Implement Constant nodes --------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Constant* classes... // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "ConstantFolding.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" #include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/MathExtras.h" #include #include using namespace llvm; ConstantBool *ConstantBool::True = new ConstantBool(true); ConstantBool *ConstantBool::False = new ConstantBool(false); //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependent on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) std::cerr << "While deleting: " << *this << "\n\nUse still stuck around after Def is destroyed: " << *V << "\n\n"; #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CV = cast(V); CV->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { switch (Ty->getTypeID()) { case Type::BoolTyID: { static Constant *NullBool = ConstantBool::get(false); return NullBool; } case Type::SByteTyID: { static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0); return NullSByte; } case Type::UByteTyID: { static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0); return NullUByte; } case Type::ShortTyID: { static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0); return NullShort; } case Type::UShortTyID: { static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0); return NullUShort; } case Type::IntTyID: { static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0); return NullInt; } case Type::UIntTyID: { static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0); return NullUInt; } case Type::LongTyID: { static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0); return NullLong; } case Type::ULongTyID: { static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0); return NullULong; } case Type::FloatTyID: { static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0); return NullFloat; } case Type::DoubleTyID: { static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0); return NullDouble; } case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); case Type::StructTyID: case Type::ArrayTyID: case Type::PackedTyID: return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? assert(!"Cannot create a null constant of that type!"); return 0; } } // Static constructor to create the maximum constant of an integral type... ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) { switch (Ty->getTypeID()) { case Type::BoolTyID: return ConstantBool::True; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: { // Calculate 011111111111111... unsigned TypeBits = Ty->getPrimitiveSize()*8; int64_t Val = INT64_MAX; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantSInt::get(Ty, Val); } case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return getAllOnesValue(Ty); default: return 0; } } // Static constructor to create the minimum constant for an integral type... ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) { switch (Ty->getTypeID()) { case Type::BoolTyID: return ConstantBool::False; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: { // Calculate 1111111111000000000000 unsigned TypeBits = Ty->getPrimitiveSize()*8; int64_t Val = -1; // All ones Val <<= TypeBits-1; // Shift over to the right spot return ConstantSInt::get(Ty, Val); } case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); default: return 0; } } // Static constructor to create an integral constant with all bits set ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) { switch (Ty->getTypeID()) { case Type::BoolTyID: return ConstantBool::True; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, -1); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: { // Calculate ~0 of the right type... unsigned TypeBits = Ty->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantUInt::get(Ty, Val); } default: return 0; } } bool ConstantUInt::isAllOnesValue() const { unsigned TypeBits = getType()->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out inappropriate bits return getValue() == Val; } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Normal Constructors ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V) : Constant(Ty, VT, 0, 0) { Val.Unsigned = V; } ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy, ConstantBoolVal, V) { } ConstantInt::ConstantInt(const Type *Ty, ValueTy VT, uint64_t V) : ConstantIntegral(Ty, VT, V) { } ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, ConstantSIntVal, V) { assert(Ty->isInteger() && Ty->isSigned() && "Illegal type for signed integer constant!"); assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, ConstantUIntVal, V) { assert(Ty->isInteger() && Ty->isUnsigned() && "Illegal type for unsigned integer constant!"); assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty, ConstantFPVal, 0, 0) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); Val = V; } ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant array"); Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; assert((C->getType() == T->getElementType() || (T->isAbstract() && C->getType()->getTypeID() == T->getElementType()->getTypeID())) && "Initializer for array element doesn't match array element type!"); OL->init(C, this); } } ConstantArray::~ConstantArray() { delete [] OperandList; } ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant structure"); Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; assert((C->getType() == T->getElementType(I-V.begin()) || ((T->getElementType(I-V.begin())->isAbstract() || C->getType()->isAbstract()) && T->getElementType(I-V.begin())->getTypeID() == C->getType()->getTypeID())) && "Initializer for struct element doesn't match struct element type!"); OL->init(C, this); } } ConstantStruct::~ConstantStruct() { delete [] OperandList; } ConstantPacked::ConstantPacked(const PackedType *T, const std::vector &V) : Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) { Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { Constant *C = *I; assert((C->getType() == T->getElementType() || (T->isAbstract() && C->getType()->getTypeID() == T->getElementType()->getTypeID())) && "Initializer for packed element doesn't match packed element type!"); OL->init(C, this); } } ConstantPacked::~ConstantPacked() { delete [] OperandList; } /// UnaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement unary constant exprs. class UnaryConstantExpr : public ConstantExpr { Use Op; public: UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {} }; static bool isSetCC(unsigned Opcode) { return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE || Opcode == Instruction::SetLT || Opcode == Instruction::SetGT || Opcode == Instruction::SetLE || Opcode == Instruction::SetGE; } /// BinaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement binary constant exprs. class BinaryConstantExpr : public ConstantExpr { Use Ops[2]; public: BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) : ConstantExpr(isSetCC(Opcode) ? Type::BoolTy : C1->getType(), Opcode, Ops, 2) { Ops[0].init(C1, this); Ops[1].init(C2, this); } }; /// SelectConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement select constant exprs. class SelectConstantExpr : public ConstantExpr { Use Ops[3]; public: SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) { Ops[0].init(C1, this); Ops[1].init(C2, this); Ops[2].init(C3, this); } }; /// ExtractElementConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement extractelement constant exprs. class ExtractElementConstantExpr : public ConstantExpr { Use Ops[2]; public: ExtractElementConstantExpr(Constant *C1, Constant *C2) : ConstantExpr(cast(C1->getType())->getElementType(), Instruction::ExtractElement, Ops, 2) { Ops[0].init(C1, this); Ops[1].init(C2, this); } }; /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is /// used behind the scenes to implement getelementpr constant exprs. struct GetElementPtrConstantExpr : public ConstantExpr { GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, const Type *DestTy) : ConstantExpr(DestTy, Instruction::GetElementPtr, new Use[IdxList.size()+1], IdxList.size()+1) { OperandList[0].init(C, this); for (unsigned i = 0, E = IdxList.size(); i != E; ++i) OperandList[i+1].init(IdxList[i], this); } ~GetElementPtrConstantExpr() { delete [] OperandList; } }; /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// Constant *ConstantExpr::getNeg(Constant *C) { if (!C->getType()->isFloatingPoint()) return get(Instruction::Sub, getNullValue(C->getType()), C); else return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C); } Constant *ConstantExpr::getNot(Constant *C) { assert(isa(C) && "Cannot NOT a nonintegral type!"); return get(Instruction::Xor, C, ConstantIntegral::getAllOnesValue(C->getType())); } Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) { return get(Instruction::Add, C1, C2); } Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) { return get(Instruction::Sub, C1, C2); } Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) { return get(Instruction::Mul, C1, C2); } Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) { return get(Instruction::Div, C1, C2); } Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) { return get(Instruction::Rem, C1, C2); } Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { return get(Instruction::And, C1, C2); } Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { return get(Instruction::Or, C1, C2); } Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) { return get(Instruction::SetEQ, C1, C2); } Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) { return get(Instruction::SetNE, C1, C2); } Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) { return get(Instruction::SetLT, C1, C2); } Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) { return get(Instruction::SetGT, C1, C2); } Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) { return get(Instruction::SetLE, C1, C2); } Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) { return get(Instruction::SetGE, C1, C2); } Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) { return get(Instruction::Shl, C1, C2); } Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) { return get(Instruction::Shr, C1, C2); } Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) { if (C1->getType()->isUnsigned()) return getShr(C1, C2); return getCast(getShr(getCast(C1, C1->getType()->getUnsignedVersion()), C2), C1->getType()); } Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) { if (C1->getType()->isSigned()) return getShr(C1, C2); return getCast(getShr(getCast(C1, C1->getType()->getSignedVersion()), C2), C1->getType()); } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { switch (Ty->getTypeID()) { default: return false; // These can't be represented as integers!!! // Signed types... case Type::SByteTyID: return (Val <= INT8_MAX && Val >= INT8_MIN); case Type::ShortTyID: return (Val <= INT16_MAX && Val >= INT16_MIN); case Type::IntTyID: return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN)); case Type::LongTyID: return true; // This is the largest type... } } bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { switch (Ty->getTypeID()) { default: return false; // These can't be represented as integers!!! // Unsigned types... case Type::UByteTyID: return (Val <= UINT8_MAX); case Type::UShortTyID: return (Val <= UINT16_MAX); case Type::UIntTyID: return (Val <= UINT32_MAX); case Type::ULongTyID: return true; // This is the largest type... } } bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! // TODO: Figure out how to test if a double can be cast to a float! case Type::FloatTyID: case Type::DoubleTyID: return true; // This is the largest type... } }; //===----------------------------------------------------------------------===// // Factory Function Implementation // ConstantCreator - A class that is used to create constants by // ValueMap*. This class should be partially specialized if there is // something strange that needs to be done to interface to the ctor for the // constant. // namespace llvm { template struct ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { return new ConstantClass(Ty, V); } }; template struct ConvertConstantType { static void convert(ConstantClass *OldC, const TypeClass *NewTy) { assert(0 && "This type cannot be converted!\n"); abort(); } }; } namespace { template class ValueMap : public AbstractTypeUser { public: typedef std::pair MapKey; typedef std::map MapTy; typedef typename MapTy::iterator MapIterator; private: /// Map - This is the main map from the element descriptor to the Constants. /// This is the primary way we avoid creating two of the same shape /// constant. MapTy Map; /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping /// from the constants to their element in Map. This is important for /// removal of constants from the array, which would otherwise have to scan /// through the map with very large keys. std::map InverseMap; typedef std::map AbstractTypeMapTy; AbstractTypeMapTy AbstractTypeMap; friend void Constant::clearAllValueMaps(); private: void clear(std::vector &Constants) { for(MapIterator I = Map.begin(); I != Map.end(); ++I) Constants.push_back(I->second); Map.clear(); AbstractTypeMap.clear(); InverseMap.clear(); } public: MapIterator map_end() { return Map.end(); } /// InsertOrGetItem - Return an iterator for the specified element. /// If the element exists in the map, the returned iterator points to the /// entry and Exists=true. If not, the iterator points to the newly /// inserted entry and returns Exists=false. Newly inserted entries have /// I->second == 0, and should be filled in. MapIterator InsertOrGetItem(std::pair &InsertVal, bool &Exists) { std::pair IP = Map.insert(InsertVal); Exists = !IP.second; return IP.first; } private: MapIterator FindExistingElement(ConstantClass *CP) { if (HasLargeKey) { typename std::map::iterator IMI = InverseMap.find(CP); assert(IMI != InverseMap.end() && IMI->second != Map.end() && IMI->second->second == CP && "InverseMap corrupt!"); return IMI->second; } MapIterator I = Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP))); if (I == Map.end() || I->second != CP) { // FIXME: This should not use a linear scan. If this gets to be a // performance problem, someone should look at this. for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) /* empty */; } return I; } public: /// getOrCreate - Return the specified constant from the map, creating it if /// necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { MapKey Lookup(Ty, V); MapIterator I = Map.lower_bound(Lookup); if (I != Map.end() && I->first == Lookup) return I->second; // Is it in the map? // If no preexisting value, create one now... ConstantClass *Result = ConstantCreator::create(Ty, V); /// FIXME: why does this assert fail when loading 176.gcc? //assert(Result->getType() == Ty && "Type specified is not correct!"); I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.insert(std::make_pair(Result, I)); // If the type of the constant is abstract, make sure that an entry exists // for it in the AbstractTypeMap. if (Ty->isAbstract()) { typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.lower_bound(Ty); if (TI == AbstractTypeMap.end() || TI->first != Ty) { // Add ourselves to the ATU list of the type. cast(Ty)->addAbstractTypeUser(this); AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); } } return Result; } void remove(ConstantClass *CP) { MapIterator I = FindExistingElement(CP); assert(I != Map.end() && "Constant not found in constant table!"); assert(I->second == CP && "Didn't find correct element?"); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.erase(CP); // Now that we found the entry, make sure this isn't the entry that // the AbstractTypeMap points to. const TypeClass *Ty = I->first.first; if (Ty->isAbstract()) { assert(AbstractTypeMap.count(Ty) && "Abstract type not in AbstractTypeMap?"); MapIterator &ATMEntryIt = AbstractTypeMap[Ty]; if (ATMEntryIt == I) { // Yes, we are removing the representative entry for this type. // See if there are any other entries of the same type. MapIterator TmpIt = ATMEntryIt; // First check the entry before this one... if (TmpIt != Map.begin()) { --TmpIt; if (TmpIt->first.first != Ty) // Not the same type, move back... ++TmpIt; } // If we didn't find the same type, try to move forward... if (TmpIt == ATMEntryIt) { ++TmpIt; if (TmpIt == Map.end() || TmpIt->first.first != Ty) --TmpIt; // No entry afterwards with the same type } // If there is another entry in the map of the same abstract type, // update the AbstractTypeMap entry now. if (TmpIt != ATMEntryIt) { ATMEntryIt = TmpIt; } else { // Otherwise, we are removing the last instance of this type // from the table. Remove from the ATM, and from user list. cast(Ty)->removeAbstractTypeUser(this); AbstractTypeMap.erase(Ty); } } } Map.erase(I); } /// MoveConstantToNewSlot - If we are about to change C to be the element /// specified by I, update our internal data structures to reflect this /// fact. void MoveConstantToNewSlot(ConstantClass *C, MapIterator I) { // First, remove the old location of the specified constant in the map. MapIterator OldI = FindExistingElement(C); assert(OldI != Map.end() && "Constant not found in constant table!"); assert(OldI->second == C && "Didn't find correct element?"); // If this constant is the representative element for its abstract type, // update the AbstractTypeMap so that the representative element is I. if (C->getType()->isAbstract()) { typename AbstractTypeMapTy::iterator ATI = AbstractTypeMap.find(C->getType()); assert(ATI != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); if (ATI->second == OldI) ATI->second = I; } // Remove the old entry from the map. Map.erase(OldI); // Update the inverse map so that we know that this constant is now // located at descriptor I. if (HasLargeKey) { assert(I->second == C && "Bad inversemap entry!"); InverseMap[C] = I; } } void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(cast(OldTy)); assert(I != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); // Convert a constant at a time until the last one is gone. The last one // leaving will remove() itself, causing the AbstractTypeMapEntry to be // eliminated eventually. do { ConvertConstantType::convert(I->second->second, cast(NewTy)); I = AbstractTypeMap.find(cast(OldTy)); } while (I != AbstractTypeMap.end()); } // If the type became concrete without being refined to any other existing // type, we just remove ourselves from the ATU list. void typeBecameConcrete(const DerivedType *AbsTy) { AbsTy->removeAbstractTypeUser(this); } void dump() const { std::cerr << "Constant.cpp: ValueMap\n"; } }; } //---- ConstantUInt::get() and ConstantSInt::get() implementations... // static ValueMap< int64_t, Type, ConstantSInt> SIntConstants; static ValueMap UIntConstants; ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { return SIntConstants.getOrCreate(Ty, V); } ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { return UIntConstants.getOrCreate(Ty, V); } ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { assert(V <= 127 && "Can only be used with very small positive constants!"); if (Ty->isSigned()) return ConstantSInt::get(Ty, V); return ConstantUInt::get(Ty, V); } //---- ConstantFP::get() implementation... // namespace llvm { template<> struct ConstantCreator { static ConstantFP *create(const Type *Ty, uint64_t V) { assert(Ty == Type::DoubleTy); return new ConstantFP(Ty, BitsToDouble(V)); } }; template<> struct ConstantCreator { static ConstantFP *create(const Type *Ty, uint32_t V) { assert(Ty == Type::FloatTy); return new ConstantFP(Ty, BitsToFloat(V)); } }; } static ValueMap DoubleConstants; static ValueMap FloatConstants; bool ConstantFP::isNullValue() const { return DoubleToBits(Val) == 0; } bool ConstantFP::isExactlyValue(double V) const { return DoubleToBits(V) == DoubleToBits(Val); } ConstantFP *ConstantFP::get(const Type *Ty, double V) { if (Ty == Type::FloatTy) { // Force the value through memory to normalize it. return FloatConstants.getOrCreate(Ty, FloatToBits(V)); } else { assert(Ty == Type::DoubleTy); return DoubleConstants.getOrCreate(Ty, DoubleToBits(V)); } } //---- ConstantAggregateZero::get() implementation... // namespace llvm { // ConstantAggregateZero does not take extra "value" argument... template struct ConstantCreator { static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ return new ConstantAggregateZero(Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { // Make everyone now use a constant of the new type... Constant *New = ConstantAggregateZero::get(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } static ValueMap AggZeroConstants; static char getValType(ConstantAggregateZero *CPZ) { return 0; } Constant *ConstantAggregateZero::get(const Type *Ty) { return AggZeroConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantAggregateZero::destroyConstant() { AggZeroConstants.remove(this); destroyConstantImpl(); } //---- ConstantArray::get() implementation... // namespace llvm { template<> struct ConvertConstantType { static void convert(ConstantArray *OldC, const ArrayType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantArray::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } static std::vector getValType(ConstantArray *CA) { std::vector Elements; Elements.reserve(CA->getNumOperands()); for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) Elements.push_back(cast(CA->getOperand(i))); return Elements; } typedef ValueMap, ArrayType, ConstantArray, true /*largekey*/> ArrayConstantsTy; static ArrayConstantsTy ArrayConstants; Constant *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { // If this is an all-zero array, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) return ArrayConstants.getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) return ArrayConstants.getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } // destroyConstant - Remove the constant from the constant table... // void ConstantArray::destroyConstant() { ArrayConstants.remove(this); destroyConstantImpl(); } // ConstantArray::get(const string&) - Return an array that is initialized to // contain the specified string. A null terminator is added to the specified // string so that it may be used in a natural way... // Constant *ConstantArray::get(const std::string &Str) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); // Add a null terminator to the string... ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1); return ConstantArray::get(ATy, ElementVals); } /// isString - This method returns true if the array is an array of sbyte or /// ubyte, and if the elements of the array are all ConstantInt's. bool ConstantArray::isString() const { // Check the element type for sbyte or ubyte... if (getType()->getElementType() != Type::UByteTy && getType()->getElementType() != Type::SByteTy) return false; // Check the elements to make sure they are all integers, not constant // expressions. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (!isa(getOperand(i))) return false; return true; } // getAsString - If the sub-element type of this array is either sbyte or ubyte, // then this method converts the array to an std::string and returns it. // Otherwise, it asserts out. // std::string ConstantArray::getAsString() const { assert(isString() && "Not a string!"); std::string Result; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result += (char)cast(getOperand(i))->getRawValue(); return Result; } //---- ConstantStruct::get() implementation... // namespace llvm { template<> struct ConvertConstantType { static void convert(ConstantStruct *OldC, const StructType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantStruct::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } typedef ValueMap, StructType, ConstantStruct, true /*largekey*/> StructConstantsTy; static StructConstantsTy StructConstants; static std::vector getValType(ConstantStruct *CS) { std::vector Elements; Elements.reserve(CS->getNumOperands()); for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) Elements.push_back(cast(CS->getOperand(i))); return Elements; } Constant *ConstantStruct::get(const StructType *Ty, const std::vector &V) { // Create a ConstantAggregateZero value if all elements are zeros... for (unsigned i = 0, e = V.size(); i != e; ++i) if (!V[i]->isNullValue()) return StructConstants.getOrCreate(Ty, V); return ConstantAggregateZero::get(Ty); } Constant *ConstantStruct::get(const std::vector &V) { std::vector StructEls; StructEls.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) StructEls.push_back(V[i]->getType()); return get(StructType::get(StructEls), V); } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { StructConstants.remove(this); destroyConstantImpl(); } //---- ConstantPacked::get() implementation... // namespace llvm { template<> struct ConvertConstantType { static void convert(ConstantPacked *OldC, const PackedType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = ConstantPacked::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } static std::vector getValType(ConstantPacked *CP) { std::vector Elements; Elements.reserve(CP->getNumOperands()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) Elements.push_back(CP->getOperand(i)); return Elements; } static ValueMap, PackedType, ConstantPacked> PackedConstants; Constant *ConstantPacked::get(const PackedType *Ty, const std::vector &V) { // If this is an all-zero packed, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) return PackedConstants.getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) return PackedConstants.getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } Constant *ConstantPacked::get(const std::vector &V) { assert(!V.empty() && "Cannot infer type if V is empty"); return get(PackedType::get(V.front()->getType(),V.size()), V); } // destroyConstant - Remove the constant from the constant table... // void ConstantPacked::destroyConstant() { PackedConstants.remove(this); destroyConstantImpl(); } //---- ConstantPointerNull::get() implementation... // namespace llvm { // ConstantPointerNull does not take extra "value" argument... template struct ConstantCreator { static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ return new ConstantPointerNull(Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { // Make everyone now use a constant of the new type... Constant *New = ConstantPointerNull::get(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } static ValueMap NullPtrConstants; static char getValType(ConstantPointerNull *) { return 0; } ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { return NullPtrConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { NullPtrConstants.remove(this); destroyConstantImpl(); } //---- UndefValue::get() implementation... // namespace llvm { // UndefValue does not take extra "value" argument... template struct ConstantCreator { static UndefValue *create(const Type *Ty, const ValType &V) { return new UndefValue(Ty); } }; template<> struct ConvertConstantType { static void convert(UndefValue *OldC, const Type *NewTy) { // Make everyone now use a constant of the new type. Constant *New = UndefValue::get(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } static ValueMap UndefValueConstants; static char getValType(UndefValue *) { return 0; } UndefValue *UndefValue::get(const Type *Ty) { return UndefValueConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { UndefValueConstants.remove(this); destroyConstantImpl(); } //---- ConstantExpr::get() implementations... // typedef std::pair > ExprMapKeyType; namespace llvm { template<> struct ConstantCreator { static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) { if (V.first == Instruction::Cast) return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty); if ((V.first >= Instruction::BinaryOpsBegin && V.first < Instruction::BinaryOpsEnd) || V.first == Instruction::Shl || V.first == Instruction::Shr) return new BinaryConstantExpr(V.first, V.second[0], V.second[1]); if (V.first == Instruction::Select) return new SelectConstantExpr(V.second[0], V.second[1], V.second[2]); if (V.first == Instruction::ExtractElement) return new ExtractElementConstantExpr(V.second[0], V.second[1]); assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!"); std::vector IdxList(V.second.begin()+1, V.second.end()); return new GetElementPtrConstantExpr(V.second[0], IdxList, Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantExpr *OldC, const Type *NewTy) { Constant *New; switch (OldC->getOpcode()) { case Instruction::Cast: New = ConstantExpr::getCast(OldC->getOperand(0), NewTy); break; case Instruction::Select: New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), OldC->getOperand(1), OldC->getOperand(2)); break; case Instruction::Shl: case Instruction::Shr: New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), OldC->getOperand(1)); break; default: assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && OldC->getOpcode() < Instruction::BinaryOpsEnd); New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), OldC->getOperand(1)); break; case Instruction::GetElementPtr: // Make everyone now use a constant of the new type... std::vector Idx(OldC->op_begin()+1, OldC->op_end()); New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx); break; } assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } // end namespace llvm static ExprMapKeyType getValType(ConstantExpr *CE) { std::vector Operands; Operands.reserve(CE->getNumOperands()); for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) Operands.push_back(cast(CE->getOperand(i))); return ExprMapKeyType(CE->getOpcode(), Operands); } static ValueMap ExprConstants; Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); if (Constant *FC = ConstantFoldCastInstruction(C, Ty)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C); ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec); return ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) { assert(C->getType()->isIntegral() && Ty->isIntegral() && C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() && "This is an illegal sign extension!"); if (C->getType() != Type::BoolTy) { C = ConstantExpr::getCast(C, C->getType()->getSignedVersion()); return ConstantExpr::getCast(C, Ty); } else { if (C == ConstantBool::True) return ConstantIntegral::getAllOnesValue(Ty); else return ConstantIntegral::getNullValue(Ty); } } Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) { assert(C->getType()->isIntegral() && Ty->isIntegral() && C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() && "This is an illegal zero extension!"); if (C->getType() != Type::BoolTy) C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion()); return ConstantExpr::getCast(C, Ty); } Constant *ConstantExpr::getSizeOf(const Type *Ty) { // sizeof is implemented as: (ulong) gep (Ty*)null, 1 return getCast( getGetElementPtr(getNullValue(PointerType::get(Ty)), std::vector(1, ConstantInt::get(Type::UIntTy, 1))), Type::ULongTy); } Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) { // pointer from array is implemented as: getelementptr arr ptr, 0, 0 static std::vector Indices(2, ConstantUInt::get(Type::UIntTy, 0)); return ConstantExpr::getGetElementPtr(C, Indices); } Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, Constant *C1, Constant *C2) { if (Opcode == Instruction::Shl || Opcode == Instruction::Shr) return getShiftTy(ReqTy, Opcode, C1, C2); // Check the operands for consistency first assert((Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd) && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); if (ReqTy == C1->getType() || (Instruction::isRelational(Opcode) && ReqTy == Type::BoolTy)) if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector argVec(1, C1); argVec.push_back(C2); ExprMapKeyType Key = std::make_pair(Opcode, argVec); return ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { #ifndef NDEBUG switch (Opcode) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Div: case Instruction::Rem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() || isa(C1->getType())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert((C1->getType()->isIntegral() || isa(C1->getType())) && "Tried to create a logical operation on a non-integral type!"); break; case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE: case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE: assert(C1->getType() == C2->getType() && "Op types should be identical!"); break; case Instruction::Shl: case Instruction::Shr: assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!"); assert((C1->getType()->isInteger() || isa(C1->getType())) && "Tried to create a shift operation on a non-integer type!"); break; default: break; } #endif if (Instruction::isRelational(Opcode)) return getTy(Type::BoolTy, Opcode, C1, C2); else return getTy(C1->getType(), Opcode, C1, C2); } Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, Constant *V1, Constant *V2) { assert(C->getType() == Type::BoolTy && "Select condition must be bool!"); assert(V1->getType() == V2->getType() && "Select value types must match!"); assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!"); if (ReqTy == V1->getType()) if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) return SC; // Fold common cases std::vector argVec(3, C); argVec[1] = V1; argVec[2] = V2; ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec); return ExprConstants.getOrCreate(ReqTy, Key); } /// getShiftTy - Return a shift left or shift right constant expr Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode, Constant *C1, Constant *C2) { // Check the operands for consistency first assert((Opcode == Instruction::Shl || Opcode == Instruction::Shr) && "Invalid opcode in binary constant expression"); assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy && "Invalid operand types for Shift constant expr!"); if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C1); argVec.push_back(C2); ExprMapKeyType Key = std::make_pair(Opcode, argVec); return ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, const std::vector &IdxList) { assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) && "GEP indices invalid!"); if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList)) return FC; // Fold a few common cases... assert(isa(C->getType()) && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; ArgVec.reserve(IdxList.size()+1); ArgVec.push_back(C); for (unsigned i = 0, e = IdxList.size(); i != e; ++i) ArgVec.push_back(cast(IdxList[i])); const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,ArgVec); return ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getGetElementPtr(Constant *C, const std::vector &IdxList){ // Get the result type of the getelementptr! std::vector VIdxList(IdxList.begin(), IdxList.end()); const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList, true); assert(Ty && "GEP indices invalid!"); return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList); } Constant *ConstantExpr::getGetElementPtr(Constant *C, const std::vector &IdxList) { // Get the result type of the getelementptr! const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList, true); assert(Ty && "GEP indices invalid!"); return getGetElementPtrTy(PointerType::get(Ty), C, IdxList); } Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, Constant *Idx) { if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Idx); const ExprMapKeyType &Key = std::make_pair(Instruction::ExtractElement,ArgVec); return ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { assert(isa(Val->getType()) && "Tried to create extractelement operation on non-packed type!"); assert(Idx->getType() == Type::UIntTy && "Index must be uint type!"); return getExtractElementTy(cast(Val->getType())->getElementType(), Val, Idx); } // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { ExprConstants.remove(this); destroyConstantImpl(); } const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); std::pair Lookup; Lookup.first.first = getType(); Lookup.second = this; std::vector &Values = Lookup.first.second; Values.reserve(getNumOperands()); // Build replacement array. // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. bool isAllZeros = false; if (!ToC->isNullValue()) { for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) Values.push_back(cast(O->get())); } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } Values[OperandToUpdate] = ToC; Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getType()); } else { // Check to see if we have this array type already. bool Exists; ArrayConstantsTy::MapIterator I = ArrayConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! ArrayConstants.MoveConstantToNewSlot(this, I); // Update to the new value. setOperand(OperandToUpdate, ToC); return; } } // Otherwise, I do need to replace this with an existing value. assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); std::pair Lookup; Lookup.first.first = getType(); Lookup.second = this; std::vector &Values = Lookup.first.second; Values.reserve(getNumOperands()); // Build replacement struct. // Fill values with the modified operands of the constant struct. Also, // compute whether this turns into an all-zeros struct. bool isAllZeros = false; if (!ToC->isNullValue()) { for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) Values.push_back(cast(O->get())); } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } Values[OperandToUpdate] = ToC; Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getType()); } else { // Check to see if we have this array type already. bool Exists; StructConstantsTy::MapIterator I = StructConstants.InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! StructConstants.MoveConstantToNewSlot(this, I); // Update to the new value. setOperand(OperandToUpdate, ToC); return; } } assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); std::vector Values; Values.reserve(getNumOperands()); // Build replacement array... for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) Val = cast(To); Values.push_back(Val); } Constant *Replacement = ConstantPacked::get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Use *U) { assert(isa(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast(ToV); Constant *Replacement = 0; if (getOpcode() == Instruction::GetElementPtr) { std::vector Indices; Constant *Pointer = getOperand(0); Indices.reserve(getNumOperands()-1); if (Pointer == From) Pointer = To; for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) Val = To; Indices.push_back(Val); } Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices); } else if (getOpcode() == Instruction::Cast) { assert(getOperand(0) == From && "Cast only has one use!"); Replacement = ConstantExpr::getCast(To, getType()); } else if (getOpcode() == Instruction::Select) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); Constant *C3 = getOperand(2); if (C1 == From) C1 = To; if (C2 == From) C2 = To; if (C3 == From) C3 = To; Replacement = ConstantExpr::getSelect(C1, C2, C3); } else if (getOpcode() == Instruction::ExtractElement) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; Replacement = ConstantExpr::getExtractElement(C1, C2); } else if (getNumOperands() == 2) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; Replacement = ConstantExpr::get(getOpcode(), C1, C2); } else { assert(0 && "Unknown ConstantExpr type!"); return; } assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. uncheckedReplaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } /// clearAllValueMaps - This method frees all internal memory used by the /// constant subsystem, which can be used in environments where this memory /// is otherwise reported as a leak. void Constant::clearAllValueMaps() { std::vector Constants; DoubleConstants.clear(Constants); FloatConstants.clear(Constants); SIntConstants.clear(Constants); UIntConstants.clear(Constants); AggZeroConstants.clear(Constants); ArrayConstants.clear(Constants); StructConstants.clear(Constants); PackedConstants.clear(Constants); NullPtrConstants.clear(Constants); UndefValueConstants.clear(Constants); ExprConstants.clear(Constants); for (std::vector::iterator I = Constants.begin(), E = Constants.end(); I != E; ++I) (*I)->dropAllReferences(); for (std::vector::iterator I = Constants.begin(), E = Constants.end(); I != E; ++I) (*I)->destroyConstantImpl(); Constants.clear(); }