//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMTargetMachine.h" #include "ARMFrameLowering.h" #include "llvm/CodeGen/Passes.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; static cl::opt DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, cl::desc("Inhibit optimization of S->D register accesses on A15"), cl::init(false)); extern "C" void LLVMInitializeARMTarget() { // Register the target. RegisterTargetMachine X(TheARMTarget); RegisterTargetMachine Y(TheThumbTarget); } /// TargetMachine ctor - Create an ARM architecture model. /// ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), Subtarget(TT, CPU, FS, Options), JITInfo(), InstrItins(Subtarget.getInstrItineraryData()) { // Default to triple-appropriate float ABI if (Options.FloatABIType == FloatABI::Default) this->Options.FloatABIType = Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft; } void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) { // Add first the target-independent BasicTTI pass, then our ARM pass. This // allows the ARM pass to delegate to the target independent layer when // appropriate. PM.add(createBasicTargetTransformInfoPass(this)); PM.add(createARMTargetTransformInfoPass(this)); } void ARMTargetMachine::anchor() { } static std::string computeDataLayout(ARMSubtarget &ST) { // Little endian. std::string Ret = "e"; Ret += DataLayout::getManglingComponent(ST.getTargetTriple()); // Pointers are 32 bits and aligned to 32 bits. Ret += "-p:32:32"; // On thumb, i16,i18 and i1 have natural aligment requirements, but we try to // align to 32. if (ST.isThumb()) Ret += "-i1:8:32-i8:8:32-i16:16:32"; // ABIs other than APC have 64 bit integers with natural alignment. if (!ST.isAPCS_ABI()) Ret += "-i64:64"; // We have 64 bits floats. The APCS ABI requires them to be aligned to 32 // bits, others to 64 bits. We always try to align to 64 bits. if (ST.isAPCS_ABI()) Ret += "-f64:32:64"; // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others // to 64. We always ty to give them natural alignment. if (ST.isAPCS_ABI()) Ret += "-v64:32:64-v128:32:128"; else Ret += "-v128:64:128"; // On thumb and APCS, only try to align aggregates to 32 bits (the default is // 64 bits). if (ST.isThumb() || ST.isAPCS_ABI()) Ret += "-a:0:32"; // Integer registers are 32 bits. Ret += "-n32"; // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit // aligned everywhere else. if (ST.isTargetNaCl()) Ret += "-S128"; else if (ST.isAAPCS_ABI()) Ret += "-S64"; else Ret += "-S32"; return Ret; } ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), InstrInfo(Subtarget), DL(computeDataLayout(Subtarget)), TLInfo(*this), TSInfo(*this), FrameLowering(Subtarget) { initAsmInfo(); if (!Subtarget.hasARMOps()) report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not " "support ARM mode execution!"); } void ThumbTargetMachine::anchor() { } ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), InstrInfo(Subtarget.hasThumb2() ? ((ARMBaseInstrInfo*)new Thumb2InstrInfo(Subtarget)) : ((ARMBaseInstrInfo*)new Thumb1InstrInfo(Subtarget))), DL(computeDataLayout(Subtarget)), TLInfo(*this), TSInfo(*this), FrameLowering(Subtarget.hasThumb2() ? new ARMFrameLowering(Subtarget) : (ARMFrameLowering*)new Thumb1FrameLowering(Subtarget)) { initAsmInfo(); } namespace { /// ARM Code Generator Pass Configuration Options. class ARMPassConfig : public TargetPassConfig { public: ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} ARMBaseTargetMachine &getARMTargetMachine() const { return getTM(); } const ARMSubtarget &getARMSubtarget() const { return *getARMTargetMachine().getSubtargetImpl(); } bool addPreISel() override; bool addInstSelector() override; bool addPreRegAlloc() override; bool addPreSched2() override; bool addPreEmitPass() override; }; } // namespace TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { return new ARMPassConfig(this, PM); } bool ARMPassConfig::addPreISel() { if (TM->getOptLevel() != CodeGenOpt::None) addPass(createGlobalMergePass(TM)); return false; } bool ARMPassConfig::addInstSelector() { addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); const ARMSubtarget *Subtarget = &getARMSubtarget(); if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() && TM->Options.EnableFastISel) addPass(createARMGlobalBaseRegPass()); return false; } bool ARMPassConfig::addPreRegAlloc() { // FIXME: temporarily disabling load / store optimization pass for Thumb1. if (getOptLevel() != CodeGenOpt::None && !getARMSubtarget().isThumb1Only()) addPass(createARMLoadStoreOptimizationPass(true)); if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9()) addPass(createMLxExpansionPass()); // Since the A15SDOptimizer pass can insert VDUP instructions, it can only be // enabled when NEON is available. if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() && getARMSubtarget().hasNEON() && !DisableA15SDOptimization) { addPass(createA15SDOptimizerPass()); } return true; } bool ARMPassConfig::addPreSched2() { // FIXME: temporarily disabling load / store optimization pass for Thumb1. if (getOptLevel() != CodeGenOpt::None) { if (!getARMSubtarget().isThumb1Only()) { addPass(createARMLoadStoreOptimizationPass()); printAndVerify("After ARM load / store optimizer"); } if (getARMSubtarget().hasNEON()) addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass)); } // Expand some pseudo instructions into multiple instructions to allow // proper scheduling. addPass(createARMExpandPseudoPass()); if (getOptLevel() != CodeGenOpt::None) { if (!getARMSubtarget().isThumb1Only()) { // in v8, IfConversion depends on Thumb instruction widths if (getARMSubtarget().restrictIT() && !getARMSubtarget().prefers32BitThumb()) addPass(createThumb2SizeReductionPass()); addPass(&IfConverterID); } } if (getARMSubtarget().isThumb2()) addPass(createThumb2ITBlockPass()); return true; } bool ARMPassConfig::addPreEmitPass() { if (getARMSubtarget().isThumb2()) { if (!getARMSubtarget().prefers32BitThumb()) addPass(createThumb2SizeReductionPass()); // Constant island pass work on unbundled instructions. addPass(&UnpackMachineBundlesID); } addPass(createARMConstantIslandPass()); return true; } bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) { // Machine code emitter pass for ARM. PM.add(createARMJITCodeEmitterPass(*this, JCE)); return false; }